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Purpose: To evaluate the effectiveness of magnetic resonance imaging (MRI)-

based intratumoral and peritumoral radiomics models for predicting deep

myometrial invasion (DMI) of early-stage endometrioid adenocarcinoma (EAC).

Methods: The data of 459 EAC patients from three centers were retrospectively

collected. Radiomics features were extracted separately from the intratumoral

and peritumoral regions expanded by 0 mm, 5 mm, and 10 mm on unimodal and

multimodal MRI. Then, various radiomics models were developed and validated,

and the optimal model was confirmed. Integrated models were constructed by

ensemble and stacking algorithms based on the above radiomics models. The

models’ performance was evaluated using the area under the curve (AUC).

Results: The multimodal MRI-based radiomics model, which included both

intratumoral and peritumoral regions expanded by 5 mm, was the optimal

radiomics model, with an AUC of 0.74 in the validation group. When the same

integrated algorithm was utilized, the integrated models with 5-mm expansion

presented higher AUCs than those with 0-mm and 10-mm expansion in the

validation group. The performance of the stacking model and ensemble model

with 5-mmexpansion was similar, and their AUCs were 0.74 and 0.75, respectively.

Conclusion: The multimodal radiomics model from the intratumoral and

peritumoral regions expanded by 5 mm has the potential to improve the

performance for detecting DMI of early-stage EAC. The integrated models are

of little value in increasing the prediction.
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1 Introduction

Endometrial cancer (EC) is the sixth most commonly diagnosed

cancer in women (1), and with the increasing obesity rate, the

incidence and disease-associated mortality are also increasing (2).

Endometrioid adenocarcinoma (EAC) accounts for 75% to 80% of

EC cases (3). According to the staging system of the International

Federation of Gynecology and Obstetrics (FIGO), 75% of cases are

in stage I at the time of detection, and EC can be further classified

into stages IA and IB depending on the depth of myometrial

invasion (4). Deep myometrial invasion (DMI), defined as the

depth of infiltration ≥50% of the thickness of the myometrium, is

considered to be one of the most important factors affecting the

prognosis of EC, as tumors with DMI have a greater probability of

paracervical invasion and pelvic lymph node metastasis (5, 6).

Hence, DMI can be used as a marker to identify possible lymph

node metastasis and the risk of lymphovascular space invasion (5,

7). The primary treatment of stage I EC is total hysterectomy with

bilateral salpingectomy (8). The depth of myometrial invasion is a

key factor in determining the operation mode of EAC (5). DMI

status will determine whether ovaries can be preserved in young

patients and whether lymph nodes need to be removed (8).

Therefore, it is of great significance for preoperative detection to

determine the depth of myometrial infiltration, which will help

gynecologists develop an appropriate treatment plan and avoid

overtreatment of EAC patients. Preoperative detection of the depth

of myometrial infiltration is of great significance.

Magnetic resonance imaging (MRI) has significant advantages in

assessing the depth of myometrial invasion of EC (9), which has

become the primary method for preoperative assessment of the depth

of myometrial infiltration of EC (10). In conventional MRI, T2-

weighted imaging (T2WI) has important value in assessing the depth

of myometrial invasion in EC patients (11, 12). Dynamic contrast-

enhanced MRI (DCE-MRI) or diffusion-weighted imaging (DWI) and

apparent diffusion coefficient (ADC) combined with T2WI have been

demonstrated to detect DMI of EC (13, 14). However, the performance

of MRI for assessing DMI of EC depends on the professional

knowledge and subjective experience of radiologists (15). Moreover,

there are huge differences in the agreement and diagnostic accuracy of

different radiologists when assessing DMI (16). In addition,

morphological evaluation is challenging to accurately detect DMI in

the absence of a definition of the borderline and poor impact of tumors

on the myometrium (17).

Radiomics is a precise and non-invasive approach that converts

MR images to mineable data into high-dimensional data and

subsequently analyzes the data to offer abundant information on

EC (18), including intertumoral and peritumoral information,

which could be a supplement to conventional images or clinical

data (19). At present, there are some articles on the assessment of

DMI based on intratumoral radiomics (20, 21), but few articles use

radiomics combining intratumoral features with peritumoral

features to evaluate DMI of EC (22).

