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1Department of Radiology, Shaanxi Provincial Tumor Hospital, Xi’an, China, 2Department of Medical
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Introduction: While lymph node metastasis (LNM) plays a critical role in

determining treatment options for endometrial cancer (EC) patients, the

existing preoperative methods for evaluating the lymph node state are not

always satisfactory. This study aimed to develop and validate a nomogram

based on intra- and peritumoral radiomics features and multiparameter

magnetic resonance imaging (MRI) features to preoperatively predict LNM in

EC patients.

Methods: Three hundred and seventy-four women with histologically confirmed

EC were divided into training (n = 220), test (n = 94), and independent validation

(n = 60) cohorts. Radiomic features were extracted from intra- and peritumoral

regions via axial T2-weighted imaging (T2WI) and apparent diffusion coefficient

(ADC) mapping. A radiomics model (annotated as the Radscore) was established

using the selected features from different regions. The clinical parameters were

statistically analyzed. A nomogram was developed by combining the Radscore

and the most predictive clinical parameters. Decision curve analysis (DCA) and

the net reclassification index (NRI) were used to assess the clinical benefit of

using the nomogram.

Results: Nine radiomics features were ultimately selected from the intra- and

peritumoral regions via ADC mapping and T2WI. The nomogram combining the

Radscore, serum CA125 level, and tumor area ratio achieved the highest AUCs in

the training, test and independent validation sets (nomogram vs. Radscore vs.

clinical model: 0.878 vs. 0.850 vs. 0.674 (training), 0.877 vs. 0.838 vs. 0.668 (test),

and 0.864 vs. 0.836 vs. 0.618 (independent validation)). The DCA and NRI results

revealed the nomogram had greater diagnostic performance and net clinical

benefits than the Radscore alone.
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Conclusion: The combined intra- and peritumoral region multiparameter MRI

radiomics nomogram showed good diagnostic performance and could be used

to preoperatively predict LNM in patients with EC.
KEYWORDS

endometrial cancer, lymphatic metastasis, lymph node, magnetic resonance
imaging, radiomics
1 Introduction

Endometrial cancer (EC) is the most common type of

gynecological malignancy in developed countries (1). Detecting

lymph node metastasis (LNM) before surgery can influence the

staging of EC patients, helping to guide the surgical strategy and

plan adjuvant treatment. Systematic lymphadenectomy is routinely

recommended according to the International Federation of

Gynecology and Obstetrics (FIGO), yet its use remains

controversial, particularly for low-risk disease (2), as there has

been no demonstrated improvement in disease-free survival or

overall survival for early-stage EC patients, regardless of the use

of lymphadenectomy (3). Moreover, performing lymphadenectomy

without discrimination could result in unnecessary treatment and

an increase in postoperative complications such as infections,

vascular/nerve damage, chronic lymphedema, and lymphocysts

(4). Sentinel lymph node (SLN) mapping has been recommended

for the intraoperative evaluation of LNM (5). A prior study

concluded that sentinel node mapping is comparable to

lymphadenectomy in identifying patients with nodal disease (6).

More importantly, there is greater accuracy in detecting low-

volume metastases (micrometastases and isolated tumor cells)

through SLN mapping (6–10). Nevertheless, SLN mapping

requires skilled surgeons (11). To carry out this process

effectively, one must have access to new technology, indocyanine

green tracers, and follow the SLN algorithm (12, 13). Hence, it is

crucial in clinical practice to develop a noninvasive and easy

method that can reliably predict the LN status of EC patients

prior to surgery. This information will aid in tailoring

personalized treatment strategies.

Magnetic resonance imaging (MRI) is crucial for evaluating

deep myometrial invasion (DMI) in EC, but its ability to detect

LNM is inadequate, with a sensitivity of 36.0%–89.5% (14).

Previous research has indicated that various tumor morphological

factors, such as the tumor volume (TV), tumor size (maximum

diameter of the tumor, TS), tumor area ratio (TAR), and maximum

anteroposterior tumor diameter on sagittal T2-weighted images

(T2WIs) (APsag), are correlated with EC risk stratification (15–19).

The serum cancer antigen 125 (CA125) level is a useful biomarker

for predicting LNM in EC patients before surgery (20). Recently,

radiomics studies utilizing intratumoral features have demonstrated
02
positive outcomes in predicting LNM before surgery (21–24).

