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Intraoperative circulation predict
prolonged length of stay after
head and neck free flap
reconstruction: a retrospective
study based on machine learning
Zhongqi Liu1,2†, Jinbei Wen2†, Yingzhen Chen1,2†, Bin Zhou3,
Minghui Cao1,2* and Mingyan Guo1,2*

1Department of Anesthesiology, Shenshan Medical Central, Sun Yat-sen Memorial Hospital, Sun Yat-
sen University, Shanwei, China, 2Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun
Yat-sen University, Guangzhou, China, 3Department of Oral and Maxillofacial Surgery, Sun Yat-sen
Memorial Hospital, Sun Yat-sen University, Guangzhou, China
Background: Head and neck free flap reconstruction presents challenges in

managing intraoperative circulation, potentially leading to prolonged length of

stay (PLOS). Limited research exists on the associations between intraoperative

circulation and PLOS given the difficulty of manual quantification of

intraoperative circulation time-series data. Therefore, this study aimed to

quantify intraoperative circulation data and investigate its association with

PLOS after free flap reconstruction utilizing machine learning algorithms.

Methods: 804 patients who underwent head and neck free flap reconstruction

between September 2019 and February 2021 were included. Machine learning

tools (Fourier transform, et al.) were utilized to extract features to quantify

intraoperative circulation data. To compare the accuracy of quantified

intraoperative circulation and manual intraoperative circulation assessments in

the PLOS prediction, predictive models based on these 2 assessment methods

were developed and validated.

Results: Intraoperative circulation was quantified and a total of 114 features were

extracted from intraoperative circulation data. Quantified intraoperative

circulation models with a real-time predictive manner were constructed. A

higher area under the receiver operating characteristic curve (AUROC) was

observed in quantified intraoperative circulation data models (0.801 [95% CI,

0.733–0.869]) compared to manual intraoperative circulation assessment

models (0.719 [95% CI, 0.641–0.797]) in PLOS prediction.
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Conclusion: Machine learning algorithms facilitated quantification of

intraoperative circulation data. The developed real-time quantified

intraoperative circulation prediction models based on this quantification offer a

potential strategy to optimize intraoperative circulation management and

mitigate PLOS following head and neck free flap reconstruction.
KEYWORDS

intraoperative circulation, time series data, machine learning, free flap reconstruction,
prolonged length of stay
1 Introduction

In the realm of microsurgery, free flap transplantation has

emerged as a standard technique for reconstructing head and

neck defects resulting from maxillofacial tumors resection and

osteonecrosis. This procedure presents certain characteristics that

pose challenges in managing intraoperative circulation and can

potentially hinder postoperative rehabilitation. These include

prolonged duration, extensive wounds, and intricate and delicate

procedures (1).

The duration of hospitalization after surgery, referred to as

length of stay (LOS), serves as a crucial metric evaluating the quality

encompassing free flap reconstruction and postoperative

rehabilitation. Prolonged length of stay (PLOS) strongly links to

increased healthcare expenses and elevated postoperative

complications, impacting patients’ quality of life (2). However,

patients’ average LOS might surpass 10 days (3). Hence,

optimizing rehabilitation methods and reducing LOS following

free flap reconstruction becomes crucial. The influence of

perioperative events on patients’ LOS is apparent in addition to

surgical procedures (4), and efforts made in perioperative

management have a crucial role to play in preventing PLOS (5–7).

Intraoperative circulation management, as an important part of

perioperative management of free flap reconstruction, clearly

deserves attention. Previous works have reported that in non-

cardiac surgery, aberrant intraoperative circulatory state, including

intraoperative hypotension (8–11), rapid heart rate (12, 13),

abnormally elevated blood pressure (14) affect patients’ prognosis

(myocardial injury, renal damage, 30-day mortality, etc.) and increase

incidence of PLOS (15). To better appraise intraoperative circulation,

variability of blood pressure, time-weighted hypotension (16, 17) and

hypertension (17) were developed in addition to the above. However.

the influence of intraoperative circulation during free flap

reconstruction on the occurrence of PLOS has been rarely

documented, warranting further exploration.

In addition, intraoperative circulation is made up of time series

data. The traditional assessment variables mentioned earlier have

limitations in effectively reflecting the variability of intraoperative

circulation during surgery and the complex interconnections

between these variables. Xue et al. reported that the association
02
between intraoperative circulation and postoperative adverse events

in non-cardiac surgery can be evaluated more accurately using the

time-series data assessment metrics (18). Furthermore, the

emergence of machine learning algorithms in the medical field

has provided novel solutions for evaluating and modifying the

intraoperative circulation data. Hatib F et al. developed a

machine-learning-based predictive model for early warning of

intraoperative hypotension based on arterial pressure waveforms

(19), which was replicated and found to be effective by Wijnberge.