The purpose of this study was to establish the various

intratumoral and peritumoral radiomics models on unimodal and

multimodal MRI for predicting DMI in early-stage EAC, and
Frontiers in Oncology 02
unimodal and multimodal radiomics models were fused using

different integration algorithms.
2 Materials and methods

2.1 Patient selection

The ethical approval of three clinical centers approved this

retrospective study. The informed consent was waived. This study

collected preoperative MR images and clinical data of patients with

EAC from January 2017 to June 2023. The inclusion criteria were as

follows: 1) stage I EAC patients confirmed by surgery and pathology

with complete clinical data, 2) patients with satisfactory imaging

quality, and 3) MR images including T2WI, DWI, and late contrast-

enhanced T1-weighted imaging (LCE-T1WI) within 2 weeks before

surgery. The exclusion criteria were as follows: 1) patients with a history

of other malignant tumors, 2) themaximum diameter of the tumor was

less than 10 mm, and 3) underwent surgery, chemoradiotherapy, or

other treatment before MRI examination.
2.2 Clinical parameters

The clinical characteristics including age, menopausal status,

metabolic syndrome (including hypertension, diabetes, or

hyperlipidemia), body mass index (BMI), tumor grade, preoperative

cancer antigen 125 (CA125), and preoperative cancer antigen 199

(CA199) were obtained from the medical record system. A total of 459

patients (aged 53.21 to 9.19 years) were included in the study. Of them,

281 patients from center A were assigned to the training group (222

patients with stage IA and 59 patients with stage IB); 71 patients from

center B were assigned to validation group A (41 patients with stage IA

and 30 patients with stage IB); 107 patients from center C were

assigned to validation group B (78 patients with stage IA and 29

patients with stage IB).
2.3 MRI acquisition

All MRI examinations were performed using 1.5/3.0-T

scanners with 8-channel sensitivity encoding phased-array

abdominal coils. In this study, oblique axial T2WI, DWI (b-value

= 1,000 s/mm2), ADC map, and LCE-T1WI were selected. LCE-

T1WI images were obtained approximately 3 minutes after

intravenous gadolinium administration (0.1 mL/kg, Magnevist;

Bayer Pharmaceutical Company, Schönefeld, Germany) at a rate

of 2mL/s. Table 1 shows the parameters of the selected sequences of

each MR scanner.
2.4 Image segmentation

Image segmentation was carried out using the 3D Slicer 4.11.0

(https://www.slicer.org/) software. Rigid registration was used to
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match the multisequence pictures of the axial oblique T2WI, DWI,

ADC, and LCE-T1WI to ensure spatial coherence within a shared

reference space. The poorly matched sequences were delineated

separately in each sequence. The tumor boundary was manually

delineated on the T2WI sequence layer by layer with reference to

other sequences. The normal myometrium adjacent to the tumor

was avoided, but the region of interest (ROI) comprised bleeding,

necrotic, or cystic areas. The ROIs included intratumoral regions

(expanded by 0 mm) and intratumoral combined with peritumoral

regions expanded by 5 mm and 10 mm (22–24).

The segmentation of the tumors was performed by two

radiologists (radiologist A and radiologist B, with 5 years and 9

years of experience in pelvic MRI, respectively) who were blinded to

the histopathological results. Radiologist A redrew each patient’s

ROI after 2 months. To assess consistency among and within

observers, the intraclass correlation coefficient (ICC) of each

characteristic was determined. Features with an inter-observer

consistency of less than 0.75 were disregarded.
Frontiers in Oncology 03
2.5 Feature extraction and selection

Image preprocessing and feature extraction were performed using

Pyradiomics (https://pypi.org/project/pyradiomics/). Radiomics

features from the ROIs on T2WI, DWI, ADC, LCE-T1WI, and

multimodal MRI (combining the four sequences) were extracted.