Multiple studies evaluating various types of tumors have

demonstrated the significance of radiomics features from the

peritumoral margin in accurately predicting LNM before surgery

(25–27). Nevertheless, there is a lack of research on enhancing the

diagnostic accuracy of the preoperative prediction of LNM in EC

through the integration of various tumor regions. Therefore, in this

study, we aimed to develop and validate an MR-based radiomic

nomogram combining different imaging sequences (i.e., apparent

diffusion coefficient (ADC) mapping and T2-weighted imaging

(T2WI)), different tumor regions (combined intra- and

peritumoral regions), and different parameters (CA125 level,

tumor morphological features, and radiomic features) for

predicting LNM in patients with EC.
2 Materials and methods

2.1 Patients

This retrospective study was approved by the local ethics

committee, and informed consent was not required. A total of 461

patients with EC confirmed by postoperative histology from June

2015 to July 2022 who underwent preoperativeMR examination were

enrolled. The inclusion criteria were as follows: (1) confirmation of

EC through pathology; and (2) presence of clinical and

histopathological characteristic data, including age, serum CA125

level, tumor grade, depth of myometrial invasion (MI), and cervical

stromal invasion. The exclusion criteria were as follows: (1) total

hysterectomy not performed within 2 weeks after the MRI

examination; (2) preoperative treatment with chemoradiation; (3)

tumors too small to be visible on MRI; (4) images with obvious

motion artifacts; (5) contraindications for MRI examination; (6)

incomplete clinical data; and (7) EC occurring simultaneously with

other malignant tumors. Eighty-seven patients were excluded

Figure 1), and the remaining 374 patients were included (mean

age: 54.3 ± 8.1 years). Surgical staging of all patients included total

hysterectomy with bilateral salpingo-oophorectomy, and lymph node

(LN) assessment included pelvic lymphadenectomy and

accompanying paraaortic lymphadenectomy. Compared with

endometrioid adenocarcinoma (EEA), non-EEA (including
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carcinosarcomas, mucinous carcinoma, serous carcinoma, clear cell

carcinoma, mixed carcinoma, and undifferentiated carcinoma) has a

greater malignancy rate and is more prone to LNM (28). Therefore,

we grouped non-EEA patients in similar proportions into training,

test, and independent validation cohorts on the basis of the

proportion of non-EEA patients in the overall cohort (10.7%, 40/

374) (Table 1). Furthermore, patients with different field strengths

were evaluated, with those who underwent 1.5-T MR accounting for

62.3% of the total cohort. Therefore, in the independent validation

cohort, a similar proportion (61.6%) was also used for the 1.5-T

dataset. The steps for data segmentation were as follows. First, 60

patients (37 patients who underwent 1.5-T MR and 23 who

underwent 3.0-T MR) were randomly selected as the independent

validation group. The remaining 314 patients were randomly divided

into a training cohort (n = 220) and a test cohort (n = 94) at a ratio of

7:3. All patients were recruited from a single center. Notably, the

independent validation cohort was not involved in the model training

and testing phases.
2.2 MRI protocol

The MRI scans were carried out via a 1.5-T (EXCELART

Vantage™ powered by Atlas, Canon Medical Systems Corp.,

Tochigi, Japan) or 3.0-T (Siemens Magnetom Skyra, Erlangen,

Germany) scanner, along with an 8-channel phased-array
Frontiers in Oncology 03
abdominal coil. To minimize artifacts resulting from intestinal

motility, 20 mg of raceanisodamine hydrochloride (Hangzhou

People’s Livelihood Pharmaceutical Co., Hangzhou, Zhejiang,

China) was intravenously injected prior to scanning. All MRI

sequences were obtained following a standard protocol (refer to

Supplementary Table 1 for specifics). For diffusion-weighted

imaging (DWI), b = 0 and 650 s/mm2 were used for the 1.5-T

scanner, and b = 0 and 1000 s/mm2 were used for the 3.0-T scanner.

The ADC maps were automatically reconstructed by the

postprocessing workstation.
2.3 Image preprocessing, image
segmentation, and radiomics
feature selection

Image preprocessing was performed via a standard workflow

(see the Supplementary Materials for details). Image segmentation

was performed by two experienced radiologists (T.Z. and B.Y.). One

month after the initial segmentation, 100 patients were randomly

selected for tumor segmentation by another radiologist (Y.D.) for

interreader reliability evaluation. The details of the lesion

segmentation are shown in the Supplementary Materials. 3D

Slicer software (version 4.10.2; https://download.slicer.org/) was

used for the manual whole-tumor segmentation. Three volumes

of interest (VOIs) were chosen (Figure 2) as follows: (1)
FIGURE 1

Flow chart demonstrating how the study population was chosen and the exclusion criteria applied.
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TABLE 1 All patients’ clinical and tumor morphological parameters.