M. et al. (20). Furthermore, using machine learning algorithms like

Fourier transformation and Ricker wavelet analysis, extracting

features for time series data processing was no longer a

challenging task (21–23).

Therefore, employing machine learning algorithms, the purpose

of this retrospective study was to assess and evaluate the predictive

impact of quantified intraoperative circulation data on head and

neck surgery with free flap reconstruction. It was hypothesized that

the use of machine learning algorithms would provide a more

thorough view of the relationship between intraoperative

circulation data and PLOS after free flap reconstruction. The first

aim of this study was to extract intraoperative circulation data

eigenvalues using machine learning algorithms for their

quantification. The second aim of this study was to investigate the

potential superiority of quantified intraoperative circulation data

over manual assessment metrics in predicting PLOS.
2 Materials and methods

2.1 Ethics

Ethical approval was obtained from the Institutional Review

Board (IRB) of Sun Yat-sen Memorial Hospital, Sun Yat-

sen University.
2.2 Study design

The medical records of patients who underwent head and neck

surgery with free flap reconstruction at Sun Yat-sen Memorial
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Hospital between September 2019 and February 2021 were collected

and randomly assigned into primary and validation cohorts in a

ratio of 8:2 in the present retrospective study. Eligibility criteria

required individuals to have received head and neck surgery with

free flap reconstruction during the designated period. And

exclusion criteria were as follows: missing values of demographic

characteristics, perioperative laboratory examination data, surgical

or fluid variables, missing intraoperative blood pressure, heart rate

or pulse values for > 10 min, and patients younger than 9 years old.

Before anesthesia induction, arterial blood pressure was

measured invasively with an arterial catheter placed into the

radial artery and was recorded together with heart rate and pulse

at 5-minute intervals. Arterial blood pressures, heart rates, and

pulse values were linearly interpolated between readings (11). In the

present study, mean arterial pressure (MAP) was calculated from

systolic and diastolic blood pressure. The threshold of hypertension

and hypotension was defined as 30% above and below the baseline

MAP (MAP before induction), respectively. Time-weighted (TW)

hypertension during surgery was calculated as the product of the

depth of hypertension above the threshold of hypertension (mmHg)

multiplied by the time above the threshold of hypertension (min).

Similarly, TW hypotension during surgery was calculated as the

depth of hypotension below the threshold of hypotension (mmHg)

× the time below the threshold of hypotension (min). Intraoperative

average real variability (ARV) and squared version of the

generalized ARV (ARVs) of MAP were calculated by the

following formula (16):

ARV =
1
To

N−1
k=1 t MAPk+1 −MAPkj j

ARVs =
1
To

N−1
k=1

MAPk+1 −MAPkj j2
tk+1 − tk

T was the total time between the first and last MAP reading, N is the

number of MAP readings and t is the time interval between each set

of readings, MAPk and MAPk+1.

Meanwhile, to quantify intraoperative circulation time series

data, machine learning-based technologies (including Fourier

transform, Ricker wavelet, Lempel-Ziv compression, approximation

entropy, permutation entropy, linear regression following blocks

aggregation, and percentage of duplicate and non-duplicate values)

were implemented with a dual test fade discover rate (FDR) of 0.01 in

the current work to obtain the eigenvalues from patients’

intraoperative circulation time series data.

In the current study, each patient received a standardized

anesthetic approach that included sevoflurane and opioids

(sufentanil and remifentanil) for maintenance, as well as

vasopressors if the patient experienced prolonged hypotension.
2.3 Data collection

From patients’ medical records, demographic information such

as sex, age, body mass index (BMI), the reason for the flap (benign

or malignant tumor, osteoradionecrosis), flap types (fibular flap,

anterolateral thigh flap, posterior tibial artery flap, radial forearm
Frontiers in Oncology 03
flap, or others), American Society of Anesthesiologists (ASA) status,

smoking history, radiotherapy history, and comorbidities

(hypertension, diabetes, stroke, coronary heart disease, and

others) were collected. The BMI was caculated using the height

and weight of the patients.

Preoperative lab examination data, including hemoglobin (Hb),

albumin, serum C-reactive protein (CRP), and differential blood cell

counts, were collected seven days before surgery. Data from

postoperative laboratory examinations, including Hb, albumin,

and differential blood cell counts, were gathered within one day

after surgery. Based on the blood cell counts, the perioperative

neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte

ratio (PLR) were computed.