To create isotropic voxels, the MR images and ROIs were resampled

to 3 × 3 × 3 mm, and cubic spline interpolation was carried out. By

subtracting the average values, dividing by the standard deviation,

multiplying the values by 100, and adding a 300-voxel array shift,

the intensity values were normalized. The distribution of gray-level

intensity in the photos falls between 0 and 600 as a result. Then, to

ensure that the intensity of the gray levels was identical and to

prevent negative pixel values from interfering with the calculation

of texture features, a set bin width (=1) was used. In order to

highlight the difference in ROIs and obtain more high-throughput

features, wavelet, gradient, logarithm, exponent, square, square

root, and Laplace Gaussian (LoG) filter were used to transform
TABLE 1 The parameter details of primary sequences.

Sequence Repetition
time (ms)

Echo
time
(ms)

Field of
view (mm2)

Acquisition
matrix (ms)

Slice
thickness
(mm)

Slice
gap
(mm)

Training group Siemens
Aera 1.5 T

T2WI 3,900 90 320 × 320 512 × 512 3 1.5

DWI (b = 0 and
1,000 s/mm2)

5,600 90 200 × 200 256 × 256 4 1

LCE-T1WI 3.41 1.3 240 × 240 320 × 320 2 1.5

Siemens
Prisma
3.0 T

T2WI 3,200 90 200 × 200 320 × 320 3 3.6

DWI (b = 0 and
1,000 s/mm2)

6,300 75 250 × 134 72 × 134 3 3.6

LCE-T1WI 2.9 1.19 220 × 200 288 × 262 3 0

GE Signa
HDXt 3.0T

T2WI 3,500 104 200 × 200 240 × 240 3 1.5

DWI (b = 0 and
1,000 s/mm2)

4,250 70 200 × 200 240 × 240 3 1

LCE-T1WI 3.26 1.6 240 × 240 350 × 350 3 1.5

Validation
group A

GE Signa
HDXt 3.0T

T2WI 3,500 104 200 × 200 240 × 240 3 1.5

DWI (b = 0 and
1,000 s/mm2)

4,250 70 200 × 200 240 × 240 3 1

LCE-T1WI 3.26 1.6 240 × 240 350 × 350 3 1.5

Validation
group B

Philips
Ingenia
3.0T

T2WI 1,835 100 200 × 200 332 × 284 3 0.3

DWI (b = 0 and
1,000 s/mm2)

5,271 55 200 × 250 80 × 98 3 0.3

LCE-T1WI 3.7 1.32 400 × 353 288 × 253 5 −2.5

GE
Pioneer
3.0T

T2WI 4,904 85 200 × 200 320 × 256 3 0.3

DWI (b = 0 and
1,000 s/mm2)

3,675 Minimum 180 × 144 110 × 72 3 0.3

LCE-T1WI 3.5 1.7 400 × 360 340 × 256 5 −2.5
fr
T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; LCE-T1WI, late contrast-enhanced T1-weighted imaging.
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the normalized MR images. The transformation range was 2–6 mm,

and the increment was 1 mm. The categories were as follows: 1)

first-order features, 2) two-dimensional features, 3) gray-level co-

occurrence matrix (GLCM), 4) gray-level dependence matrix

(GLDM), 5) gray-level size-zone matrix (GLSZM), 6) gray-level

run-length matrix (GLRLM), and 7) neighboring gray tone

difference matrix (NGTDM). All the above features were

standardized by Z-score to reduce the influence of different

dimensions among features. The imaging feature calculation

protocol and definition are avai lable online (https://

pyradiomics.readthedocs.io/) (25). The ICC of each feature was

calculated to avoid the subjective difference in lesion segmentation

and ensure repeatability. The features with ICC values ≥0.75

between observers and within observers were selected. Pearson’s

correlation coefficients were calculated to identify redundant

features. The feature with the largest mean absolute correlation

was deleted when the correlation coefficient of the two features was

≥0.9. A least absolute shrinkage and selection operator (LASSO)

regression model was used to identify the most representative

features, and 10-fold cross-validation was performed (26).

Univariate and multivariate logistic regression (LR) analyses were

used to choose the clinical independent factors.
2.6 Model construction

In this study, LR was used to construct models for the features

extracted separately from the intratumoral and peritumoral regions

expanded by 0 mm, 5 mm, and 10 mm on unimodal and multimodal

MRI. A total of 15 models (5 × 3 = 15) were required to be constructed

and validated. The stacking model is an ensemble learning technology

that integrates many models through a meta-regression model to

improve the result prediction accuracy. In this study, a two-tier
Frontiers in Oncology 04
stacking model was used for the calculation; the first tier used

predicted results of the above five models (radiomics models from

the ROIs on T2WI, DWI, ADC, LCE-T1WI, and multimodal MRI).