Characteristic

Training cohort (n = 220)

P

Test cohort (n = 94) Independent-validation cohort (n
= 60)

LNM(+)
(n = 24)

LNM(-)
(n = 196)

LNM(+)
(n = 9)

LNM(-)
(n = 85)

LNM(+)
(n = 7)

LNM(-)
(n = 53)

Age, years 54.0 ± 7.5 54.2 ± 8.0 0.861 55.1 ± 5.7 53.6 ± 7.6 59.1 ± 3.8 55.0 ± 10.0

CA125 (U/ml) 179.565 ± 443.404 39.810 ± 74.419 0.001 76.407 ± 65.676 35.577 ± 55.497 27.016 ± 17.808 43.940 ± 55.681

EEA 21 175 8 77 6 47

Non-EEA 3 21 1 8 1 6

Histological grade

Grade 1 (G1) 14 3 7

Grade 2 (G2) 13 136 4 51 3 31

Grade 3 (G3) 11 46 5 31 4 15

Low-grade (G1+G2) 13 150 4 54 3 38

High-grade (G3) 11 46 5 31 4 15

MI

Superficial 2 145 1 57 1 35

Deep 22 51 8 28 6 18

CSI

Yes 13 38 5 17 4 7

No 11 158 4 68 3 46

Tumor volume, cm3 57.144 ± 88.535 18.213 ± 61.593 0.000 83.937 ± 120.469 13.932 ± 15.837 14.181 ± 9.266 23.446 ± 32.758

Tumor size, cm 5.893 ± 3.151 4.174 ± 2.323 0.008 6.982 ± 4.121 4.210 ± 1.807 4.694 ± 1.584 4.471 ± 2.017

APsag, cm 3.633 ± 2.033 1.909 ± 1.262 0.000 3.639 ± 2.325 2.059 ± 0.841 2.306 ± 0.608 2.328 ± 1.465

TAR, % 54.211 ± 27.402 31.410 ± 18.999 0.000 49.478 ± 17.740 35.808 ± 18.229 52.550 ± 20.444 35.088 ± 18.491

FIGO

I 150 67 44

I a 117 45 32

I b 33 22 12

II 29 16 5

III 22 14 9 2 7 4

III a 12 2 4

III b 1

III c1 16 5 6

III c2 6 1 4 1

IV 2 3

IV a 1 3

IV b 1
F
rontiers in Oncology
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The bold values indicates differences that are statistically significant. LNM, lymph node metastasis; EEA, endometrioid adenocarcinoma; Non-EEA, nonendometrioid adenocarcinoma (including
mixed carcinoma, carcinosarcoma, undifferentiated carcinoma, serous carcinoma, and clear cell carcinoma); G1, well differentiated; G2, moderately differentiated; G3, poorly differentiated; low
grade, G1 and G2; high grade, G3; CA125 = cancer antigen 125; MI, myometrial invasion; CSI, cervical stromal invasion; APsag, maximum anteroposterior diameter on sagittal T2W imaging;
TAR, tumor area ratio; FIGO = International Federation of Obstetrics and Gynecology.
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intratumoral region—ROIs were delineated along the edge of the

lesion slice-by-slice, including areas of hemorrhage and necrosis,

and the normal anatomical structure was avoided; the ROIs were

fused into a three-dimensional (3D) VOI; (2) peritumoral margin—

according to the previous literature (29), the tumor contour was

automatically expanded by 3 mm to generate dilated VOIs; when

the dilated VOIs were beyond the scope of the uterus, they were

manually corrected for their boundaries to be set to the uterus edge;

when other lesions in the myometrium (like fibroids, adenomyosis,

etc.) were involved in the dilated VOI, manual correction was used;

the peritumoral region = dilated VOI - tumor VOI; and (3)

combined intra- and peritumoral regions.

The preprocessing of images and extraction of features were

carried out via Artificial Intelligence Kit (AK, Version 3.3.0, GE

Healthcare) software. Radiomics features, comprising first-order,

shape-based, and texture features, were obtained from each of the

VOIs. The methodology for extracting the radiomics parameters is

shown in Figure 2.
2.4 Tumor morphological
parameter measurements

TS was defined as the maximum tumor diameter measured in

three orthogonal planes: the transverse (x) and anteroposterior (y)

diameters on oblique axial T2W images and the craniocaudal (z)

diameter. APsag was measured on sagittal T2W images (Figures 3A,

B). The whole-tumor volume on T2W images for the TV analysis

was automatically calculated via 3D Slicer software. The TAR was

calculated (the measurement method is detailed in the

Supplementary Material) (Figures 3C, D) via the following
Frontiers in Oncology 05
equation from a previous study: TAR = (area of tumor/area of

