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Objectives: The role of matrix metalloproteinases (MMPs) in Skin Cutaneous

Melanoma (SKCM) development and progression is unclear so far. This

comprehensive study delved into the intricate role of MMPs in SKCM

development and progression.

Methods: RT-qPCR, bisulfite sequencing, and WES analyzed MMP gene

expression, promoter methylation, and mutations in SKCM cell lines. TCGA

datasets validated findings. DrugBank and molecular docking identified

potential regulatory drugs, and cell line experiments confirmed the role of key

MMP genes in tumorigenesis.

Results: Our findings unveiled significant up-regulation of MMP9, MMP12,

MMP14, and MMP16, coupled with hypomethylation of their promoters in

SKCM cell lines, implicating their involvement in disease progression.

Mutational analysis highlighted a low frequency of mutations in these genes,

indicating less involvement of mutations in the expression regulatory

mechanisms. Prognostic assessments showcased a significant correlation

between elevated expression of these genes and poor overall survival (OS) in

SKCM patients. Additionally, functional experiments involving gene silencing

revealed a potential impact on cellular proliferation, further emphasizing the

significance of MMP9, MMP12, MMP14, and MMP16 in SKCM pathobiology.

Conclusion: This study identifies Estradiol and Calcitriol as potential drugs for

modulating MMP expression in SKCM, highlighting MMP9, MMP12, MMP14, and

MMP16 as key diagnostic and prognostic biomarkers.
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Introduction

Skin cutaneous melanoma (SKCM) is a malignancy arising

from melanocytes, the pigment-producing cells located

predominantly in the skin epidermis (1). SKCM is primarily

caused by exposure to ultraviolet (UV) radiation from the sun or

artificial sources like tanning beds (2). Prolonged exposure to UV

radiation damages the DNA in skin cells, leading to mutations that

can trigger melanoma development (3). Additionally, factors such

as genetic predisposition, family history of melanoma, fair skin,

presence of numerous moles, and weakened immune system also

contribute to the risk of developing SKCM (4). Moreover,

environmental factors, such as exposure to certain chemicals or

radiation, and lifestyle habits like smoking, can further increase the

likelihood of developing this aggressive form of skin cancer (5).

Overall, a combination of genetic susceptibility and environmental

exposures plays a significant role in the etiology of SKCM. SKCM

represents an important global health burden due to its rising

incidence rates and propensity for metastasis, accounting for the

majority of skin cancer-related deaths worldwide (6). Despite

advances in therapeutic strategies, including immunotherapy and

targeted therapies, SKCM remains challenging to manage,

emphasizing the urgent need for a deeper understanding of its

molecular underpinnings to facilitate the development of effective

diagnostic, prognostic, and therapeutic approaches.

Matrix metalloproteinases (MMPs) constitute a family of zinc-

dependent endopeptidases that play pivotal roles in various

physiological and pathological processes, including extracellular

matrix (ECM) remodeling, tissue repair, inflammation, and

cancer progression (7). Dysregulation of MMP expression and

activity is implicated in the pathogenesis of numerous

malignancies, where they mediate critical steps in tumor invasion,

metastasis, angiogenesis, and immune evasion (8). MMPs facilitate

tumor growth, invasion, and metastasis by remodeling the ECM

and enabling cancer cells to migrate. MMPs are involved in various

stages of cancer, from tumor initiation to metastasis (9). While

MMPs have been extensively studied in multiple cancers, including

breast, lung, colorectal, and prostate cancer, their roles in SKCM

have garnered increasing attention in recent years.