Surgical variables included intraoperative blood loss, duration

of surgery, vasopressor administration, intraoperative blood

transfusion, urine output and postoperative ICU admission. The

conscious decision to use vasopressors (i.e. norepinephrine,

dopamine or ephedrine) on a case-by-case basis was made by the

anesthesia crew. A blood transfusion was required when the

hemoglobin (Hb) level was lower than 70 g/L or the hematocrit

(Hct) was lower than 25% in patients with uncompromised

function (cardiac or pulmonary). A blood transfusion was

indicated when Hct was less than 25% for patients younger than

60 years and less than 30% for patients older than 60 years in

hemodynamically impaired patients.

Fluid variables included the volume and rate of both

intraoperative infusion and 24-hour infusion (crystalloid, colloid

and total). The infusion rate was standardized to the patient’s body

weight (mL/[kg×hr]). Intraoperative fluid infusions were

administered at the discretion of the anesthesiologists based on

intra-arterial blood pressure monitoring (avoided the occurrence of

intraoperative hypertension or hypotension), stroke volume variation

(maintained between 10-15) and the patient’s urine output

(maintained no lower than 1 mL/[kg×hr]). The surgical crew was

responsible for titrating the rate of postoperative fluid infusions

considering the patient’s heart rate, blood pressure, and urine output.
2.4 Outcome

Length of stay (LOS) stands for the total number of days

between surgery and discharge, and PLOS stands for any length

of stay above the median of LOS.
2.5 Statistical analysis

Continuous variables were presented as mean (SD) or median

(quartiles) based on their normalcy. To summarize categorical

variables, frequencies (percentages, %) were employed.

Continuous variables were analyzed using the t-test or the Mann-

Whitney U test, depending on their normality. Categorical variables

were analyzed using the chi-square or Fisher exact test, depending

on their frequency of occurrence.

Between the primary and validation cohorts, the univariable

association of baseline demographic data, perioperative laboratory
frontiersin.org

https://doi.org/10.3389/fonc.2024.1473447
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2024.1473447
examination parameters, surgical factors, fluid variables and LOS

was examined. The median LOS was used to divide patients into

PLOS and Non-PLOS groups. The primary cohort’s PLOS and

Non-PLOS groups were then compared using univariate and

multivariate logistic regression analysis to determine risk factors

for PLOS. Collinearity diagnostics were performed to determine the

features for multivariable comparison.

Features derived from two intraoperative circulation data

evaluation methods were estimated in the present study. One was

the features of manual intraoperative circulation data evaluations

which included the intraoperative TW hypertension, TW

hypotension, ARV and ARVs. Another was the features extracted

from intraoperative circulation time series data through machine

learning-based tools (including Fourier transform, Ricker wavelet,

etc.). Occasional missing points in intraoperative circulation data

were filled by the average of adjacent data points. The min-max

normalization was utilized for data pre-processing after

intraoperative circulation data features extraction. To determine

and compare the predictive value of these two intraoperative

circulation data evaluation methods, random forest and xgboost

algorithms were utilized incorporating features from different

intraoperative circulation evaluation methods and other clinical

features in the primary cohort to evaluate feature relevance and

develop binary classification predictive models for PLOS after free

flap reconstruction. The Shapley additive explanations (SHAP)

algorithm was applied to our prediction models to evaluate the

importance of features. The receiver operating characteristic curve

(ROC) and confusion matrix was drawn, and the area under the

receiver operating characteristic curve (AUROC) and overall

accuracy (OA) was calculated to evaluate the accuracy of these

predictive models. The eigenvalues of intraoperative circulation

data extracted through machine learning algorithms dynamically

evolved as the intraoperative circulation data accumulated.

Correspondingly, the risk probabilities derived from predictive

models incorporating these features varied accordingly. Therefore,

these risk probabilities were referred to as prediction scores, which

were systematically calculated and analyzed in this study.

Univariable and multivariable analysis was performed with IBM

SPSS software (version 25.0; SPSS Inc, Chicago, IL). Machine

learning algorithms (Fourier transform, ricker wavelet, Lempel-

Ziv compression algorithm, random forest, xgboost, etc.) were

performed with Python (version 3.8.5). Differences with a p< 0.05

significance level were deemed statistically significant.
3 Results

3.1 Patients and clinical characteristics

A total of 831 individuals who underwent head and neck

surgery with free flap reconstruction were initially included. 22

patients were excluded for missing values on demographic

characteristics, perioperative laboratory data, surgical or fluid

variables, 5 patients were removed due to missing intraoperative

blood pressure, heart rate or pulse values for > 10 min, resulting in a

final enrollment of 804. Among them, 644 participants formed the
Frontiers in Oncology 04
primary cohort and 160 the validation cohort (Figure 1). Median

LOS was 10 days, with 25% and 75% quartiles of 8 and 12 days,

respectively. Those with LOS exceeding 10 days were classified as

PLOS, while LOS no higher than 10 days were Non-PLOS cases.