uterus) × 100% (18).
2.5 Statistical analysis

The statistical analysis was conducted via the R language

(version 4.2.0, https://www.r-project.org) and Python language

(version 3.9, https://www.python.org). A binary classification

model was developed to predict the LNM status as “LNM-

positive” or “LNM-negative”. Clinical data were subjected to both

univariate and multivariate logistic regression (LR) analyses for

filtration. Radiomic features were evaluated via t tests, Fisher’s exact

tests, chi-square tests and, when applicable, the Mann−Whitney U

test. P <0.05 was considered to indicate statistical significance. Least

absolute shrinkage and selection operator (LASSO) regression was

used to identify the most important radiomic features. LR was

utilized for training the prediction models and was employed to

create a nomogram incorporating clinical and tumor morphological

parameters along with the radiomics score (Radscore). The

independent validation cohort was used only to evaluate model

performance. The sample size was calculated according to the

previous literature (30); the number of events per variable was 10

or greater in the setting of the multivariate LR model. Before the

initiation of data modeling, radiomic features were subjected to

standardization via the standard scalar method. To determine the

consistency among readers in evaluating MR morphological and

radiomics features, intraclass correlation coefficients (ICCs) were

calculated, with an ICC value exceeding 0.8 suggesting nearly

perfect agreement. The R codes used for modeling and data

analysis are provided in the Supplementary Materials.
FIGURE 2

The radiomic workflow included manual segmentation of 3D VOIs from intra- and peritumoral regions, extraction of radiomic features, feature
selection through LASSO regression, model development using nomograms, and evaluation of diagnostic performance via receiver operating
characteristic (ROC) curve analysis.
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Approximately 70% of EC patients are diagnosed with stage I

disease (31). The risk of LNM in EC patients with low-grade and

superficial MI is 3–5%, whereas the risk of LNM in high-grade

patients is approximately 16–22% (32–34). Therefore, the

proportion of LNM in EC is relatively low. In this study,

approximately 10.7% (40/374) of patients had LNM. To address

the imbalance between LNM-positive and LNM-negative patients

in our training cohort, we employed the synthetic minority

oversampling technique (SMOTE) to generate synthetic samples

in the minority (positive) class. SMOTE works by selecting two or

more similar instances (using a distance measure) in the minority

class and generating new instances that lie between these instances

in the feature space (35, 36). The SMOTE has been applied in

previous studies on LNM in EC (24, 37).

The performance of the prediction model was evaluated via

receiver operating characteristic (ROC) curve analysis. The DeLong

test was employed to assess whether the difference in the ROC

curves between the two models was statistically significant. The

calibration curve was assessed via the Hosmer−Lemeshow (HL)

test, with a P value greater than 0.05 indicating satisfactory

predictive performance. Decision curve analysis (DCA) was used

to compare the net benefits of the clinical models and radiomics
Frontiers in Oncology 06
nomogram models, with all ROC curve cutoff values determined by

the maximum Youden index. The areas under the curve (AUCs),

accuracy (ACC), sensitivity (SEN), and specificity (SPE) were

then calculated.
3 Results

3.1 Patient clinical characteristics and
MRI findings

Table 1 summarizes the clinical and MRI morphological

findings of the EC patients in the training, test, and independent

validation cohorts. The 374 EC patients (1.5-T, n = 233; 3.0-T, n =

141) included 40 LNM-positive patients (40/374, 10.7%) and 334

LNM-negative patients. Forty non-EEA patients were included in

this study (mixed carcinoma = 16, carcinosarcoma = 14,

undifferentiated carcinoma = 4, serous carcinoma = 3, and clear

cell carcinoma = 3) and were assigned to the training (24/220,

10.9%), test (9/94, 9.6%), and independent validation (7/60, 11.7%)

cohorts in similar proportions.
FIGURE 3

Methods for measuring tumor morphology parameters. (A) Measurements of the tumor’s maximum transverse diameter (solid line, x) and
anteroposterior diameter (dotted line, y) were taken on oblique axial T2W images. (B) On sagittal T2W images, the tumor’s maximum craniocaudal
diameter (solid line, z) and maximum anteroposterior diameter were measured (dotted line, APsag). (C) The tumor border on the DW image (reverse
image) is shown by the white solid line. (D) The uterine border on the axial T2W image is depicted by the white solid line.
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3.2 Radiomics feature extraction, selection,
and interreader reliability

From each VOI, 1036 features were extracted, including

ADC_Intratumoral, ADC_Peritumoral, T2WI_Intratumoral, and

T2WI_Peritumoral. After feature selection, 9 features remained and

were selected for evaluating LNM status in EC (forming the Radscore,

Table 2) (refer to the Supplementary Material for a breakdown of the

feature extraction process). There was no significant difference in the

features between the training and test sets (Table 3). After the sample

imbalance was adjusted with the SMOTE, the training cohort included

120 LNM-positive patients and 196 LNM-negative patients (Figure 4).

All the morphological parameters and radiomics features

showed excellent interreader reliability, with ICC values ranging

from 0.908 to 0.997. This high level of agreement ensures the

repeatability of the model for future clinical use. The details are

shown in Supplementary Tables 4-6.
3.3 Clinical model development
and performance