The second tier used the results of the first tier as the input of the

multivariate LR. Through the meta-regressor, these input features were

combined in order to achieve model fusion (27). The ensemble

algorithm is developed using the super learner and is an integrated

strategy (28). The predicted values were obtained from the above five

models using the weighted average method, and the new output was

used as the final result. The above model building was implemented in

Python (https://www.python.org/getit/), and the detailed process of

the model structure adopted is shown in Figure 1.

The diagnostic performances of the radiomics models and

integrated models were evaluated by sensitivity (SEN), specificity

(SPE), accuracy (ACC), and the area under the curve (AUC) of the

receiver operating characteristic (ROC) curve. The radiomics model

with the highest average AUC for validation groups A and B was

considered the optimal radiomics model. DeLong’s tests were

performed to evaluate the predictive performance of different

models. Clinical decision curve (CDC) was used to estimate the

clinical net benefit of the radiologist and different models.
2.7 Statistical analyses

Statistical analysis was conducted using SPSS 26.0 (IBM,

Armonk, NY, USA), R software 4.1.2 (https://www.r-project.org/),

and Python 3.9.7 (https://www.python.org/). Categorical variables

and continuous variables were respectively expressed as means

value ± standard deviation and counts. Categorical variables were

analyzed using the chi-square test or Fisher’s exact test, whereas

continuous variables were evaluated using one-way ANOVA, the

Mann–Whitney U test, or the Kruskal–Wallis test. Univariate and
FIGURE 1

Workflow of this study.
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TABLE 2 Clinical characteristics of patients in the training group and validation group.

Training group (N = 281) Validation group A (N = 71) Validation group B (N = 107)

IA IB IA IB IA IB

Number 222 59 41 30 78 29

Age (mean ± SD) 52.03 ± 8.73 56.86 ± 8.44 54.80 ± 9.58 53.17 ± 8.65 51.78 ± 8.23 56.37 ± 5.68

CA125 30.99 ± 60.67 63.59 ± 98.82 30.20 ± 46.92 63.42 ± 230.96 16.02 ± 13.66 26.43 ± 21.67

CA199 30.18 ± 71.81 142.80 ± 325.64 30.64 ± 29.83 40.99 ± 50.07 21.41 ± 11.20 27.59 ± 19.82

BMI (kg/m2) 24.77 ± 4.23 24.23 ± 3.57 24.64 ± 3.84 24.67 ± 3.29 25.46 ± 4.37 25.53 ± 4.54

Menopause

Yes 125 (56.31%) 50 (84.75%) 23 (56.10%) 19 (63.33%) 37 (47.44%) 22 (75.86%)

No 97 (43.69%) 9 (15.25%) 18 (43.90%) 11 (36.67%) 41 (52.56%) 7 (24.14%)

Metabolic syndrome

Yes 69 (31.08) 24 (40.68%) 10 (24.39%) 4 (13.33%) 33 (42.31%) 12 (41.38%)

No 153 (68.92%) 35 (59.32%) 31 (75.61%) 26 (86.67%) 45 (57.69%) 17 (58.62%)
F
rontiers in Oncology
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FIGO, International Federation of Gynecology and Obstetrics; SD, standard deviation; BMI, body mass index; CA125, cancer antigen 125; CA199, cancer antigen 199.
TABLE 3 Prediction performance of various radiomics models for the determination of deep myometrial invasion.

