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Introduction: The significance of ligand-receptor (LR) pair interactions in the

progression of acute myeloid leukemia (AML) has been the focus of numerous

studies. However, the relationship between LR pairs and the prognosis of AML, as

well as their impact on treatment outcomes, is not fully elucidated.

Methods: Leveraging data from the TCGA-LAML cohort, we mapped out the LR

pair interactions and distinguished specific molecular subtypes, with each

displaying distinct biological characteristics. These subtypes exhibited varying

mutation landscapes, pathway characteristics, and immune infiltration levels.

Further insight into the immune microenvironment among these subtypes

revealed disparities in immune cell abundance.

Results: Notably, one subtype showed a higher prevalence of CD8 T cells and

plasma cells, suggesting increased adaptive immune activities. Leveraging a

multivariate Lasso regression, we formulated an LR pair-based scoring model,

termed “LR.score,” to classify patients based on prognostic risk. Our findings

underscored the association between elevated LR scores and T-cell dysfunction

in AML. This connection highlights the LR score’s potential as both a prognostic

marker and a guide for personalized therapeutic interventions. Moreover, our

LR.score revealed substantial survival prediction capacities in an independent

AML cohort. We highlighted CLEC11A, ICAM4, ITGA4, and AVP as notably

AML-specific.
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Discussion: qRT-PCR analysis on AML versus normal bone marrow samples

confirmed the significant downregulation of CLEC11A, ITGA4, ICAM4, and AVP in

AML, suggesting their inverse biomarker potential in AML. In summary, this study

illuminates the significance of the LR pair network in predicting AML prognosis,

offering avenues for more precise treatment strategies tailored to individual

patient profiles.
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Introduction

Acute Myeloid Leukemia (AML) is a hematological malignancy

characterized by the rapid growth of abnormal myeloid progenitor

cells in the bone marrow and peripheral blood, accounting for

approximately 20% of leukemia cases in adults (1), with a high

degree of clinical and molecular heterogeneity. The prognosis for

AML varies widely depending on factors such as age, cytogenetic

abnormalities, and molecular mutations, with older patients and

those experiencing relapse generally having poorer outcomes (2–5).

Recent advances in high-throughput sequencing technologies

have significantly enhanced our understanding of the genetic and

epigenetic landscapes of AML (6–8). These include mutations in

genes such as NPM1, FLT3, DNMT3A, IDH1, and IDH2, which are

frequently observed in AML and are associated with distinct clinical

outcomes. Molecular classifiers have been developed to categorize

AML patients into risk-specific subgroups, including

cytogenetically normal AML (CN-AML), core-binding factor

AML (CBF-AML), and subgroups defined by specific mutations

like FLT3-ITD or IDH mutations (9–13). These classifications have

proven valuable in predicting prognosis and guiding therapeutic

decisions. Despite these advances, the prognosis for AML remains

relatively poor, particularly in older patients and those who relapse

post-treatment.

Despite these advances, AML remains a challenging disease to

treat, particularly due to its complex tumor microenvironment

(TME). The TME in AML is composed of a variety of cell types,

including leukemic cells, stromal cells, immune cells, and the

extracellular matrix, all of which interact to influence disease

progression and response to therapy (14–16). The interactions

between leukemic cells and their surrounding stroma are

mediated by a network of ligand-receptor (LR) pairs that facilitate

cell-cell communication, migration, and survival. While individual

LR pairs, such as CXCL12/CXCR4, have been studied extensively in

AML, the broader network of LR interactions and its impact on

disease biology remains poorly understood.

In this study, we employed advanced computational approaches

to map the LR pair interaction network in AML and to correlate these

interactions with clinical outcomes. By analyzing transcriptomic data
02
from large AML cohorts, we identified three distinct molecular

subtypes characterized by unique LR pair-related gene signatures.

These subtypes exhibit different mutation landscapes, pathway

activation profiles, and levels of immune cell infiltration. Our LR

pair-based scoring system, LR.score, demonstrated significant

potential in predicting patient responses to both traditional

chemotherapy and emerging targeted therapies, with a particular

emphasis on its association with T-cell dysfunction and the

downregulation of specific markers such as CLEC11A, ICAM4,

ITGA4, and AVP in AML. These findings provide new insights

into the complexity of cell-cell communication in AML and offer a

robust framework for developing personalized treatment strategies

tailored to the molecular characteristics of individual patients.
Materials and methods

Data acquisition and processing

We sourced clinical and RNA-Seq data specific to Acute

Myeloid Leukemia (AML) from the TCGA dataset, accessible

through the UCSC Xena portal (https://xenabrowser.net). Each

tumor’s gene expression data was aligned with the human hg38

genome annotation. For subsequent analyses, we converted the gene

expression measurements to Transcripts Per Kilobase Million

(TPM) followed by log2 transformation ([TPM] + 1). We

excluded samples that were missing either gene expression details

or clinical annotations, resulting in a primary cohort of 142 AML

patients. For our validation efforts, we turned to two public datasets:

GSE37642 (17–20) and GSE12417 (21, 22). We incorporated only

the primary AML samples with available clinical details and

normalized gene expression metrics. We omitted probes without

gene annotation, and for genes associated with multiple probes, the

median expression was determined. This process led to the creation

of validation sets with 417 and 163 AML samples, respectively.

Additionally, we integrated 2293 Ligand-Receptor (LR) pairs from

the connectome DB2020 database (23) detailed in (Supplementary

Table S1). A schematic outline of our research methodology is

presented in (Figure 1A).
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Stratification and survival analysis of
patients based on ligand-receptor pairs

For each set of patient data, individuals were grouped into

“high” or “low” categories based on the aggregate expression levels

of specific ligand-receptor (LR) gene pairs. A patient was labeled as

“high” if their total LR pair gene expression met or exceeded the

median value for the entire patient group; otherwise, they were

designated as “low.” To assess the influence of these classifications

on patient outcomes, we utilized R’s “Survival” package (version

4.3.2). The log-rank test was employed to establish statistical

significance, and hazard ratios (HRs) were derived using Cox
Frontiers in Oncology 03
regression models. Each patient group’s survival outcomes were

scrutinized independently. To amalgamate insights from various

cohorts, we turned to a meta-analysis approach, deploying the

“Edgington” method through the “sump” function in R’s “metap”

package (version 1.4). We selected the 94 significant LR pairs based

on two primary criteria: 1) a Storey-adjusted q-value less than 0.1,

ensuring statistical significance across multiple hypothesis tests, and

2) a consistent hazard ratio, either surpassing or falling below 1,

across all evaluated cohorts, indicating a robust association with

patient survival outcomes. To adjust for multiple hypothesis testing,

we adopted Storey’s method (24) via the “qvalue” package in R

(version 2.18.0).
FIGURE 1

LR pairs with prognostic significance (A). Overview of the study’s workflow (B). Volcano plot representations highlight LR pairs with significant
prognostic implications. LR genes associated with favorable prognosis are denoted in red, while those linked to poor prognosis are illustrated in blue
(C). Network visualization of the significant prognostic LR pairs, with receptors showcased in red and ligands in green (D). The top ten enriched
KEGG pathways derived from the prognostic-relevant LR pairs are presented.
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Samples clustering through
consensus clustering