After univariate analysis, the CA125 level, tumor grade, TV, TS,

APsag, and TAR were significantly different between LNM-positive

and LNM-negative patients (all P < 0.05, Table 1). Among these

features, the tumor grade is a postoperative pathological result that can

be obtained through preoperative endometrial biopsy or diagnostic

curettage. Multivariate binary LR analysis revealed that the TAR and
Frontiers in Oncology 07
CA125 level were independent predictors of LNM in patients with EC

(all P < 0.05, Table 4). The AUCs of the clinical model for predicting

LNM in the training, test, and independent validation cohorts were

0.674 (95% confidence interval [CI]: 0.587–0.763; SEN: 68.4%, SPE:

58.7%), 0.668 (95% CI: 0.636–0.741; SEN: 75.0%, SPE: 64.2%) and

0.618 (95% CI: 0.567–0.654; SEN: 54.6%, SPE: 70.0%), respectively.
3.4 Radiomics model development
and performance

The performance of ADC mapping and T2WI in distinguishing

LNM-positive patients from LNM-negative patients is summarized

in Supplementary Table 7. Interestingly, after applying LASSO

regression with the peritumoral features from the ADC map, all

feature coefficients decreased to zero. This implies that under the

LASSO constraint, none of the features were identified as having

substantial predictive power for the outcome. Therefore,

ADC_Peritumoral features were excluded. Among the four

radiomics models (ADC_Intratumoral, T2WI_Intratumoral,

T2WI_Peritumoral, and T2WI_Intratumoral+Peritumoral), the

combined intratumoral and peritumoral features from T2WI

achieved the best prediction performance (AUC_training = 0.819;

AUC_test = 0.771; and AUC_independent-validation = 0.772).

We combined the features of ADCmapping (intratumoral region)

and T2WI (intra- and peritumoral regions) to construct the best

prediction model (named hybrid-feature, Table 5), which showed the

best classification performance (AUC_training = 0.850; AUC_test =

0.838; and AUC_independent-validation = 0.836). In this study, the

Radscore consisted of 9 features from the hybrid-feature model.
3.5 Diagnostic performance of the
radiomic nomogram

The clinical model and the Radscore were combined, and a

clinical–radiomics mixed model was constructed. The CA125 level,
TABLE 3 Comparison of the Radiomics, clinical and morphological
features in the training and test sets.

Features P value

CA125 0.361

TAR 0.445

original_shape_LeastAxisLength (ADC_Intratumoral) 0.563

wavelet-HHL_firstorder_Kurtosis (ADC_Intratumoral) 0.276

wavelet-LLH_firstorder_Mean (ADC_Intratumoral) 0.631

original_shape_LeastAxisLength (T2_Intratumoral) 0.438

wavelet-HLH_firstorder_Skewness (T2_Intratumoral) 0.383

wavelet-HLH_glcm_Idmn (T2_Intratumoral) 0.426

wavelet-HLL_firstorder_Skewness (T2_Intratumoral) 0.503

original_glcm_Idmn (T2_Peritumoral) 0.389

wavelet-HLH_glszm_ZoneEntropy (T2_Peritumoral) 0.438
TABLE 2 Features forming the Radscore using the Logistic
regression classifier.

Imaging Region Feature P
value

ADC mapping Intratumoral original_shape_LeastAxisLength 0.002

ADC mapping Intratumoral wavelet-
HHL_firstorder_Kurtosis

0.031

ADC mapping Intratumoral wavelet-LLH_firstorder_Mean 0.006

T2-
weighted
imaging

Intratumoral original_shape_LeastAxisLength <0.001

T2-
weighted
imaging

Intratumoral wavelet-
HLH_firstorder_Skewness

0.002

T2-
weighted
imaging

Intratumoral wavelet-HLH_glcm_Idmn 0.029

T2-
weighted
imaging

Intratumoral wavelet-
HLL_firstorder_Skewness

<0.001

T2-
weighted
imaging

Peritumoral original_glcm_Idmn <0.001

T2-
weighted
imaging

Peritumoral wavelet-
HLH_glszm_ZoneEntropy

<0.001
The bold values indicates differences that are statistically significant. ADC, apparent
diffusion coefficient.
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TAR, and Radscore were used to develop the nomogram in the

training cohort (Figure 5A). The AUCs of the nomogram model for

predicting LNM in the training (Figure 5B), test (Figure 5C) and

independent validation (Figure 5D) cohorts were 0.878 (95% CI:

0.823–0.907; ACC: 81.0%, SEN: 84.0%, and SPE: 77.9%), 0.877 (95%

CI: 0.831–0.914; ACC: 72.0%, SEN: 83.3%, and SPE: 71.0%) and

0.864 (95% CI: 0.815–0.901; ACC: 85.3%, SEN: 75.0%, and SPE:

86.0%), respectively. The formula was as follows:

Risk = −1:68215933 − 0:025 �TAR + 0:001 �CA125
+ 4:96239835 �Radscore
Frontiers in Oncology 08
The calibration curves, with HL scores of 0.481, 0.346 and 0.226

for the training, test, and independent validation cohorts,

respectively, revealed that the nomogram was reasonably accurate

in predicting LNM in EC patients (Figures 6A–C). The DeLong test

yielded a p value of 0.03 when the radiomics model was compared

with the nomogram and a p value of 0.01 when the clinical model

was compared with the nomogram. These results indicate that the

differences in outcomes between the nomogram and both the

radiomics and clinical models are statistically significant. DCA

indicated that the radiomics nomogram produced greater net

benefit than the clinical model for predicting LNM in EC patients

in the training (Figure 6D), test (Figure 6E), and independent

validation cohorts (Figure 6F). The reclassification measures

confirmed that the nomogram performed better than the

radiomics and clinical models did, with a net reclassification

index (NRI) of 0.208 (95% CI, 0.112–0.287) when the nomogram

and radiomics model were compared and an NRI of 0.386 (95% CI,

0.264–0.482) when the nomogram and clinical model

were compared.
4 Discussion

In the present study, we developed and validated a brief

radiomics nomogram for predicting LNM in patients with EC on

the basis of the CA125 levels, TAR, and Radscore. This model

showed good diagnostic performance (AUC_training = 0.878,

AUC_test = 0.877, AUC_independent-validation = 0.864).

Moreover, the features derived from distinct imaging sequences

(i.e., T2WI and ADC mapping) and different VOIs (intratumoral,

peritumoral, and combined regions) provided complementary

information. Finally, a variety of field strength data were

proportionally blended for the purpose of modeling and
TABLE 4 Logistic regression analysis for predicting LNM positivity in
patients with EC: the clinical model.

Parameters Univariate Multivariate

OR 95%CI p OR 95% CI p

CA125 1.162 1.042-
1.295

0.007 1.111 1.008-
1.235

0.050

Tumor grade 10.476 2.696-
40.698

<0.001 3.273 0.682-
15.706

0.138

Tumor volume 1.371 1.152-
1.630

<0.001 1.061 0.818-
1.377

0.651

Tumor size 1.942 1.331-
2.830

<0.001 0.833 0.385-
1.801

0.643

APsag 3.428 2.160-
5.439

<0.001 1.787 0.717-
4.452

0.213

TAR 3.252 2.095-
5.046

<0.001 2.056 1.104-
3.828

0.023
The bold values indicates differences that are statistically significant. CI, confidence interval;
OR, odds ratio; LNM, lymph node metastasis.
FIGURE 4

SMOTE workflow. AUC, area under the curve; ACC, accuracy; SPE, specificity; SEN, sensitivity; NRI, net reclassification improvement; LNM, lymph
node metastasis; SMOTE. synthetic minority oversampling technique.
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FIGURE 5

Explanation of the radiomics nomogram. (A) The nomogram of patients in the training cohort, which was developed by incorporating clinical (serum
CA125 level) and morphological (TAR) features and the radiomics score (Radscore). According to this nomogram, the greater the risk is, the greater the
likelihood that the patient will have LNM. (B) Comparison of ROC curves for different prediction models (n = 3) in differentiating LNM-positive and LNM-
negative EC patients in the training cohort. The radiomics nomogram showed the highest AUC of 0.878 (95% CI, 0.823-0.907). In the test (C, AUC of
0.877, 95% CI: 0.831-0.914) and external validation (D, AUC of 0.864, 95% CI, 0.815-0.901) cohorts, the radiomics nomogram achieved the highest AUC.
TABLE 5 Features from different imaging sequences and VOIs combined to predict LNM.

Combined
Model

Training cohort (n=220) Test cohort (n=94)
Independent validation cohort

(n = 60)

AUC
95% CI

ACC
%

SPE
%

SEN
%

AUC
95% CI

ACC
%

SPE
%

SEN
%

AUC
95% CI

ACC
%

SPE
%

SEN
%

Model_1 0.844
(0.807-
0.886)

74.2 73.7 74.7
0.821
(0.785-
0.846)

74.7 75.4 66.7
0.811
(0.763-
0.852)

78.7 78.6 80.0

Model_2 0.786
(0.725-
0.822)

69.7 69.7 69.7
0.689
(0.605-
0.733)

68.0 72.7 53.3
0.702
(0.649-
0.732)

59.0 59.7 50.0

Model_3 0.850
(0.814-
0.891)

78.5 73.2 83.8
0.838
(0.799-
0.867)

72.0 71.0 83.3
0.836
(0.784-
0.876)

72.1 71.4 80.0
F
rontiers in Oncology
 09
 front
Model_1, ADC_Intratumoral+T2WI_Intratumoral; Model_2, ADC_Intratumoral+T2WI_Peritumoral; Model_3, hybrid-feature (ADC_Intratumoral+T2WI_Intratumoral
+T2WI_Peritumoral); AUC, area under the curve; CI, confidence interval; ACC, accuracy; SPE, specificity; SEN, sensitivity; VOI, volumes of interest; LNM, lymph node metastasis.
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independent validation, thereby enhancing the real-world

predictive capabilities of the models.