Table 1 summarizes of the demographic characteristics of patients

along with perioperative laboratory examination data, surgical and

fluid factors for both the primary and validation cohorts.
3.2 Univariate and multivariate
comparisons between the PLOS and Non-
PLOS groups in the primary cohort

Within the primary cohort, uncovering differences between the

PLOS and Non-PLOS groups, variables including Age, smoking

status, history of hypertension, total comorbidities, preoperative

albumin and NLR levels, postoperative hemoglobin and albumin

levels, blood loss, duration of surgery, intraoperative RBC and FFP

transfusion, fluid infusion rate over 24 hr, postoperative ICU

admission, and reoperation emerged as significantly distinct

following univariate comparisons (Table 2). Furthermore,

smoking status (odds ratio [OR] = 0.566; 95% CI, 0.373–0.861;

p = 0.008), intraoperative RBC transfusion (OR = 1.141; 95% CI,

1.005–1.295; p = 0.042) and postoperative reoperation (OR = 0.110;

95% CI, 0.038–0.323; p =<0.001) were identified as independent risk

factors for PLOS in patients who underwent head and neck surgery

with free flap reconstruction (Table 2).
3.3 Quantification of intraoperative
circulation data

In order to quantify the intraoperative circulation (systolic,

diastolic blood pressure, pulse and heart rate) data, a total of 114

features was extracted using machine learning-based technologies

(Fourier transform, Ricker wavelet, Lempel-Ziv compression

algorithm, approximation entropy, permutation entropy, linear
FIGURE 1

Study profile.
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TABLE 1 Univariate Analysis between the Primary and
Validation cohorts.

Primary
Cohort
(n=644)

Validation
Cohort
(n=160)

Univariate
(P value)

Sex (male), No. (%) 419 (65.1) 98 (61.3) 0.368

Age, mean (SD), yr 55.83
(13.92)

54.60 (15.20) 0.327

Reason for Flap, No. (%) 0.277

Tumor 593 (92.1) 151 (94.4)

Osteoradionecrosis 50 (7.8) 8 (5.0)

Others 1 (0.2) 1 (0.6)

BMI, mean (SD), kg/m2 22.50 (3.61) 22.31 (3.41) 0.549

Flap Types, No. (%) 0.418

Fibular Flap 199 (30.9) 42 (26.3)

Anterolateral Thigh Flap 306 (47.5) 74 (46.3)

Posterior Tibial
Artery Flap

95 (14.8) 33 (20.6)

Radial Forearm Flap 23 (3.6) 5 (3.1)

Other 21 (3.3) 6 (3.8)

ASA Status, No. (%) 0.219

I or II 342 (53.1) 86 (53.8)

III 290 (45.0) 74 (46.3)

IV 12 (1.9) 0 (0.0)

Smoking Status, No. (%) 205 (31.8) 44 (27.5) 0.289

Comorbidities, No. (%)

Hypertension 144 (22.4) 26 (16.3) 0.090

Diabetes Mellitus 60 (9.3) 12 (7.5) 0.471

Stroke 16 (2.5) 5 (3.1) 0.587

Coronary Heart Disease 18 (2.8) 6 (3.8) 0.525

Other 22 (3.4) 7 (4.4) 0.560

Total 195 (30.3) 41 (25.6) 0.247

Radiotherapy History,
No. (%)

93 (14.4) 17 (10.6) 0.209

Preoperative

Hemoglobin, mean (SD),
g/L

132.39
(18.22)

133.06 (17.95) 0.678

Albumin, mean (SD), g/L 37.72 (4.70) 37.81 (4.46) 0.812

NLR, median (quartiles) 2.34
(1.67, 3.28)

2.47
(1.59, 3.49)

#0.620

PLR, median (quartiles) 146.01
(114.02,
198.53)

147.21
(116.54,
198.13)

#0.889

(Continued)
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TABLE 1 Continued

Primary
Cohort
(n=644)

Validation
Cohort
(n=160)

Univariate
(P value)

Postoperative

Hemoglobin, median
(quartiles), g/L

111.00
(98.00,
123.00)

110.00
(101.00,
122.00)

#0.699

Albumin, median
(quartiles), g/L

30.40
(27.20,
33.30)

30.50
(27.60, 34.50)

#0.214

NLR, median (quartiles) 15.33
(10.01,
22.70)

16.28
(11.22, 26.44)

#0.103

PLR, median (quartiles) 251.64
(173.24,
366.69)