Using consensus clustering, we categorized the samples based

on their gene expression patterns. We generated a consistency

matrix with the “ConsensusClusterPlus” package in R (25). After

narrowing down to significant ligand-receptor (LR) pairs, we used

these to ascertain the molecular subtypes of the samples.

For the clustering process, the “pam” algorithm was employed,

and the “Canberra” method was chosen as the distance metric. We

executed 500 bootstrap replications, with each cycle including 80%

of the patients from the training set. We considered a cluster range

from 2 to 10. The most stable clustering solution was pinpointed by

examining both the consistency matrix and the consensus

cumulative distribution function (CDF), as detailed by

Senbabaoglu et al. (26).
Functional enrichment analysis

To delve into the distinct gene expression landscapes across

various molecular subtypes, we implemented Gene Set Enrichment

Analysis (GSEA v4.0) (27, 28). We utilized comprehensive gene sets

from the Hallmark database (29) and applied specific criteria for

statistical significance, including a normalized p-value less than 0.01

and a False Discovery Rate (FDR) below 0.05. For functional

characterization of genes that are either upregulated or

downregulated, we employed the “clusterProfiler” package (30) to

conduct Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analyses. This helps to identify the biological pathways

that are most impacted by the gene expression differences in

each subtype.
Immune cell infiltration analysis

Regarding the immune landscape within the samples, we applied

the deconvolution technique known as Cell-type Identification By

Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) (31).

This enabled us to approximate the proportions of 22 different

immune cell types within each sample. Furthermore, we used the

ESTIMATE algorithm to assess the relative abundance of immune

and stromal cells in the tumor microenvironment.

To evaluate the functionality and presence of T cells within

tumors, we utilized the default settings of the TIDE program,

which provides scores for T-cell dysfunction and exclusion (32).

Additionally, we calculated the single-sample Gene Set Enrichment

Analysis (ssGSEA) scores using the GSVA package in R (33), which

allowed us to represent the relative enrichment levels of each KEGG

pathway. By integrating these multifaceted analyses, we aim to

provide a comprehensive overview of the functional roles of genes,

the immune cell composition, and their potential implications for

patient prognosis and treatment strategies.
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Genomic data exploration and visualization

For our analysis of genomic variations, we sourced the Simple

Nucleotide Variation (SNV) dataset from the TCGA, specifically

the Level 4 data processed via the “MuTect2” algorithm. This data

was retrieved from the Genomic Data Commons (GDC) portal

(https://portal.gdc.cancer.gov/).

To examine and illustrate the Single Nucleotide Polymorphisms

(SNPs), we utilized the “oncplot” function available in the R package

“maftools.” (34), allowing for comprehensive visualization and

analysis of these genomic alterations, aiding in the interpretation of

their potential biological significance.
Development of the LR.score
prognostic model

To develop a personalized prognostic model, we focused on

ligand-receptor (LR) pairs that demonstrated significant relevance

for patient outcomes, incorporating them into a penalized Cox

regression model using the L1-penalized LASSO (Least Absolute

Shrinkage and Selection Operator) methodology, implemented

with the R package “glmnet.” The optimal l value, which

controls the strength of the penalty applied to the model, was

determined using ten-fold cross-validation, where the data was

divided into ten subsets, with each subset used as a validation set

once. The optimal l was chosen based on minimizing the

partial likelihood deviance, thereby retaining the most important

predictor variables by shrinking the coefficients of less relevant

ones to zero, ensuring the best predictive performance while

avoiding overfitting. After identifying the predictor variables,

we further refined the model using stepwise multivariate

regression analysis with the Akaike Information Criterion (AIC)

via the “stepAIC” function in the “MASS” package in R. This

approach iteratively removed variables to minimize the AIC value,

achieving an optimal balance between model complexity and

goodness of fit. The final set of 10 LR pairs included in the

LR.score were those that remained stable across multiple

models and consistently contributed to predicting overall survival.

The final risk score for each patient, termed the LR.score, was

computed as follows:

LR:score = (b1xi1 +  b2xi2 +… +  bpxip)

=  0:269 �  CALCA_CALCRL + 0:213 

�  NCAM1 _ROBO3 + 0:160 �  NLGN1 _NRXN2 

+  0:125�  IL2 _ IL2RA  −  0:121 �  HGF _MET

−  0:199 �  CXCL12 _ ITGA4  −  0:262 

�  CLEC11A _ ITGA11  −  0:317 �  AVP _AVPR1B 

−  0:491 �  ICAM4 _ ITGA4  −  0:708 

�  CCL7 _ ACKR4
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Analysis of drug sensitivity in relation
to LR.score

To investigate the relationship between drug responsiveness and

the LR.score prognostic model, we obtained drug sensitivity data for

nearly a thousand cancer cell lines from the Genomics of Drug

Sensitivity in Cancer (GDSC) database. We used the Area Under the

Curve (AUC) values for various anti-cancer drugs as indicators of

drug efficacy. Spearman’s rank correlation analysis was employed to

assess the correlation between each drug’s sensitivity and the

LR.score. We set a significance threshold at an absolute Spearman’s

correlation coefficient (|r|) greater than 0.2 and adjusted for False

Discovery Rate (FDR) using the Benjamini-Hochberg method with a

significance level set at less than 0.05. To further refine drug response

predictions, we utilized the “pRRophetic” R package (35).