Sequence Training group
N = 281

Validation group A
N = 71

Validation group B
N = 107

Validation group
N = 178

0 mm 5mm 10mm 0mm 5mm 10mm 0mm 5mm 10mm 0mm 5mm 10mm

T2WI AUC 0.86 0.91 0.88 0.60 0.76 0.72 0.73 0.64 0.59 0.67 0.70 0.67

ACC 0.76 0.86 0.80 0.56 0.65 0.69 0.73 0.72 0.58 0.65 0.69 0.64

SEN 0.75 0.88 0.81 0.37 0.60 0.53 0.62 0.48 0.41 0.50 0.54 0.47

SPE 0.77 0.83 0.79 0.71 0.68 0.80 0.77 0.81 0.64 0.74 0.75 0.72

LCE-T1WI AUC 0.91 0.86 0.76 0.53 0.68 0.67 0.69 0.63 0.64 0.61 0.66 0.66

ACC 0.86 0.79 0.68 0.58 0.68 0.59 0.68 0.63 0.66 0.63 0.66 0.63

SEN 0.89 0.79 0.70 0.47 0.57 0.47 0.55 0.52 0.66 0.51 0.55 0.57

SPE 0.83 0.78 0.67 0.66 0.76 0.68 0.73 0.67 0.67 0.70 0.72 0.68

DWI AUC 0.91 0.84 0.85 0.55 0.54 0.53 0.67 0.72 0.74 0.61 0.63 0.63

ACC 0.84 0.73 0.77 0.54 0.56 0.55 0.65 0.71 0.71 0.60 0.64 0.63

SEN 0.88 0.76 0.81 0.40 0.40 0.33 0.55 0.59 0.66 0.48 0.50 0.50

SPE 0.80 0.69 0.73 0.63 0.68 0.71 0.69 0.74 0.72 0.66 0.71 0.72

ADC AUC 0.94 0.84 0.86 0.59 0.63 0.58 0.72 0.72 0.54 0.66 0.68 0.56

ACC 0.89 0.78 0.82 0.62 0.61 0.58 0.68 0.67 0.59 0.65 0.64 0.59

SEN 0.91 0.79 0.85 0.37 0.50 0.40 0.34 0.62 0.28 0.34 0.56 0.34

SPE 0.86 0.77 0.80 0.80 0.68 0.71 0.81 0.69 0.71 0.81 0.69 0.71

Multimodality AUC 0.91 0.87 0.86 0.64 0.76 0.60 0.73 0.71 0.67 0.69 0.74 0.64

ACC 0.84 0.82 0.79 0.59 0.65 0.61 0.75 0.67 0.65 0.67 0.66 0.63

SEN 0.86 0.85 0.79 0.30 0.43 0.40 0.62 0.55 0.72 0.46 0.49 0.56

SPE 0.81 0.79 0.79 0.81 0.80 0.76 0.79 0.72 0.63 0.80 0.76 0.70
fron
T2WI, T2-weighted imaging; LCE-T1WI, late contrast-enhanced T1-weighted imaging; DWI, diffusion-weighted imaging; ADC, the apparent diffusion coefficient; AUC, area under the curve;
ACC, accuracy; SEN, sensitivity; SPE, specificity.
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multivariate LR analyses were used to filter the clinical predictors.

Statistical significance was set at p < 0.05. Pearson’s correlation analyses

were used to evaluate correlations between continuous variables. It’s

considered to be correlations between the variables if p < 0.05.
3 Results

3.1 Clinical parameters

The clinical information of the patients in the training

group and the validation groups is summarized in Table 2. Age,

menopausal status, and CA199 were found to be reliable predictors

of DMI in early-stage EAC by univariate LR analysis. Multivariate
Frontiers in Oncology 06
LR analysis showed that menopausal status and CA199 remained

independent predictors of DMI in early-stage EAC (p < 0.05).
3.2 Feature selection and performance of
radiomics models

Among all the extracted features, 608 features (intratumoral

regions: henceforth, 0 mm), 479 features (intratumoral and

peritumoral regions expanded by 5 mm: henceforth, 5 mm), and

709 features (intratumoral and peritumoral regions expanded by 10

mm: henceforth, 10 mm) were excluded based on ICC values less

than 0.75 either between or within observers. After Pearson’s

correlation analysis, 5,267 features (0 mm), 5,344 features (5
FIGURE 2

Receiver operating characteristic (ROC) curves for different models in the training group (A–C), validation group A (D–F), and validation group B (G–I).
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mm), and 4,992 features (10 mm) were excluded. After the LASSO

classifier, the top four features from the T2WI, DWI, ADC, LCE-

T1WI, and multimodal MRI were screened out. The selected

features and weights are shown in Supplementary Material 1-4.