289.56
(192.53,
418.47)

#0.072

Blood Loss, median
(quartiles), ml

300.00
(200.00,
400.00)

300.00
(200.00,
400.00)

#0.406

Duration of Surgery, median
(quartiles), min

375.00
(290.00,
455.00)

365.00
(290.00,
465.00)

#0.670

Intraoperative Fluid
Infusion, median
(quartiles), ml

3000
(2500,
3500)

3000
(2500, 3500)

#0.953

Intraoperative Fluid
Infusion Rate, median
(quartiles),
ml/(kg×h)

8.13
(6.47, 9.74)

8.42
(6.67, 10.25)

#0.104

Intraoperative RBC
Transfusion, median
(quartiles), u

0.0
(0.0, 2.0)

0.0 (0.0, 2.0) #0.359

Intraoperative FFP
Transfusion, median
(quartiles), ml

0.0
(0.0, 200.0)

0.0 (0.0, 100.0) #0.237

Intraoperative Urine
Output, median
(quartiles), ml

700.0
(450.0,
1000.0)

775.0
(500.0, 1000.0)

#0.229

Fluid Infusion over 24 hr,
median (quartiles), ml

4200
(3500,
4900)

4300
(3650, 5000)

#0.431

Fluid Infusion Rate over 24
hr, median (quartiles),
ml/(kg×h)

2.91
(2.39, 3.56)

3.08
(2.50, 3.70)

#0.119

Postoperative ICU
Admission, No. (%)

42 (6.5) 10 (6.3) 0.900

Reoperation, No. (%) 39 (6.1) 7 (4.4) 0.413

Vasopressor Administration,
No. (%)

146 (22.7) 31 (19.4) 0.368
BMI, Body Mass Index; ASA, American Society of Anesthesiologists; RBC, red blood cell; FFP,
free-frozen plasma; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio;
LMR, lymphocyte- to-monocyte ratio.
The P value is derived from the univariable association analyses between the primary and
validation cohorts.
# indicates that the Mann-Whitney U test was utilized.
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regression following blocks aggregation, and percentage of duplicate

and non-duplicate values) with 0.01 dual test fade discover rate

(Supplementary Table S1).
3.4 Quantified intraoperative circulation
data predicted the occurrence of PLOS

To evaluate predictive capabilities of quantified intraoperative

circulation data, random forest and xgboost methods were utilized for

predictive model creation due to their strengths in handling extensive

feature amounts. Additionally, a comparison was made between

features extracted from intraoperative circulation time series data

using machine learning-based algorithms and features derived from
Frontiers in Oncology 06
manual intraoperative circulation evaluations. Both sets of features

were utilized in building predictive models with the same algorithms,

along with other relevant perioperative clinical factors.

The predictive models were successfully developed, and the

significance of the incorporated features was measured using SHAP

values (Figure 2). Besides, the trend of the SHAP value of the top 10

important features in each model were shown in Supplementary Figure

S1. In both random forest (Model 1) and xgboost (Model 2) models,

specific features derived from quantified intraoperative circulation data

were found to be associated with the occurrence of PLOS following free

flap reconstruction (Figures 2A, B; Supplementary Figures S1A, B). On

the other hand, features obtained from manual intraoperative

circulation assessments such as intraoperative TW hypotension,

AVR and AVRs emerged as predictive factors for PLOS (Figures 2C,
TABLE 2 Univariate and Multivariate Comparisons between the PLOS and Non-PLOS Groups in the Primary Cohort.

PLOS
(n=340)

Non-PLOS
(n=304)

Univariate
(P value)

Multivariate
[P value (OR; 95% CI)]

Sex (male), No. (%) 230 (67.6) 189 (62.2) 0.146 0;950 (1.013; 0.667 to 1.539)

Age, mean (SD), yr 56.93 (14.47) 54.60 (13.19) 0.034 0.656 (1.003; 0.988 to 1.019)

Reason for Flap, No. (%) 0.563

Tumor 313 (92.1) 280 (92.1)

Osteoradionecrosis 27 (7.9) 23 (7.6)

Others 0 (0.0) 1 (0.3)

BMI, mean (SD), kg/m2 22.28 (3.70) 22.74 (3.49) 0.106 0.962 (0.998; 0.937 to 1.064)

Flap Types, No. (%) 0.052 0.377

Fibular Flap 102 (30.0) 97 (31.9) 0.939 (1.039; 0.388 to 2.784)

Anterolateral Thigh Flap 175 (51.5) 131 (43.1) 0.477 (1.424; 0.538 to 3.772)

Posterior Tibial Artery Flap 38 (11.2) 57 (18.8) 0.994 (0.996; 0.345 to 2.874)