Additionally, for a more targeted approach, we incorporated

transcriptomic and clinical data from the IMvigor210 cohort of

patients with metastatic bladder cancer who were treated with the

anti-PD-L1 drug Atezolizumab. This data was accessed using the

“IMvigor210CoreBiologies” R package (36). The immune

checkpoints list waw derived from the HisgAtlas database (37).
Primary AML sample collection and
quantitative reverse transcription
polymerase chain reaction analysis

Bone marrow specimens were collected from 24 individuals

with a primary diagnosis of AML at the Zhuji Affiliated Hospital of

Wenzhou Medical University. Additionally, 12 healthy bone

marrow samples were donated from individuals undergoing total

hip arthroplasty, serving as a control group. All participants

provided informed consent, and the study was conducted in line

with the Declaration of Helsinki principles. The research was

approved from the Ethics Committee of Zhuji People’s Hospital

Affiliated to Wenzhou Medical University. Diagnosis for AML was

made using the French-American-British (FAB) system, alongside

tests such as immunophenotyping, cytogenetic analysis, and

molecular genetic profiling. A complete response (CR) to

treatment was identified by several criteria, including bone

marrow blasts below 5%, no Auer rod-positive blasts, no

extramedullary leukemia, an absolute neutrophil count above 1.0

× 10^9/L, and a platelet count over 100 × 10^9/L. RNA was extracted

from various tissues and cells using Trizol reagent as per the

manufacturer’s instructions. The reverse transcription step was

carried out using the PrimeScript RT reagent Kit. Quantitative

real-time PCR (qRT-PCR) was then performed with SYBR Prime

Script RT-PCR Kits, following the prescribed procedure. Expression

levels of CLEC11A, ICAM4, ITGA4, and AVP were quantified

using the 2-DDCt method and normalized against GAPDH mRNA.

These expression levels were reported relative to a control level set

to a baseline of 1.0. The primer sequences used for amplifying

CLEC11A, ICAM4, ITGA4, and AVP genes were as follows: for

CLEC11A, forward (5′-GGG CCT CTA CCT CTT CGA AA-3′)
and reverse (5′-CAG TTC TCG AGC GTG CCA CC-3′); for
ICAM4, forward (5’-GCCTACAGTGAGGGACAGG-3’) and
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reverse (5’-ATCACGGGCTGCCAGAAG-3’); for ITGA4, forward

(5′-TTCCAGAGCCAAATCCAAGAGTAA-3′) and reverse

(5′-AAGCCAGCCTTCCACATAACAT-3′); and for AVP,

forward (5′-GGGCAGGTAGTTCTCCTCCT-3′) and reverse

(5′-CACCTCTGCCTGCTACTTCC-3′).
Enzyme-linked immunosorbent assay for
protein validation

In addition to the mRNA analysis, protein levels of CLEC11A,

ICAM4, ITGA4, and AVP were measured using enzyme-linked

immunosorbent assays (ELISAs). Bone marrow plasma was

separated by centrifugation at 1500 × g for 10 minutes at 4°C

from the same 24 AML patients and 12 healthy controls as

described above and stored at -80°C until analysis. ELISA kits

specific for human CLEC11A (#ELK6393), ICAM4 (#ELK3048),

ITGA4 (#ELK9691), and AVP (#ELK5414) were used according to

the manufacturer’s protocols. All reagents and samples were

brought to room temperature (18-25°C) before use. The 25×

Wash Buffer was diluted to 1× with double-distilled water.

Standard dilutions were prepared from a stock concentration of

60 ng/mL to create a standard curve with points at 60, 30, 15, 7.5,

3.75, 1.88, and 0.94 ng/mL. 100 mL of each standard, control, or

sample was added in duplicate to the appropriate wells of a pre-

coated microplate, which was then incubated at 37°C for 80

minutes. After incubation, the wells were washed three times with

200 mL of 1× Wash Buffer, followed by the addition of 100 mL of

Biotinylated AntibodyWorking Solution to each well. The plate was

incubated for another 50 minutes at 37°C, and the washing step was

repeated. Next, 100 mL of Streptavidin-HRP Working Solution was

added to each well, followed by incubation at 37°C for 50 minutes

and another washing step repeated five times. The colorimetric

reaction was developed by adding 90 mL of TMB Substrate Solution

to each well, incubating the plate in the dark at 37°C for 20 minutes.

The reaction was stopped by adding 50 mL of Stop Solution,

changing the color from blue to yellow. Absorbance was

immediately measured at 450 nm using a microplate reader

(R&D, MN, USA). The concentration of each protein in the

samples was then determined by comparing the corrected

absorbance values to the standard curve generated from the

known concentrations of the standards.
Statistics

For the evaluation of statistical differences between two

continuous and normally distributed variables, we utilized the

unpaired Student’s t-test. In cases where the variables were not

normally distributed, the Wilcoxon rank-sum test was employed

instead. For comparisons involving three or more groups with non-

parametric distributions, Kruskal-Wallis tests were conducted. For

examining relationships between categorical variables, Fisher’s

exact test was implemented. Correlation analyses were conducted

using Spearman’s rank correlation test to assess the strength and

direction of associations between variables. All visualizations and
frontiersin.org

https://doi.org/10.3389/fonc.2024.1473048
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2024.1473048
statistical computations were carried out using R software, version

4.3.2, provided by the R Foundation for Statistical Computing in

Vienna, Austria.
Results

Identification and analysis of prognostic LR
pairs in acute myeloid leukemia

To pinpoint Ligand-Receptor (LR) pairs significantly correlated

with the survival outcomes in AML, we incorporated data from

three distinct AML cohorts: TCGA-LAML, GSE37642, and

GSE12417. Initially, survival analysis for these LR pairs was

executed separately for each cohort. This was followed by a meta-

analysis where we amalgamated the P-values pertaining to the

prognostic importance of these LR pairs from all three cohorts

(adjust P-value< 0.01). Upon completing multiple hypothesis

testing corrections, we isolated 94 LR pairs that demonstrated

substantial prognostic relevance. Of these, 56 LR pairs were
Frontiers in Oncology 06
indicative of a poor prognosis, while 38 suggested a favorable

outcome (Figure 1B; Supplementary Table S2). The interactive

network involving these LR pairs is depicted in (Figure 1C).

Additionally, we undertook KEGG pathway enrichment

analysis targeting the specific ligands and receptors from these

pairs. Remarkably, these 94 LR pairs were predominantly enriched

in key biological pathways. These include Cytokine−cytokine

receptor interaction, Viral protein interaction with cytokine and

cytokine receptor, PI3K−Akt signaling pathway, Proteoglycans in

cancer, Cell adhesion molecules (CAMs), and ECM−receptor

interaction (Figure 1D).
Molecular classification of ligand-
receptor pairs

Further, we summed the expression levels of the receptor and

ligand genes to represent the expression intensity of each LR pair.