Radiomics uses automated and high-throughput feature

extraction methods to transform images into feature data that can

be mined. Currently, researchers have shown that intratumoral and

peritumoral radiomics features in cancers such as lung, cervical, and

breast cancers provide complementary information, which helps to

improve LNM prediction model classification efficiency (38–40). In

this study, the Radscore, which combines intra- and peritumoral

features, achieved the best classification performance in predicting

LNM (intratumoral region: AUC_ADC = 0.735, AUC_T2WI =

0.804; peritumoral region: AUC_T2WI = 0.770; and combined

region: AUC = 0.850). This study revealed that the key features of

the Radscore were wavelet transforms (WTs), which included

histogram (skewness, kurtosis, and mean), texture (gray-level co-

occurrence matrix (GLCM) and gray-level size zone matrix

(GLSZM)) features. By utilizing the WTs, images are separated

into high-frequency and low-frequency images for both

intratumoral and peritumoral regions (41). The features

calculated from the GLSZM offer insight into the heterogeneity of

tumors, showing differences in the intensity and size of the

homogeneous areas within regions (42). The GLCM is created by

examining the connection between pairs of pixels and recording the
Frontiers in Oncology 10
occurrence of different gray-level combinations in an image or a

region of interest. Compared with 2D ROIs, 3D VOIs have been

shown to increase the specificity of GLCM features in identifying

tumor components (43). Moreover, kurtosis and skewness are

associated with high-risk histopathological features, such as

lymphovascular space invasion (LVSI), DMI, and high-grade EC

tumors in a previous study (44). Furthermore, the feature

original_shape_LeastAxisLength was extracted from two image

sequences (ADC mapping and T2WI) simultaneously, which has

been repeatedly mentioned in a previous study of LNM

classification in EC (37). Therefore, it is necessary to extract

intra- and peritumoral radiomic features from ADC maps and

T2W images to predict LNM in patients with EC.

In this study, the clinical model consisting of the CA125 level

and TAR achieved moderate performance (AUC_training = 0.674,

AUC_test = 0.668, and AUC_independent-validation = 0.618) in

predicting LNM in patients with EC. To facilitate clinical

application, we selected only tumor morphological parameters

(i.e., TS, TV, TAR, and APsag) that can be obtained before

surgery and are related to high-risk histopathological features

(such as high-grade tumors, DMI, and LVSI) in EC (16–18, 45).

After multivariate LR analysis, the CA125 level and TAR were

found to be independent risk factors for predicting LNM in patients
FIGURE 6

Graphs showing the calibration curves and decision curve analysis (DCA) results of the nomogram. (A–C) The calibration curves of the nomogram in
the training (A), test (B), and external validation cohorts (C); (D–F) for DCAs; the net benefit is on the vertical axis; the threshold probability is on the
horizontal axis; the gray line represents the assumption that all patients are classified as having LNM; the black line represents the assumption that
none of the patients are classified as having LNM; the green line represents the clinical model; the red line represents the radiomics score; the blue
line represents the nomogram; and the DCA of the nomogram in the training (D), test (E), and external validation cohorts (F). LNM, lymph
node metastasis.
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with EC. In previous studies, the CA125 level has been repeatedly

mentioned as an independent risk factor for LNM in patients with

EC (24, 46, 47). A previous study revealed that the TAR is closely

related to DMI and high-grade tumors in patients with EC (18). To

further improve the performance of the predictive model, we

developed a nomogram that combines the clinical model and

Radscore. The nomogram achieved good performance in

predicting LNM, especially in the independent validation cohort

(AUC = 0.864), proving that the model has high robustness.

Moreover, due to the low rate of LNM positivity among our EC

patients (40/374, 10.7%), the SMOTE was used to balance the

dataset to improve the classification performance of the machine

learning model. The model was further validated using a test set and

an independent validation set, and the AUCs were 0.877 and 0.864,

respectively, with no significant fluctuations. Additionally, DCAs

and the reclassification measures of discrimination indicated that

the radiomics nomograms achieved greater net benefit than did the

clinical models in predicting LNM in patients with EC (NRI=0.386).

Previous studies have evaluated whether intratumoral radiomic

features are useful for predicting LNM in patients with EC. Xu et al.