Radial Forearm Flap 14 (4.1) 9 (3.0) 0.341 (1.877; 0.514 to 6.856)

Other 11 (3.2) 10 (3.3)

ASA Status, No. (%) 0.414 0.696

I or II 174 (51.2) 168 (55.3) 0.440 (1.769; 0.415 to 7.530)

III 158 (46.5) 132 (43.4) 0.517 (1.589; 0.391 to 6.464)

IV 8 (2.4) 4 (1.3)

Smoking Status, No. (%) 127 (37.4) 78 (25.7) 0.001 0.008 (0.566; 0.373 to 0.861)

Comorbidities, No. (%)

Hypertension 89 (26.2) 55 (18.1) 0.014 0.269 (0.671; 0.331 to 1.362)

Diabetes Mellitus 38 (11.2) 22 (7.2) 0.086

Stroke 12 (3.5) 4 (1.3) 0.080

Coronary Heart Disease 12 (3.5) 6 (2.0) 0.232

Other 11 (3.2) 11 (3.6) 0.789

Total 117 (34.4) 78 (25.7) 0.016 0.847 (0.937; 0.486 to 1.809)

Radiotherapy History, No. (%) 53 (15.6) 40 (13.2) 0.381 0.891 (0.964; 0.569 to 1.633)

(Continued)
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D; Supplementary Figures S1C, D). Furthermore, age, smoking status,

preoperative albumin level, postoperative hemoglobin level and

postoperative reoperation demonstrated consistent predictive effects

across all four models (Figure 2).

In our study, the accuracy of the predictive models was

evaluated using ROC curves (Figure 3) and confusion matrix

(Supplementary Figure S2). Comparisons were made between the

random forest and xgboost models developed using both quantified

intraoperative circulation data and manual intraoperative

circulation assessments. The results indicated that the quantified

data prediction models (the AUROC for Model 1 and Model 2 were

0.756 [95% CI, 0.682–0.831] and 0.801 [95% CI, 0.733–0.869], and

the OA were 71.25% and 68.75% respectively) (Figures 3A, B;

Supplementary Figures S2A, B) exhibited higher AUROC values
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and OA compared to the prediction models based on manual

assessments (the AUROC for Model 3 and Model 4 were 0.719

[95% CI, 0.641–0.797] and 0.705 [95% CI, 0.624–0.786], and the

OA were 63.13% and 65.00% respectively) (Figures 3C, D;

Supplementary Figures S2C, D).
3.5 Real-time manner of quantified
intraoperative circulation data
predictive model

Apart from their higher accuracy, the quantified intraoperative

circulation data models also demonstrated a real-time prediction

capability. Figure 4 showcases the performance of a real-time
TABLE 2 Continued

PLOS
(n=340)

Non-PLOS
(n=304)

Univariate
(P value)

Multivariate
[P value (OR; 95% CI)]

Preoperative

Hemoglobin, mean (SD), g/L 131.83 (19.15) 133.02 (17.12) 0.409

Albumin, mean (SD), g/L 37.13 (4.70) 38.38 (4.61) 0.001 0.154 (0.968; 0.926 to 1.012)

NLR, median (quartiles) 2.49 (1.73, 3.58) 2.26 (1.64, 3.11) #0.032 0.510 (1.047; 0.914 to 1.200)

PLR, median (quartiles) 146.68 (117.36, 206.66) 145.08 (111.37, 189.81) #0.211 0.785 (0.999; 0.996 to 1.003)

Postoperative

Hemoglobin, median (quartiles), g/L 108.00 (97.00, 121.00) 113.00 (101.00, 124.00) #0.004

Albumin, median (quartiles), g/L 29.75 (26.63, 32.83) 30.80 (27.73, 34.08) #0.002 0.366 (0.979; 0.935 to 1.025)

NLR, median (quartiles) 15.96 (10.20, 23.10) 15.03 (9.95, 22.35) #0.348 0.182 (1.015; 0.993 to 1.038)

PLR, median (quartiles) 251.50 (173.36, 379.64) 251.70 (172.92, 360.19) #0.438 0.670 (1.000; 0.998 to 1.001)

Blood Loss, median (quartiles), ml 300.00 (200.00, 400.00) 300.00 (200.00, 400.00) #0.011

Duration of Surgery, median (quartiles), min 390.00 (300.00, 470.00) 360.00 (280.00, 435.00) #0.002 0.372 (1.001; 0.999 to 1.004)

Intraoperative Fluid Infusion, median
(quartiles), ml

3000 (2500, 3500) 3000 (2500, 3500) #0.054

Intraoperative Fluid Infusion Rate, median
(quartiles),
ml/(kg×h)