We then used the gene expression levels of these LR pairs for

molecular subtyping. In this step, we included the 94 LR pairs that
FIGURE 2

Cluster Analysis and Survival Outcomes Based on LR Pairs. (A) Consensus clustering using LR pairs and CDF curves from the consensus clustering in
the TCGA dataset. (B) Delta area plot from the consensus clustering in the TCGA dataset. (C) Consensus matrices showcasing the identified clusters
(k = 3). (D) Overall survival Kaplan-Meier plot for the three subtypes in the TCGA cohort (P = 0.00052, log-rank test). (E) Overall survival KaplanMeier
plot for the three subtypes in the GSE37642 dataset (P< 0.0001, log-rank test). (F) Overall survival Kaplan-Meier plot for the three subtypes in the
GSE12417 dataset (P< 0.0001, log-rank test).
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were identified in the previous analysis as being significantly

correlated and prognostically relevant. Using Consensus

Clustering, we clustered 142 AML samples from the TCGA

cohort. Based on the Cumulative Distribution Function (CDF),

we determined the optimal number of clusters. The CDF Delta area

curve suggested that choosing three clusters provided the most

stable clustering results (as shown in Figures 2A, B). Ultimately, we

selected k=3 to obtain three molecular subtypes (Figure 2C). Upon

further analysis of the prognostic features of these three subtypes,

we observed significant prognostic differences among them.

Specifically, subtype C3 showed better prognosis, while subtype
Frontiers in Oncology 07
C1 had poorer outcomes (P = 0.00052; Figure 2D). Additionally,

using the same methodology, we conducted molecular subtyping

for the AML patient cohort in GSE37642, and observed similar

significant prognostic differences among these three subtypes (P<

0.0001; Figure 2E), consistent with the training set. The same

phenomenon was also observed in the GSE12417 cohort (P<

0.0001; Figure 2F).

Additionally, in the TCGA dataset, we compared the

distribution of various clinical pathological features across the

three molecular subtypes to examine if these features varied

among the subtypes. We found that there were differences in
FIGURE 3

LR pairs-based clusters and clinical characteristics (A). Distribution of clinical information for molecular subtypes in the TCGA cohort (Fisher’s exact
test). *P< 0.05. (B) Distribution of clinical information for molecular subtypes in the GSE37642 cohort (Fisher’s exact test). *P< 0.05. (C) Distribution
of clinical information for molecular subtypes in the GSE12417 cohort (Fisher’s exact test). *P< 0.05.
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“age” groups, “CALGB Cytogenetics Risk Category,” and “FAB

Category” among the three molecular subtypes. Specifically, the

C1 subtype had a significantly higher proportion of older

patients compared to the C3 subtype (Fisher’s exact test, -log10

P-value = 4.74). Most patients in the C3 subtype fell into the

“Favorable” (Fisher’s exact test, -log10 P-value = 7.53) (Figure 3A).

Similarly, we examined differences in clinical information among

different molecular subtypes in the GSE37642 and GSE12417

cohorts (Figures 3B, C). We observed that the majority of

patients did not have RUNX1 mutations. These analyses further

support the notion that these molecular subtypes not only have
Frontiers in Oncology 08
prognostic value but also correlate with various clinical and

pathological features, thereby potentially aiding in more targeted

treatment approaches.
Mutation characteristics across different
molecular subtypes

We further investigated the differences in genomic alterations

among the three molecular subtypes within the TCGA cohort. Our

analysis revealed that there were no significant differences among
FIGURE 4

Genomic Variation Patterns Across LR Pair-Defined Clusters. (A) Analysis of parameters such as aneuploidy score, homologous recombination
deficits, segment count, fraction of alterations, and tumor mutation burden within the LR pair-based clusters. Significance levels: ns, P > 0.05; *P <
0.05; **P < 0.01; ***P < 0.001. Kruskal-Wallis test employed. (B) Mutation profile showcasing the top 20 prevalent mutations across 142 AML
patients. The top panel provides a count of mutations for each individual, whereas the bar chart below denotes the LR pair-defined clusters. An
accompanying legend depicts various genetic mutation types and their occurrences.
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the molecular subtypes in terms of Aneuploidy Score, Homologous

Recombination Defects, Fraction Altered, Number of Segments,

and Tumor Mutation Burden (Figure 4A).

Moreover, we scrutinized the variations in gene mutations

across the distinct molecular subtypes. We highlighted the top 20

genes that showed substantial differences in their mutation rates

(Figure 4B). Of particular interest were genes like DNMT3A,

NPM1, and RUNX1, which exhibited noticeable disparities in

mutation frequency among the three molecular subgroups.

Intriguingly, a higher prevalence of RUNX1 and DNMT3A

mutations was observed in subtypes C1 and C2, and these

mutations were correlated with unfavorable prognostic outcomes.

This observation aligns with existing scientific literature that

associates these specific mutations with poorer survival rates in

AML (38, 39).

These findings imply that while some genomic features like

Aneuploidy Score and Tumor Mutation Burden may not differ

significantly among the subtypes, specific genes do show variations

in mutation rates. This could have implications for understanding

the biological distinctions among the subtypes and potentially for

targeted therapeutic strategies.
Functional annotation of ligand-receptor
pairs-based clustering

Next, we investigated whether there were differentially activated

pathways within the various molecular subgroups. To identify these

pathways, we performed Gene Set Enrichment Analysis (GSEA)

using all candidate gene sets from the Hallmark database, with FDR

threshold less than 0.05 for significant enrichment. In the TCGA
Frontiers in Oncology 09
cohort, when compared to the C3 subtype, the C1 subtype exhibited

activation of 13 pathways and suppression of 3 pathways, as shown

in (Figure 5A). These pathways were mainly related to immune

responses, such as INTERFERON_GAMMA_RESPONSE,

INFLAMMATORY_RESPONSE, INTERFERON_ALPHA_

RESPONSE, ALLOGRAFT_REJECTION, and COMPLEMENT.

In addition, we analyzed the significant enriched gene sets in the

two validation cohorts when comparing the C1 subtype with the C3

subtype. Generally, activated pathways primarily included immune

markers, such as INTERFERON_GAMMA_RESPONSE,

IL6_JAK_STAT3_SIGNALING, IL2_STAT5_SIGNALING, and

INFLAMMATORY_RESPONSE (Figure 5B). Furthermore, we

compared differential pathways between C1 and C2, C1 and C3,

as well as C2 and C3 in TCGA cohort. As shown in (Figure 5C),

we identified a notable concentration of immune-related

pathways among the diverse subtypes. GSEA analysis across these

subtypes revealed that individuals in the C1 subtype typically

displayed heightened activity in immune regulatory pathways.