The RadScores were calculated based on the coefficients and

intercepts obtained from the LR models.

The AUC, ACC, SEN, and SPE of radiomics models are shown

in Table 3, and the ROC curves in the training group, validation

group A, and validation group B are presented in Figure 2. The

optimal radiomics model was the multimodal MRI-based radiomics

model from the intratumoral and peritumoral regions expanded by

5 mm, with an AUC of 0.74 in the validation group. In the optimal

radiomics model, the features that contribute most were as follows:

T2_ l o g_ s i gma_6_0_mm_3D_g l dm_Depend en c e _

NonUniformityNormalized,
CE_gradient_gldm_SmallDependence_LowGrayLevel_Emphasis,

CE_log_sigma_3_0_mm_3D_gldm_LargeDependence

_HighGrayLevel_Emphasis,

and ADC_log_sigma_6_0_mm_3D_firstorder_Maximum.
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3.3 Performance and clinical application of
integrated model

In the training group, the AUCs of the stacking model were

0.96, 0.93, and 0.92 for 0 mm, 5 mm, and 10 mm, respectively. The

AUCs of the ensemble model were 0.96, 0.92, and 0.92 for 0 mm, 5

mm, and 10 mm, respectively. In the validation group, the AUCs of

the stacking model were 0.67, 0.74, and 0.69 for 0 mm, 5 mm, and

10 mm, respectively. The AUCs of the ensemble model were 0.67,

0.75, and 0.70 for 0 mm, 5 mm, and 10 mm, respectively. When the

same integrated algorithm was used, the integrated models with 5-

mm expansion presented higher AUCs than those with 0-mm and

10-mm expansion in the validation group. The performance of the

stacking model and ensemble model with 5-mm expansion was

similar, and their AUCs were 0.74 and 0.75, respectively. The

performance of each model is presented in Table 4. ROC curves

in the training group, validation group A, and validation group B

are presented in Figure 3. The heat maps of DeLong’s test and CDCs

of the ensemble model and stacking model are shown in Figure 4.
TABLE 4 Prediction performance of different integrated radiomics models.

Group Models AUC (95%CI) ACC (%) SEN (%) SPE (%)

Training group Stacking mode (0 mm) 0.96 0.90 0.92 0.87

Stacking model (5 mm) 0.93 0.86 0.87 0.84

Stacking model (10 mm) 0.92 0.85 0.87 0.84

Ensemble model (0 mm) 0.96 0.89 0.92 0.87

Ensemble model (5 mm) 0.92 0.85 0.87 0.84

Ensemble model (10 mm) 0.92 0.85 0.86 0.83

Validation group A Stacking model (0 mm) 0.57 0.62 0.33 0.83

Stacking model (5 mm) 0.77 0.66 0.53 0.76

Stacking model (10 mm) 0.71 0.68 0.40 0.88

Ensemble model (0 mm) 0.57 0.62 0.34 0.83

Ensemble model (5 mm) 0.77 0.69 0.57 0.78

Ensemble model (10 mm) 0.72 0.68 0.43 0.85

Validation group B Stacking model (0 mm) 0.76 0.71 0.38 0.82

Stacking model (5 mm) 0.71 0.75 0.48 0.85

Stacking model (10 mm) 0.67 0.65 0.52 0.71

Ensemble model (0 mm) 0.76 0.70 0.38 0.82

Ensemble model (5 mm) 0.72 0.75 0.48 0.85

Ensemble model (10 mm) 0.67 0.65 0.52 0.71

Validation group Stacking model (0 mm) 0.67 0.67 0.92 0.87

Stacking model (5 mm) 0.74 0.71 0.87 0.84

Stacking model (10 mm) 0.69 0.67 0.87 0.84

Ensemble model (0 mm) 0.67 0.66 0.92 0.87

Ensemble model (5 mm) 0.75 0.72 0.87 0.84

Ensemble model (10 mm) 0.70 0.67 0.86 0.83
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.
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The heat map of DeLong’s test showed that there was little

difference between the integrated models in the validation group.