In other cancers, MMPs have been implicated in various stages

of tumorigenesis and cancer progression. For instance, MMP-2 and

MMP-9 have been shown to promote tumor invasion and

metastasis in breast cancer by degrading the ECM components

and facilitating tumor cell migration (10, 11). Similarly, MMP-7 has

been associated with enhanced invasiveness and metastatic

potential in colorectal cancer, partly through its ability to cleave

ECM proteins and promote epithelial-to-mesenchymal transition

(EMT) (12). Moreover, MMP-14, also known as membrane-type 1

MMP (MT1-MMP), has been linked to tumor angiogenesis and

metastasis in lung cancer by facilitating the degradation of

basement membrane components and promoting the release of

pro-angiogenic factors (13). In addition to their roles in tumor

invasion and metastasis, MMPs have been implicated in modulating

the tumor microenvironment (TME) to promote tumor growth and

immune evasion (14). MMP-mediated ECM remodeling can release

bioactive molecules sequestered within the ECM, such as growth
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factors and cytokines, thereby promoting tumor cell proliferation,

survival, and angiogenesis (15). Moreover, MMPs can modulate the

immune response by cleaving cell surface receptors, cytokines, and

chemokines, thereby influencing immune cell trafficking, activation,

and function within the TME (16).

Despite extensive research on matrix metalloproteinases (MMPs)

in various cancers, their roles in SKCM remain unclear due to the

cancer’s complexity and heterogeneity. MMPs are crucial for

extracellular matrix remodeling, influencing tumor growth, invasion,

andmetastasis. Understanding their specific contributions to SKCM is

essential for advancing diagnostic and therapeutic approaches. This

study aims to bridge these gaps by integrating bioinformatics analyses

and molecular experiments to evaluate the diagnostic, prognostic, and

therapeutic implications of MMPs in SKCM. Identifying MMPs as

potential diagnostic biomarkers could enhance early detection and

patient stratification. Additionally, understanding their prognostic

value could improve risk assessment and treatment personalization.

The research also seeks to uncover novel therapeutic targets among

MMPs, potentially leading to targeted therapies that could enhance

treatment efficacy and patient outcomes. By utilizing multi-omics

data, the study provides a comprehensive view of MMP functions in

SKCM, offering new insights that could contribute to more effective

and personalized treatment strategies.
Methodology

The overall methodology of the present study is presented

in Figure 1.
List of the analyzed MMP genes in SKCM

In this investigation, a comprehensive analysis was conducted

on a subset of 24 Matrix Metalloproteinase (MMP) family genes.

The selected panel included MMP1, MMP2, MMP3, ILF3, MMP7,

MMP8, MMP9, MMP10, MMP11, MMP12, MMP13, MMP14,

MMP15, MMP16, MMP17, MMP19, MMP20, MMP21,

MMP23B, MMP24, MMP25, MMP26, and MMP27. The primary

objective was to identify and validate these genes as potential hub

genes or molecular biomarkers with clinical relevance in

SKCM patients.
PPI construction and hub
gene identification

The STRING database stands as a prominent and current

resource for protein-protein interactions (PPIs), renowned for its

comprehensiveness (17, 18). This database offers a seamlessly

integrated platform that empowers researchers to delve into the

intricate web of protein interactions and their roles in diverse

biological systems, encompassing humans, yeast, bacteria, and

more. This study harnessed the capabilities of the STRING web

resource to construct the PPI network for the MMP protein family,

adhering to the default settings.
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Cytoscape software (19, 20) stands as a robust and widely

employed tool, instrumental for researchers in scrutinizing

protein-protein interaction networks. This software furnishes

users with the means to visually represent the intricate tapestry

of protein interactions and discern the pivotal participants within

these networks. Leveraging its advanced algorithms and diverse

plugins, Cytoscape enables tasks such as protein clustering,

pathway analysis, and the creation of interactive visualizations,

which prove invaluable in unraveling the intricacies of biological

processes shaped by protein interactions. In this study, the

Cytohubba plugin application (21) was employed with the

Cytoscape platform to pinpoint hub genes within the

constructed PPI network, utilizing the degree method. In more

specific terms, the criteria for designating hub genes using the

degree method involve ranking genes based on their connectivity,
Frontiers in Oncology 03
with those having the highest number of interactions being