This leads us to hypothesize that the ligand-receptor pairs utilized

for molecular classification might have significant influence in

shaping the immune microenvironment.

To delve deeper into the variations in the immune

microenvironment across patients from different molecular

groups, we assessed the relative proportions of 22 immune cell

types across the three AML cohorts using the CIBERSORT

algorithm. This revealed pronounced differences in the presence

of specific immune cells across the three molecular subtypes (as

illustrated in (Figures 6A, C, E). Notably, the C3 subtype exhibited

elevated levels of CD8 T cells and plasma cells, suggesting

heightened adaptive immune responses. Additionally, we

employed the ESTIMATE algorithm to assess immune cell
FIGURE 5

Analysis of Pathway Enrichment in LR-Based Clusters. (A) GSEA output contrasting C1 vs C3 in the TCGA-LAML dataset. (B) Visual representation of
GSEA findings when comparing C1 vs C3 subtypes across three AML cohorts: TCGA-LAML, GSE37642, and GSE12417. (C) A color-coded bubble
chart detailing GSEA results for various molecular subtypes within the TCGA-LAML dataset. Blue bubbles signify downregulated hallmarks, while red
bubbles point to upregulated ones.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1473048
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2024.1473048
infiltration, as shown in (Figures 6B, D, F). We found that the

“ImmuneScore” was consistently highest in the C2 subtype across

the TCGA, GSE37642, and GSE12417 cohorts, indicating a

relatively higher level of immune cell infiltration in the C2

subtype, importantly, C2 also has highest myeloid lineage cells

compare to C1 and C2.
Development of a scoring model based on
ligand-receptor pairs

We found that molecular subtypes based on LR pairs exhibit

different mutation landscapes, distinct pathway features, and

varying levels of immune infiltration. To further refine our risk

model, we employed lasso regression on the 94 significant LR pairs

identified from the meta-analysis within the TCGA-LAML cohort.

We showed that as the value of lambda increases, the number of

coefficients tending towards zero also increases (Supplementary

Figure S1A). Using 10-fold cross-validation, we identified an
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optimal lambda value of 0.0868 and selected 13 LR pairs for

further analysis (Supplementary Figure S1B). Subsequently, we

used stepwise multivariate regression analysis and employed the

Akaike Information Criterion (AIC) to further refine our model,

ultimately identifying 10 key LR pairs. These pairs include “AVP-

>AVPR1B,” “CALCA->CALCRL,” “CCL7->ACKR4,” “CLEC11A-

>ITGA11,” “CXCL12->ITGA4,” “HGF->MET,” “ICAM4-

>ITGA4,” “IL2->IL2RA,” “NCAM1->ROBO3,” and “NLGN1-

>NRXN2” (Supplmentary Figure S1C).

Building on the 10 distinguished ligand-receptor (LR) pairs, we

developed an LR scoring system, termed LR.score, to quantifiably

gauge the activity patterns of these LR pairs in AML patients. We

observed a notably elevated LR.score in patients of the “C1” subtype

in comparison to their “C3” counterparts (Figure 7A). Probing the

clinical relevance of the LR.score, we categorized patients into high

and low LR.score groups, using “0” as the demarcation point.

Interestingly, those with a diminished LR.score exhibited a

pronounced survival advantage (Figure 7B; log-rank test, P<

0.0001). The receiver operating characteristic (ROC) curve’s area
FIGURE 6

Immune Cell Variability Across Different Molecular Subtypes in Three AML Cohorts. (A–F) Differences in immune cell infiltration among subtypes, as
determined by CIBERSORT and ESTIMATE. Significance levels: ns, P > 0.05; *P > 0.05; **P > 0.01; ***P > 0.001; ****P > 0.0001. Analyzed using the
Kruskal-Wallis test.
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under the curve (AUC) for 1-, 3-, and 5-year overall survival stood

at 0.85, 0.84, and 0.87, respectively (Figure 7C). In our validation

datasets, GSE37642 and GSE12417, a similar pattern emerged

where the LR.score for “C1” was appreciably higher than for “C2”

and “C3” (Wilcoxon rank-sum test, P< 0.001) (Figures 7D, G). In
Frontiers in Oncology 11
alignment with our initial observations, patients with a reduced

LR.score in these validation sets also showcased a marked survival

benefit (Figures 7E, H; log-rank test, P< 0.0001). The AUC values

from the ROC assessments were 0.67, 0.71, and 0.69 for 1-, 3-, and

5-year overall survival in GSE37642, and 0.73, 0.74, and 0.72 in
FIGURE 7

Understanding the LR.score Across Cohorts. (A) Variability in LR.score among the TCGA-LAML cohort. (B) Survival comparison between high and low
LR.score groups in TCGA-LAML. (C) Predictive accuracy of LR.score in the TCGA-LAML cohort for 1, 2, and 3-year survival. (D-I) Similar analyses
conducted for GSE37642 and GSE12417 cohorts. (J, K) Univariate and multivariate Cox regression model analyses factoring in LR.score, age, gender,
cytogenetics risk, FAB category, and outcomes in the TCGA-LAML cohort.
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GSE12417, respectively. The consistency in AUC values across these

intervals underscores the reliability of the model’s prognostic

potential (Figures 7F, I).

To examine whether the LR.score could serve as an independent

prognostic factor, we performed both univariate and multivariate

Cox regression analyses using patient clinical features such as age,

gender, cytogenetics risk category, and FAB category. We found

that the LR.score is a reliable and independent prognostic

biomarker (Figures 7J, K; HR=3.26, 95% CI 2.29-4.65, P = 5.68E-

11).These results suggest that the LR.score can reflect the LR-pairs

patterns in AML patients and predict prognosis.

To investigate the relationship between the LR.score and clinical

characteristics of AML, we analyzed the differences in the LR.score

based on various clinical-pathological features in the TCG dataset.

Our findings indicated that as age increases, the LR.score also rises.