8.09 (6.48, 9.79) 8.17 (6.42, 9.74) #0.829 0.360 (1.053; 0.943 to 1.176)

Intraoperative RBC Transfusion, median
(quartiles), u

0.0 (0.0, 2.0) 0.0 (0.0, 2.0) #0.005 0.042 (1.141; 1.005 to 1.295)

Intraoperative FFP Transfusion, median
(quartiles), ml

0.0 (0.0, 200.0) 0.0 (0.0, 0.0) #0.008

Intraoperative Urine Output, median
(quartiles), ml

750.0 (500.0, 1000.0) 700.0 (400.0, 1000.0) #0.062 0.277 (1.000; 1.000 to 1.001)

Fluid Infusion over 24 hr, median (quartiles), ml 4270 (3500, 5030) 4150 (3500, 4800) #0.173

Fluid Infusion Rate over 24 hr, median (quartiles),
ml/(kg×h)

2.97 (2.44, 3.68) 2.83 (2.35, 3.45) #0.042 0.888 (1.022; 0.754 to 1.386)

Postoperative ICU Admission, No. (%) 33 (9.7) 9 (3.0) 0.001 0.078 (0.445; 0.181 to 1.093)

Reoperation, No. (%) 35 (10.3) 4 (1.3) <0.001 <0.001 (0.110; 0.038 to 0.323)

Vasopressor Administration, No. (%) 75 (22.1) 71 (23.4) 0.695 0.540 (1.138; 0.753 to 1.720)
PLOS, prolonged length of stay; OR, Odds Ratio; 95% CI, 95% confidence interval; BMI, Body Mass Index; ASA, American Society of Anesthesiologists; RBC, red blood cell; FFP, free-frozen
plasma; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte- to-monocyte ratio.
Variables in the multivariable analysis were selected by collinearity diagnostics.
# indicates that the Mann-Whitney U test was utilized.
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prediction system based on the prediction score using the xgboost

predictive model with quantified intraoperative circulation data. At

intervals of every 5 minutes, the circulation data including heart

rate, pulse, systolic and diastolic blood pressure were recorded for

randomly selected patients (Figure 4A). With the accumulation of

intraoperative circulation data, the features of intraoperative

circulation data extracted using machine learning algorithms

changed dynamically. Therefore, subsequently, these data inputs

were used to generate prediction probability scores for

postoperative outcomes in real time (Figure 4B). This dynamic

approach allows for timely monitoring and assessment of patient

risk throughout their surgical process.
4 Discussion

In this study, we utilized machine learning algorithms (Fourier

transform, ricker wavelet, etc.) to analyze intraoperative circulation

time series data and extract relevant features. Based on quantified

intraoperative circulation data and other perioperative clinical

factors, our research developed and validated real-time predictive

models for PLOS after head and neck surgery with free flap
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reconstruction. The implementation of these models not only

enables clinicians to identify high-risk patients susceptible to

PLOS but also offers a potential method for evaluating and

optimizing management strategies during free flap reconstruction.

Previous research has focused on understanding the

relationship between intraoperative circulation state and

postoperative prognosis (9, 15, 24). However, most studies have

primarily focused on a single circulation indicator, such as

intraoperative blood pressure, while overlooking the complexity

of irregular time series data associated with intraoperative

circulation. The high variability in these datasets poses challenges

in identifying relevant features through manual methods.

Advancements in machine learning and neural network

algorithms offer new opportunities for feature extraction and

analysis of time series data (23, 25). Therefore, our study

addresses this challenge by utilizing machine learning algorithms

to extract features from intraoperative circulation and assess their

impact on PLOS after free flap reconstruction. Among numerous

algorithms employed for intraoperative circulation data

quantification, Fourier transform and wavelet analysis captured

global and localized frequency patterns, while complexity and

entropy measures provided insights into the structural and
FIGURE 2

The summary of SHAP values of the top 20 important features for predictive models. (A) The random forest predictive model incorporating
quantified intraoperative circulation data; (B) The xgboost predictive model incorporating quantified intraoperative circulation data; (C) The random
forest predictive model incorporating manual intraoperative circulation assessment features; (D) The xgboost predictive model incorporating manual
intraoperative circulation assessment features. Red indicates higher feature values and blue indicates lower feature values.
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dynamic properties of the data. The combination of these

algorithms enables a comprehensive analysis of intraoperative

circulatory data.