identified as hubs.
Cell culture

In total, 20 SKCM cell lines (A2058, A375, WM793, SK-MEL-

28, SK-MEL-2, G361, WM35, MeWo, HS294T, LOX IMVI, RPMI-

7951, UACC-62, UACC-257, MALME-3M, HMCB, SK-MEL-5,

SK-MEL-3, WM1552C, C32, IPC-298, and YUGEN8) as well as

20 normal skin cell lines (CCD-1106 KERTr, CCD-1112Sk, CCD-

1121Sk, CCD-1140Sk, CCD-1152Sk, CCD-8Sk, Hs 895.Sk,

Hs 936.Sk, Hs 919.Sk, Hs 888.Sk, Hs 895.T, Hs 27, Hs 852.T, Hs

895.C, Hs 895.O, Hs 895.P, Hs 895.R, Hs 895.D, Hs 895.B, and Hs

895.A), were procured from Pricella (Wuhan, Hubei, China) and
FIGURE 1

Flow sheet diagram depicting the methodology employed in the present study. The diagram provides a step-by-step visual outline of the
experimental workflow.
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subjected to STR matching analysis for verification. These cell lines

were maintained under standard culture conditions at 37°C with

95% humidity and 5% CO2. The cell lines were cultured in DMEM

(Dulbecco’s Modified Eagle Medium) supplemented with 10% fetal

bovine serum (FBS), 1% penicillin-streptomycin, and 1% glutamine,

ensuring optimal growth and viability.
Nucleic acid extraction

DNA extraction was carried out using the organic method as

described in reference (22, 23), utilizing the Phenol-Chloroform

Isoamyl Alcohol (PCI) from Thermo Fisher Scientific (catalog

number 15593031), while RNA was isolated using the TRIzol

method according to the procedure detailed in reference (24, 25)

utilizing the TRIzol Reagent from Invitrogen (catalog

number 15596026).
RT-qPCR-based expression analysis

The quality and purity of the isolated RNA were assessed

utilizing an Agilent Bioanalyzer (Santa Clara, CA, USA).

Subsequently, RNA was subjected to reverse transcription to

synthesize complementary DNA (cDNA) with a ReverTra Ace®

qPCR RT Master Mix from TOYOBO, Shanghai, China (catalog

number FSQ-301). Quantitative Real-Time Polymerase Chain

Reaction (qRT-PCR) was conducted using SYBR Green PCR mix

(Thermo Fisher Scientific, Waltham, USA) on an ABI 7900HT

FAST Real-Time PCR System (Applied Biosystems, Foster City,

CA, USA). To ensure normalization, Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) was employed as an internal control,

with normalization conducted by calculating the DCT values (CT of

target gene - CT of GAPDH) to account for variations in RNA input

and reverse transcription efficiency. Primer efficiency for GAPDH

and hub genes was validated through standard curve analysis,

ensuring that the amplification efficiency was between 90% and

110%. Relative mRNA expression levels were determined using the

2−DDCT method. A Student’s t-test was used to find differences

between gene expression among SKCM and normal control groups,

with a P-value < 0.05 considered significant. The following primers

were purchased from the OriGene, USA Company for the

amplification of GAPDH and hub genes.

GAPDH-F 5’-ACCCACTCCTCCACCTTTGAC-3’,

GAPDH-R 5’-CTGTTGCTGTAGCCAAATTCG-3’

MMP9-F: 5’-GCCACTACTGTGCCTTTGAGTC-3’

MMP9-R: 5’-CCCTCAGAGAATCGCCAGTACT-3’

MMP12-F: 5’-GATGCTGTCACTACCGTGGGAA-3’

MMP12-R: 5’-CAATGCCAGATGGCAAGGTTGG-3’

MMP14-F: 5’-CCTTGGACTGTCAGGAATGAGG-3’

MMP14-R: 5’-TTCTCCGTGTCCATCCACTGGT-3’

MMP16-F: 5’-GATTCAGCCATTTGGTGGGAGG-3’

MMP16-R: 5’-CCCTTTCCAGACTGTGATTGGC-3’

For GAPDH, the PCR conditions included an initial

denaturation step at 95°C for 10 minutes, followed by 40 cycles of
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denaturation at 95°C for 15 seconds, annealing at 60°C for 30

seconds, and extension at 72°C for 30 seconds.