Moreover, higher “cytogenetics risk” levels were associated with

elevated LR.score values (Figure 8A). We further compared the

relationship between patients’ LR.score and their clinical-

pathological characteristics in the GSE37642 and GSE12417

cohorts (Figures 8B, C). It was observed that older patients

tended to have higher LR.score as well as RUNX1 mutation
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patients. In summary, the higher the clinical staging level of the

patient, the greater the LR.score.
LR.score and relevant biological functions

We further delved into the distribution differences of scores for

22 immune cell types across LR.score groupings in the TCGA

cohort, as depicted in (Figure 9A). Generally, scores for most

immune cells do not display significant disparities between

LR.score groups. However, certain cells like T_cells_gamma_delta,

NK_cells_activated, and Mast_cells_resting exhibited notable

differences. Moreover, when comparing immune infiltration, the

ImmuneScore was consistently lower in the low LR.score group

than in the high LR.score group (Figure 9B). Additionally,

Employing Pearson’s correlation coefficient, we evaluated the

association between the LR.score and immune cell infiltration, the

results of which are shown in (Figure 9C). Interestingly, a strong

positive correlation was observed between LR.score and

T_cells_regulatory (Tregs), while a significant negative correlation

was noted with Mast_cells_resting.
FIGURE 8

Clinical Implications of the LR.score. (A–C) Distribution of LR.score concerning various clinical-pathological features across TCGA-LAML, GSE37642,
and GSE12417 cohorts. Significance denoted as: ns, P > 0.05; ** P < 0.01; ****P < 0.0001. Analyzed using the Wilcoxon rank-sum test.
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To understand the relationship between LR.score and biological

functionality, we employed single-sample GSEA analysis (ssGSEA)

on the gene expression profiles of AML samples from the TCGA

cohort. This enabled us to compute scores for each sample across

various functionalities, leading to ssGSEA scores for each function

across individual samples. Further correlation analysis between

these functional scores and LR.score revealed functions with

correlations greater than 0.35, as shown in (Figure 9D) and

(Supplementary Table S3). As a result, 17 pathways positively

correlated with the LR.score of samples, while 2 pathways

demonstrated a negative correlation. Notably, cancer-related

pathways such as KEGG_GLYCEROPHOSPHOLIPID_

METABOLISM, KEGG_GLYCEROLIPID_METABOLISM,

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON, and

KEGG_MAPK_SIGNALING_PATHWAY were positively

correlated with LR.score.
LR.score model in
immunotherapy/chemotherapy

Furthermore, we investigated if there were disparities between

LR.score groupings concerning their responses to treatment. Initially,

we compared the expression of immune checkpoints between the

LR.score groups. As shown in (Figure 10A), certain immune

checkpoint genes exhibited differential expression across the

LR.score groups. Specifically, high gene expressions of ARHGEF5,

CD274, CD80, CTLA4, LAG3, PDCD1, and VISTA are associated

with high LR.score (P< 0.05, Wilcoxon rank-sum test).

We subsequently examined the disparities in immunotherapy

outcomes between the LR.score categories. Utilizing the TIDE
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algorithm, we gauged the probable clinical ramifications of

immunotherapy among our designated high and low LR.score

groups. Notably, a heightened TIDE prediction score implies an

augmented propensity for immune evasion, hinting at potentially

diminished benefits from immunotherapy for the patient. As

illustrated in (Figure 10B) and (Supplementary Table S4),

discernible distinctions between high- and low- LR.scores in

MDSC, CAF, and TIDE scores were absent. Simultaneously, we

contrasted the anticipated T-cell dysfunction and exclusion scores

across various metabolic molecular subtypes within the TCGA

cohort. The group with elevated LR.score exhibited the most

pronounced T-cell dysfunction score (P< 0.01, Wilcoxon rank-

sum test).

Delving deeper into the ramifications of LR.score on drug

responsiveness, we explored its association with reactions in

tumor cell lines to drugs. Through Spearman correlation analysis,

we discerned four notable associations between LR.score and drug

susceptibility in the Genomics of Drug Sensitivity in Cancer

(GDSC) database (Figure 10C). Among these, three correlations

indicated drug resistance in tandem with the LR.score,

encompassing Forentinib, BPD-00008900, and Vinblastine. We

also gauged the variances in responses to prevalent chemotherapy

agents such as ‘Bexarotene’, ‘Bortezomib’, ‘Erlotinib’, and

‘Rapamycin’ between the LR.score categories (Figure 10D).

Observations revealed that patients with a diminished LR.score

manifested heightened sensitivity to drugs, notably Bortezomib (P =

0.0039, Wilcoxon rank-sum test) and Erlotinib (P = 0.028,

Wilcoxon rank-sum test), as compared to their high LR.score

counterparts. Collectively, these insights underscore a linkage

between LR pairs and drug sensitivity, positing the LR.score as a

potential biomarker to inform tailored therapeutic approaches.
FIGURE 9

Role of LR.score in Immune Infiltration and Pathway Activation. (A, B) Distribution of immune cell types and stromal-immune scores between high
and low LR.score groups in the TCGA-LAML cohort. (C, D) Correlation analyses between immune cell components, KEGG pathways, and
the LR.score.
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Validation of the LR.score model genes

Considering the LR.score model’s proven capability in

predicting the risk and treatment outcomes for AML, we aim to

validate the individual gene expression profiles to determine

whether the model possesses the requisite sensitivity and

specificity to be applicable for validation within our patient

cohort. First of all, we investigated the cancer specificity of certain

gene-protein pairs by checking the cell line database in The Human

Protein Atlas (HPA), focusing on the following associations: “AVP-

>AVPR1B,” “CALCA->CALCRL,” “CCL7->ACKR4,” “CLEC11A-

>ITGA11,” “CXCL12->ITGA4,” “HGF->MET,” “ICAM4-

>ITGA4,” “IL2->IL2RA,” “NCAM1->ROBO3,” and “NLGN1-

>NRXN2”. Our analysis revealed that, among the genes studied,

CLEC11A, ICAM4, ITGA4, and AVP exhibited the highest

specificity to AML when compared to other cancer types. This

suggests a strong association between the expression levels of these

genes and AML, pointing to their potential role as specific

biomarkers for this disease (Figure 11A). Next, we examined the
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expression of CLEC11A, ICAM4, ITGA4, and AVP in 12 normal

and 24 AML bone marrow samples by quantitative reverse-

transcription polymerase chain reaction (qRT-PCR). In

comparison to the healthy bone marrow (Figure 11B), the levels

of CLEC11A, ITGA4, and AVP were notably reduced in samples

from AML patients, with a highly significant statistical difference

(P< 0.0001). The expression of ICAM4 was also found to be slightly

diminished (P< 0.05). These findings indicate that CLEC11A,

ICAM4, ITGA4, and AVP may act as inverse biomarkers in the

context of AML. Additionally, we used enzyme-linked

immunosorbent assay (ELISA) to further validation these genes in

the protein level. As shown in Figure 11C, the protein

concentrations of CLEC11A and ITGA4 were significantly higher

in normal samples compared to AML (P< 0.0001), and the same

trend was observed for ICAM4 and AVP (P< 0.01). Furthermore,

survival analysis reveals that patients with higher levels of

CLEC11A has a better prognosis than those with lower

expression (Figure 11D, P< 0.0001), reinforcing the potential role

of CLEC11A as a particularly significant negative biomarker.
FIGURE 10

Drug Sensitivity Predictions Using the LR.score. (A) Immune checkpoint expression differences between LR.score groups in TCGA-LAML. (B)
Comparing scores related to immune activity between high and low LR.score groups. (C) Correlation between drug sensitivity and the LR.score,
including the Estimated IC50 values for various drugs. (D) Comparing scores related to chemotherapy drugs between high and low LR.score groups.
ns, P > 0.05; *P < 0.05; **P < 0.01; ****P < 0.0001.
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Discussion