While machine learning algorithms have proven effective in

extracting features (114 features) from intraoperative circulation

data, challenges persist in interpreting these features and optimizing

intraoperative circulation management strategies during head and

neck surgery with free flap reconstruction (23). To address this

issue, the current study developed individualized predictive models

using quantified intraoperative circulation data and other relevant

perioperative clinical factors through machine learning algorithms

(random forest and xgboost). Along with the accumulation of

intraoperative circulation data, the features of quantified

intraoperative circulation data varied accordingly. Dynamic

changes in patients’ indices of quantified intraoperative

circulation data provided the potential for predictive models that

comprise these indices to dynamically assess the impact of
Frontiers in Oncology 09
intraoperative circulation on postoperative PLOS. Therefore, real-

time prediction scores offered by these models during free flap

reconstruction may serve as valuable references for clinicians to

refine their intraoperative circulation management and potentially

mitigate the occurrence of PLOS after free flap reconstruction.

To evaluate the predictive capabilities of two different

intraoperative circulation data evaluation approaches, we

developed predictive models by combining features from manual

intraoperative circulation assessments with other relevant

perioperative clinical factors using machine learning algorithms

(random forest and xgboost). The prediction models based on

quantified intraoperative circulation data demonstrated superior

performance in terms of AUROC and OA when compared to the

models solely relying on manual intraoperative circulation

assessments. Our findings suggest that features extracted and

selected from intraoperative circulation data through machine

learning algorithms not only enable real-time predictions for
FIGURE 3

The receiver operating characteristic (ROC) curves of predictive models in the validation cohorts. (A) The random forest predictive model
incorporating quantified intraoperative circulation data; (B) The xgboost predictive model incorporating quantified intraoperative circulation data;
(C) The random forest predictive model incorporating manual intraoperative circulation assessment features; (D) The xgboost predictive model
incorporating manual intraoperative circulation assessment features.
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PLOS following head and neck surgery with free flap

reconstruction, but also offer a more comprehensive approach to

intraoperative circulation management assessment.

Incorporating manual intraoperative circulation assessments

into the predictive models showed intraoperative TW

hypotension, AVR and AVRs as independent predictors of PLOS

following free flap reconstruction, aligning with previous research

emphasizing the impact of intraoperative hypotension on

complications and the association of intraoperative MAP

variability with adverse events (9, 14, 26). Although their

predictive effect was relatively lower compared to quantified

intraoperative circulation data, our results underscore the

importance of minimizing severe intraoperative hypotension and

MAP variability during head and neck surgery with free

flap reconstruction.

Independent risk factors (smoking status, intraoperative RBC

transfusion and postoperative reoperation) were determined for

PLOS following free flap reconstruction. And variables like age,

smoking status, preoperative albumin level, postoperative
Frontiers in Oncology 10
hemoglobin level and postoperative reoperation exhibited

predictive effects on PLOS during modeling. Demographic

characteristics (age and smoking status) and postoperative

reoperation impacted postoperative short-term prognoses (27,

28). Besides, our prior work established robust links between

intraoperative RBC transfusion, perioperative nutrient level and

the occurrence of complications and PLOS following fibular flap

reconstructions (29–31). Integrating these variables boosted the

models’ predictive strength, underscoring their essential role in

precise PLOS prediction.

Several limitations should be acknowledged in our study.

Firstly, as with retrospective analyses, the possibility of

unaccounted confounders exists. Secondly, the 5-minute interval

of collected intraoperative circulation data might not capture

important fluctuations, impacting our analysis. Thirdly, dividing

patients into primary and validation cohorts to create predictive

models led to reduced sample size. Lastly, while numerous machine

learning and deep learning algorithms exist for time series analysis,

their application to predict intraoperative circulation data’s
FIGURE 4

The performance of the real-time prediction system that based on the prediction score for the quantified intraoperative circulation data xgboost
prediction model of a randomly selected patient. (A) The recorded intraoperative circulation data of the patient, including pulse, heart rate (HR),
systolic blood pressure (SBP) and diastolic blood pressure (DBP); (B) The real-time prediction scores derived from intraoperative circulation data
through machine learning algorithms.
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influence on PLOS warrants further exploration. In light of these

limitations, future research endeavors should focus on prospective

studies with larger sample sizes and employ more robust machine

learning or deep learning algorithms to better forecast the

likelihood of PLOS based on perioperative variables after free

flap reconstruction.

This study used machine learning algorithms to extract

intraoperative circulation data characteristics and create real-time

personalized predictive models for PLOS following head and neck

surgery with free flap reconstruction. Our results provide new

insights into assessing the connection between intraoperative

circulation management and adverse events and suggest

possibilities for enhancing intraoperative circulation management

through real-time prediction scores. Moreover, our predictive

models integrated intraoperative circulation data features and

clinical risk factors, ensuring precise estimation of a patient’s

PLOS development likelihood.
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