For MMP9, the PCR conditions were similarly set with an initial

denaturation at 95°C for 10 minutes, followed by 40 cycles of

denaturation at 95°C for 15 seconds, annealing at 59°C for 30

seconds, and extension at 72°C for 30 seconds.

For MMP12, the PCR conditions comprised an initial

denaturation at 95°C for 10 minutes, followed by 40 cycles of

denaturation at 95°C for 15 seconds, annealing at 54°C for 30

seconds, and extension at 72°C for 30 seconds.

For MMP14, the PCR conditions included an initial

denaturation at 95°C for 10 minutes, followed by 40 cycles of

denaturation at 95°C for 15 seconds, annealing at 51°C for 30

seconds, and extension at 72°C for 30 seconds.

For MMP16, the PCR conditions were set with an initial

denaturation at 95°C for 10 minutes, followed by 40 cycles of

denaturation at 95°C for 15 seconds, annealing at 58°C for 30

seconds, and extension at 72°C for 30 seconds.

The RT-qPCR assay and annealing temperatures of the primers

were optimized using a serial dilution and gradient PCR methods to

ensure accuracy and reliability. All reactions were performed in

triplicates to ensure accuracy and reproducibility of the results.
Receiver operating characteristic
(ROC) curve

The Receiver Operating Characteristic (ROC) curve provides a

holistic assessment, incorporating the continuous variables of

sensitivity and specificity. The Area under the ROC curve (AUC)

serves as an indicator of the diagnostic efficacy of the test. Typically,

an AUC exceeding 0.9 is indicative of a highly accurate diagnostic

test. The ROC curve analysis was carried out using Graph Pad Prism

7.0 with data derived from RT-qPCR and methylation analysis.
Western blot analysis

Protein extracts from SKCM and normal control cell lines were

resolved using 11% SDS-PAGE and subsequently transferred onto

polyvinylidene difluoride (PVDF) membranes (Millipore).

Following a 1-hour blocking step with 5% non-fat milk at room

temperature, the PVDF membranes underwent three 10-minute

washes with phosphate-buffered saline (PBS). Subsequently, the

membranes were subjected to an overnight incubation at 4°C with

primary antibodies targeting MMP9 (abcam, ab38898), MMP12

(abcam, ab137444), MMP14 (abcam, ab51074), MMP16 (abcam,

ab73877), and control protein b-actin (abcam, ab8227), used as a

loading control due to its stable and ubiquitous expression. After

thorough washing, the membranes underwent a 2-hour incubation

with secondary antibodies. After an additional three 10-minute

washes with Tris-buffered saline/Tween-20 (TBST) at room

temperature, the immunoreactivity was visualized using an ECL

kit (Sangon Biotech), and the membranes were then exposed to

Kodak XAR-5 film (Sigma-Aldrich).
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Promoter methylation analysis

Library preparation for targeted bisulfite
sequencing analysis

1 µg of total DNA underwent fragmentation into 200-300 bp

fragments using the Covarias sonication system (Covarias,

Woburn, MA, USA). Following this, the DNA fragments

underwent repair and phosphorylation of blunt ends,

facilitated by a combination of enzymes including T4 DNA

polymerase, Klenow Fragment, and T4 polynucleotide kinase.

Subsequently, the repaired fragments underwent 3’ adenylation

using Klenow Fragment (3’-5’ exo-), and then were ligated with

adapters. These adapters featured 5’-methylcytosine instead of

5’-cytosine, along with index sequences, and the ligation was

carried out using T4 DNA Ligase. After the library construction,

quantification was conducted using a Qubit fluorometer with the

Quant-iT dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA).