(11) developed an MR-based radiomic nomogram (including the

Radscore, LN size, and CA125 level) to predict LNM in normal-

sized LNs, for which the AUCs were 0.892 and 0.883 in the training

and test cohorts, respectively. Liu et al. (24) used an MR-based

nomogram (including the Radscore, CA125 level, and MRI-

reported MI) to predict LNM in patients with early-stage EC, and

the AUCs in the training and test cohorts were 0.85 and 0.83,

respectively. Our nomogram achieved similar predictive

performance (AUC_training = 0.878, and AUC_test = 0.877) (11,

24). Compared with previous studies (11, 24), we established an

independent validation cohort, and our nomogram achieved good

predictive performance (AUC = 0.864), confirming that our model

has good robustness. Second, we did not include information on MI

depth, as, according to the previous literature, in some cases (such

as when the junctional zone is unclear, when EC coexists with

adenomyosis and/or uterine leiomyomas, or when the tumor is

located in the area of the uterine cornua), it can be difficult to

differentiate between superficial MI and DMI on the basis of MRI

(48). Recently, Yan et al. (37) proposed radiologist-assisted MR

radiomics for LNM in EC, which achieved good predictive

performance (AUCs of 0.909 and 0.885 for validation sets 1 and

2, respectively). Interestingly, their study incorporated radiologists’

diagnoses of LNM, allowing some AI false-negative patients to be

corrected in the final diagnosis. Although our AUCs did not exceed

those of a previous study (37), grouping ECs with different

histological subtypes in similar proportions to eliminate the

impact of different histological subtypes on the results may be a

potential strength.

This study has some potential advantages. (1) This study is the

first to combine various tumor regions (combined intra- and

peritumoral regions) and different parameters (clinical (CA125),

tumor morphology (TAR), and radiomics features) to predict LNM

in EC patients. The resulting model achieved good predictive

performance and was validated across different field strengths.
Frontiers in Oncology 11
Tumor morphology characteristics are considered stable and do

not change across scanners with different field strengths and

manufacturers. Therefore, the radiomics nomogram, which

combines the intra- and peritumoral features and incorporates

both radiomics and morphological parameters, has better

robustness and potential for clinical application. (2) Our

prediction model will be beneficial for patients who are

undergoing SLN mapping and who have negative pelvic LN on

intraoperative frozen section analysis but may still require para-

aortic lymphadenectomy. Previous studies have shown that the

main obstacles in using SLN mapping are the detection rates and

definition of para-aortic SLNs (49), as well as the risk of residual

metastasis in non-SLNs (50). Consequently, our prediction model

serves as a valuable complement to SLN mapping.

Our study has several limitations. First, no multicenter external

validation was performed. Although we established separate

validation cohorts to evaluate the robustness of the model, all the

data were obtained from patients from a single center. A

multicenter study of a larger dataset is needed to further validate

the generalizability of our model. Second, this model included only

the TAR and CA125 level; we did not investigate the LN size, which

is an important criterion for MR to determine whether LNM is

present. However, the sensitivity of the LN size in predicting LNM

has been shown to be very poor (range, 36–89.5%) (14). If variables

with very low sensitivity are included in an LR model, the

implementation efficiency of the prediction model may be

affected. Moreover, the influence of interreader variability on the

LN size in MRI reports cannot be excluded. Therefore, we

abandoned LN size measurements. Third, whole-tumor

segmentation was manually performed instead of automatic/

semiautomatic segmentation, which may be vulnerable to

subjectivity and lead to inevitable bias despite our evaluation of

interreader agreement. Fourth, including different pathological

subtypes could have implications for predictive outcomes. EEA

patients and non-EEA patients have different LNM risks. However,

owing to the low incidence of LNM in EC, only 10.7% of patients in

our study had LNM. Including only one subtype or stratifying by

subtype could result in a small number of positive cases, which

could affect the statistical performance of the radiomics model.

Therefore, we decided not to use any specific pathological subtype

as an inclusion criterion. As an alternative, we allocated EEA and

non-EEA patients in similar proportions to the training, test, and

validation cohorts to minimize the impact of different subtypes on

our results. In the future, we plan to increase our sample size and

develop predictive models specifically for each subtype to eliminate

this confounding factor. Finally, this model is based solely on T2W

and ADC images and does not consider contrast-enhanced T1W

images. This could have potentially resulted in overlooking

significant data. Despite these shortcomings, our study included

an independent validation cohort, which decreased the risk

of overfitting.

In conclusion, a combined intra- and peritumoral region

multiparameter MRI radiomics nomogram was used to predict

LNM in patients with EC. This model showed good diagnostic
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performance and may have potential clinical usefulness in the

surgical treatment of EC patients. However, additional research is

necessary to confirm its efficacy.
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