According to CDCs, the ensemble model with 5-mm expansion for

predicting the DMI of early-stage EAC showed clinical net benefit

in the validation group.
4 Discussion

In this study, we found that the optimal radiomics model was the

multimodal MRI-based radiomics model from the intratumoral and

peritumoral regions expanded by 5 mm. However, the predictive

performance of the integrated models did not improve compared

with that of the simple radiomics models, and the ensemble model

with 5-mm expansion for predicting the DMI of early-stage EAC

demonstrated clinical net benefit in the validation group.

Some studies have lately started to investigate peritumoral areas

in the hopes of providing more additional and helpful information

about the tumors, given the expanding understanding of the

biological behavior and the underlying microenvironment of
Frontiers in Oncology 08
tumors (29). The peritumoral region was found to be highly

linked with tumor invasion in earlier radiomics studies (30, 31).

Therefore, we constructed intratumoral and peritumoral

radiomics models to predict the DMI of early-stage EA. Lei et al.

(32) found that ADC values in the 5-mm peritumoral region may be

helpful in differentiating between DMI and superficial myometrial

infiltration (22). Niha Beig et al. showed that radiomics

characteristics located approximately 5 mm outside the tumor can

be extracted to differentiate adenocarcinoma from granuloma (33).

Tumor-associated macrophages and lymphocytes infiltrating the

tumor were discovered to be closely packed “edges” of the tumor

interface in the representative hematoxylin and eosin staining

images (33). Our study showed that the multimodal radiomics

model with 5-mm expansion acquired the highest AUC. The AUCs

of the radiomics models with 10-mm expansion were not high,

possibly because the overlarge peritumoral regions contained

normal tissue, which caused the model’s performance to collapse

(34). Wu et al. (34) indicated that stable performance of the

radiomics model was achieved only in 1.5- to 4.5-mm tumors in

the peritumoral regions.
FIGURE 3

Receiver operating characteristic (ROC) curves for different integrated models in the training group (A-C), validation group A (D-F), and validation
group B (G-I).
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In this study, compared to the unimodal radiomics models, the

multimodal radiomics models with 0 mm and 5-mm expansion

obtained higher AUCs in the validation group. Numerous studies

have shown that the performance of the multimodal MRI-based

radiomics models was superior to that of the unimodal radiomics

models (35, 36). Wang et al. (37) considered that multimodal

radiomics models performed better in differentiating between

subtypes of early cervical cancer than any unimodal radiomics

models. Combining multiparametric MRI features could enhance

prediction because distinct sequences represented the various

biological characteristics of the tumor, such as tumor composition,

cellularity, and vascularization (38).

A recent study indicated that the stacking model demonstrated

strong stability and achieved great diagnostic performance (39, 40).

Nevertheless, the performance of the integrated models was not

improved compared with that of the simple radiomics models in

this study. The benefit of the ensemble approach is that it can

enhance the model’s generalization and resilience in classification

and prediction while lowering the model’s variance and bias through

a strong majority voting or group average procedure (41). We found

that the ensemble model with 5-mm expansion had a clinical net

benefit in the validation group, which suggested that the integrated
Frontiers in Oncology 09
approach may have the potential to improve clinical effectiveness and

needed to be validated with larger sample sizes in the future.

This study has some limitations. First, although manual

segmentation is the gold standard, it is time-consuming. In the

future, we will develop deep learning algorithms that can segment

tumors automatically. Second, this was a retrospective study, which

may cause potential selection bias. In the future, prospective

validation will be performed. Third, although N4 bias field

correction has been performed, there may be potential impacts on

model results due to differences in scanners and parameters in

multi-center studies.
5 Conclusion

The MRI-based radiomics models that radiomics features

extracted from both intra- and peritumoral regions have the

potential to improve the performance for detecting DMI in early-

stage EAC patients before surgery, and the multimodal radiomics

model with 5-mm expansion has the best performance. The

integrated models with stacking and ensemble algorithms have

little value in improving the prediction.
FIGURE 4

Ensemble model and stacking model of DeLong's test (A, B) and clinical decision curve (C, D) with 0 mm, 5 mm, and 10 mm of peritumoral regions
in the training group (A, C) and validation cohort (B, D).
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