In our research, we pinpointed 94 prognostic LR pairs that

predominantly participate in pathways such as Cytokine-cytokine

receptor interactions, PI3K-Akt signaling, and Proteoglycans in

cancer. This indicates that specific LR pairs significantly influence

AML survival by modulating key oncogenic signaling pathways.

Based on these survival-related LR pairs, we delineated three

distinct molecular subtypes. Furthermore, we devised a prognostic

scoring model anchored on 10 LR pairs, and its predictive efficacy was

corroborated in separate cohorts. The LR.score model offers a novel

advantage over existing AML prognostic models by focusing on

ligand-receptor interactions within the tumor microenvironment,

providing insights into the dynamic cell-cell communication that

drives disease progression and therapeutic response. This model not

only enhances prognostic accuracy by identifying distinct molecular

subtypes but also predicts responses to targeted therapies, thereby

facilitating more personalized treatment strategies. Notably, this

scoring system provided insights into chemotherapy responsiveness

and probable outcomes to immune checkpoint blockade treatments

in AML patients. Our findings underscore the potential of LR pair-

driven gene signatures as prospective biomarkers for both prognosis

and therapeutic response prediction in AML.
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The C1 subtype was distinguished by its association with the

worst prognosis, also demonstrated a notable immune cell

infiltration, as evidenced by the higher immune score. The C3

subtype was marked by a more favorable prognosis when compared

to the other subtypes. Additionally, patients within the C3 subtype

demonstrated higher CD8 T cell and plasma cell levels, indicative of

enhanced adaptive immune activities. The C3 subtype, with its

lower LR.score, showed potential sensitivity to ICB treatments. This

aligns with recent research that has indicated a synergistic

therapeutic potential when combining targeted therapies with

immunotherapies (40–45).

In our analysis of genomic alterations across the three

molecular subtypes within the TCGA cohort, we observed no

significant differences in traditional markers of genomic

ins tab i l i ty , such as Aneuplo idy Score , Homologous

Recombination Defects, Fraction Altered, Number of Segments,

and TumorMutation Burden. These predominantly negative results

suggest that these conventional genomic features are not the

primary drivers of the distinct molecular and clinical

characteristics seen in each AML subtype (7, 46). This finding

underscores the complexity of AML and highlights the potential

importance of other factors, such as epigenetic modifications,

microenvironmental influences, or specific signaling pathways
FIGURE 11

LR.score model validation. (A) Cancer specificity of CLEC11A, ICAM4, ITGA4, and AVP expressions among pan-cancer. (B) qRT-PCR of CLEC11A,
ICAM4, ITGA4, and AVP comparing normal and AML bone marrows. Significance denoted as: *P< 0.05; ****P< 0.0001. Analyzed using the unpaired t
test. (C) ELISA concentration of CLEC11A, ICAM4, ITGA4, and AVP comparing normal and AML bone marrows. Significance denoted as: **0.001< P<
0.01; ****P< 0.0001. Analyzed using the unpaired t test. (D) Overall survival Kaplan-Meier plot for high- and low- CLEC11A expressions in the TCGA
dataset (P< 0.0001, log-rank test).
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activated by ligand-receptor (LR) pairs, in defining the disease

behavior and therapeutic response. The lack of significant

differences in these traditional genomic metrics reinforces the

need to explore alternative mechanisms beyond standard genomic

alterations, emphasizing the critical role of LR interactions in

understanding AML heterogeneity and in identifying novel

therapeutic targets.

The roles of specific mutations, particularly DNMT3A, RUNX1,

NPM1C, and Flt3, in the progression and prognosis of AML have

been the focus of several studies. DNMT3A mutations, often found

in about a third of AML patients, have been associated with adverse

outcomes and are often linked with a more aggressive disease course

and shorter overall survival rates (38, 47, 48). Similarly, RUNX1

mutations are known to be recurrent in AML and have been

associated with lower complete remission rate and shorter event-

free survival (39, 49). Conversely, NPM1C and FLT3 mutations,

while prevalent in AML, have a more complex relationship with

prognosis, have certain numbers of NPM1C and FLT3 mutations in

C1 and C2.

Of particular interest is the observation that DNMT3A and

RUNX1 mutations seem to have a more pronounced influence on

ligand-receptor (LR) pair interactions and intercellular

communication in the AML microenvironment. This suggests

that these mutations might be disrupting the cellular crosstalk

essential for hematopoiesis, thereby promoting leukemogenesis.

On the other hand, NPM1C and FLT3 mutations, although

significant, appear to exert a less direct effect on these LR pairs

and cellular communications. This differential impact underscores

the importance of considering the individual and combined effects

of these mutations. It’s not just their presence, but their influence on

cellular networks and communication that might determine disease

progression and therapeutic responses. As we move forward, a

comprehensive understanding of these mutations, especially in the

context of LR pairs, will be vital for tailoring therapeutic strategies

and improving prognosis assessments for AML patients.

The low LR.score group displayed a marked potential for

sensitivity to immune checkpoint blockade (ICB) treatments. This

observation is further supported by the notably T-cell dysfunction

score within this group, suggesting an increased probability of a

favorable response to anti-PD1/PD-L1 therapies. Immune

checkpoints, such as PD-1 and its ligand PD-L1, are crucial

modulators of the immune response, and their dysregulation can

be leveraged by cancer cells to evade immune surveillance (50–53).

The presence and abundance of specific immune cells, especially

CD8 T cells and Tregs, could be pivotal in determining the

therapeutic outcome of ICB treatments. CD8 T cells are the

primary effectors in antitumor immunity, responsible for

recognizing and killing cancer cells. The reinvigoration of these

cells through ICB has been linked to improved patient outcomes in

multiple studies (54, 55). Considering the low LR.score group’s

immune cell composition and TIDE score, it is plausible that they

would benefit significantly from ICB therapies. Further analysis of

the underlying molecular mechanisms revealed that LR pairs such

as CXCL12-ITGA4 and HGF-MET, which are significantly

downregulated in the low LR.score group, might contribute to the
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observed T-cell dysfunction. The CXCL12-ITGA4 axis is known

to regulate the trafficking and homing of T cells to the bone

marrow, and its downregulation could lead to impaired T-cell

recruitment and function in the tumor microenvironment

(56, 57). Similarly, the HGF-MET pathway has been implicated in

promoting T-cell exhaustion through the activation of downstream

signaling pathways, such as PI3K/AKT and MAPK/ERK (58, 59),

which are involved in maintaining the immunosuppressive

tumor microenvironment.

Moreover, the negative correlation between LR.score and T-cell

regulatory pathways, including the TGF-beta signaling pathway,

suggests that the low LR.score group may have reduced

immunosuppressive signaling, further enhancing the potential

effectiveness of ICB therapies. TGF-beta is a well-known

suppressor of T-cell function, and its downregulation in the low

LR.score group could lead to a more favorable immune

microenvironment for the activation and expansion of effector T

cells in response to ICB.

A higher LR score, indicative of altered ligand-receptor

interactions, can potentially impact the finely-tuned signaling

pathways that regulate hematopoiesis. These disruptions can

further skew the differentiation of hematopoietic stem cells

(HSCs) towards the myeloid lineage, leading to an accumulation

of blasts and a concomitant decrease in lymphoid cells, especially T

cells. The decreased differentiation and maturation of lymphoid

progenitors could potentially explain the T-cell dysfunction

observed in high LR score patients.

Moreover, the T cell differentiation block, a hallmark of

aggressive AML, can be particularly concerning. T cells play a

pivotal role in immune surveillance, and their differentiation block

can facilitate an immunosuppressive environment, which AML cells

exploit for their survival and proliferation. This can lead to a vicious

cycle where the increased number of AML blasts further suppresses

T cell differentiation, leading to a more aggressive disease

phenotype. Considering these intricate biological interactions, it

becomes evident that strategies aiming to restore T-cell function

and differentiation might be particularly beneficial for AML

patients with high LR scores. Immune checkpoint blockade

therapies, which have shown promise in rejuvenating exhausted T

cells in other malignancies, could potentially rectify the T cell

differentiation block and restore the balance in hematopoiesis.

This approach, when combined with a deeper understanding of

the molecular underpinnings of AML, offers a promising avenue for

more targeted and effective therapies for this aggressive malignancy.

Our study also yields with limitations. First and foremost, while

our LR.score has shown promise in predicting survival in an

independent AML cohort, it is based on retrospective data, which

inherently carries potential biases. Prospective validation in diverse

patient populations is essential to establish its universal

applicability. Moreover, the molecular complexities of AML and

its subtypes might not be entirely captured by the LR.score alone.

The nuances of individual patient genetics, epigenetics, and the

ever-evolving tumor microenvironment might introduce variations

not accounted for in our model. Additionally, our study

predominantly focuses on T-cell dysfunction and its relationship
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with the LR.score, potentially overlooking other critical components

influencing AML progression. Lastly, while our findings provide a

foundation for therapeutic considerations, actual clinical efficacy

requires rigorous testing through controlled clinical trials.

The critical ligand-receptor pairs such as ICAM4-ITGA4,

CLEC11A-ITGA11, AVP-AVPR1B, along with CXCL12-ITGA4,

HGF-MET, IL2-IL2RA, NCAM1-ROBO3, and NLGN1-NRXN2,

sheds light on the complexity of leukemic pathophysiology. These

genes, through their respective ligand-receptor interactions, are

essential in maintaining normal bone marrow function,

facilitating precise communication between cellular and

extracellular components, and ensuring proper immune function

and stress response. The downregulation of ICAM4 and its receptor

ITGA4 compromises not just the physical adhesion of

hematopoietic cells to the bone marrow stroma but also

interrupts intracellular signaling pathways that guide cell fate

decisions, which can be a consequence of the leukemic cells

outcompeting their normal counterparts for niche occupancy and

resources (60–62). Similarly, the diminished expression of

CLEC11A and ITGA11, possibly due to epigenetic phenomena

like promoter hypermethylation, disrupts not only the

proliferation and differentiation of hematopoietic stem cells but

also the integrity of the bone marrow’s extracellular matrix—a

critical scaffold for cellular interactions and signaling (63, 64).

Furthermore, the hormonal regulation of the bone marrow

environment, exemplified by the AVP-AVPR1B axis, is crucial in

modulating responses to physiological stress and may be disrupted

in AML, reflecting a systemic dysregulation of homeostatic

mechanisms in response to the leukemic burden (65). Disruptions

in cell adhesion molecules like NCAM1 and their interactions with

receptors such as ROBO3, along with synaptic adhesion molecules

like NLGN1 and their neurexin partners such as NRXN2, suggest a

broader disruption of intercellular communication within the bone

marrow niche, extending beyond the classical pathways known to

be involved in hematopoiesis (66, 67). The downregulation of these

critical genes (e.g., CLEC11A, ICAM4, ITGA4, and AVP) and their

pathways in AML is not merely indicative of the disease’s pathology

but may also serve as negative biomarkers, which could provide

valuable insights into the disease’s severity, progression, and

responsiveness to treatment. Their expression levels could

potentially inform prognostic stratification and therapeutic

targeting, underlining the necessity for continued research and

development of interventions that can specifically modulate these

dysregulated pathways. The intricate interplay of these gene

expressions and their associated signaling cascades represents a

sophisticated network that, when altered, contributes to the

malignant phenotype of AML, emphasizing the importance of a

nuanced understanding of these molecular mechanisms in the quest

for more effective treatments.
Conclusion

The high ligand-receptor (LR) scores identified in Acute

Myeloid Leukemia (AML) are strongly associated with T-cell
Frontiers in Oncology 17
dysfunction, underscoring the complex molecular interactions

within the disease. Our findings validate the LR.score as a robust

prognostic marker that accurately predicts survival outcomes and

stratifies patients based on their likely responses to chemotherapy

and immunotherapy. Clinically, the LR.score could be instrumental

in guiding personalized treatment strategies by identifying patients

who may benefit from specific therapies, such as immune

checkpoint inhibitors or targeted treatments, based on their LR

interaction profiles. This approach not only enhances prognostic

precision but also supports the development of tailored therapeutic

interventions, paving the way for more effective and individualized

management of AML.
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