Following this, the prepared libraries were sent to the Beijing

Genomic Institute (BGI), China, for targeted bisulfite

sequencing. Following the completion of sequencing, the

methylation data underwent normalization, resulting in the

generation of beta values.
Mutational analysis

Mutations among the hub genes were explored through

the Whole Exome Sequencing (WES) method. DNA from a

total of 10 SKCM cell lines was sent to the Beijing Genomics

Institute (BGI) and WES was performed according to the

following protocol:

The targeted capture pulldown and exon-wide libraries were

created from genomic DNA extracted from 10 SKCM cell line

samples using the xGen® Exome Research Panel from Integrated

DNA Technologies, Inc., based in Illinois, USA, and the TruePrep

DNA Library Prep Kit V2 for Illumina (#TD501, Vazyme, Nanjing,

China). These captured libraries were subjected to pair-end

sequencing on the Illumina HiSeq 2500 platform. Subsequently,

the sequencing reads were processed and aligned to the GRCh37/

hg19 human genome reference assembly, including the

identification of germline variations. Local rearrangements were

applied to enhance the alignment of individual reads. SNPs and

insertion–deletion (indel) variants were called by implementing

GATK’s Best Practices Workflow (for details, refer to https://

github.com/Sydney-Informatics-Hub/Somatic-ShortV). Single

nucleotide polymorphisms (SNPs) and insertion-deletion (indel)

variants were identified by following the GATK’s Best Practices

Workflow. This workflow involved the use of HaplotypeCaller to

detect germline short variants and Mutech2 caller to identify

somatic short variants, including SNVs and indels. For a

comprehensive understanding of these procedures finally, the

observed genetic mutations were interpreted according to the

American College of Medical Genetics and Genomic (ACMG)

guidelines (26) and annotated by utilizing the ClinVar

database (27).
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Validation of hub expression using The
Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) datasets

Expression data from 472 SKCM samples in the TCGA

database and 461 SKCM samples from the GEPIA (http://

gepia.cancer-pku.cn/) (28) database were obtained. Additionally,

data from 214 SKCM samples were extracted from the GSE65904

dataset available through the GEO database. The acquired data

underwent normalization via log2 transformation using the

normalized quantiles function from the preprocessCore package

in R software. Subsequently, expression data for MMPs were filtered

out to focus on relevant analyses.
Validation of hub gene promoter
methylation level and mutational analysis
across The Cancer Genome Atlas
(TCGA) datasets

MEXPRESS (https://mexpress.ugent.be/) stands as an

invaluable resource catering to the needs of researchers

and clinicians working in the field of oncology (29). This database

serves as a repository of cancer-related information, encompassing

critical details, including promoter methylation data. This study

leveraged the capabilities MEXPRESS database to verify the

promoter methylation status of the hub gene within the cohort of

TCGA SKCM patients.

cBioPortal stands as a robust web-based platform, greatly

simplifying the intricate task of delving into multifaceted cancer

genomics data (30). This platform provides a user-friendly

interface, empowering researchers to interactively dissect and

visualize multifaceted cancer datasets, spanning genetic mutations

and clinical information. In our study, the cBioPortal database was

utilized for the mutational analysis of hub genes across the TCGA

SKCM patients.
Survival analysis and constriction of
prognostic model

The KM plotter tool (https://kmplot.com/analysis/) serves as an

indispensable asset for conducting survival analysis in the realm of

cancer research (31). It furnishes researchers with an easily

navigable platform to evaluate the influence of particular genes on

patient survival. In the present research, the KM plotter tool was

utilized to perform a survival analysis of the hub gene in

SKCM patients.

To construct the prediction model, this study utilized the least

absolute shrinkage and selection operator (Lasso) and multivariate

Cox proportional hazard regression analysis, implemented using

the “survival” package in the R language (32). The TCGA-ACC

dataset served as the training dataset, while the GSE33371,

GSE19750, and GSE10927 datasets were designated as validation

datasets. In this analysis, positive coefficients indicated an increased
frontiersin.org
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risk of an event, such as death, while negative coefficients suggested

a reduced risk. The magnitude of these coefficients reflected the

impact of variables on hazard rates, which was instrumental in

developing prognostic models for survival outcomes.

The formula for the prognostic model for SKCM patients’

prognosis was derived as follows:

Risk score = S (multivariate Cox regression coefficient variation

of each mRNA). This formula allowed for the calculation of a risk

score based on the sum of the multivariate Cox regression

coefficient variations associated with each mRNA, thereby

facilitating the prediction of prognosis for SKCM patients.
Gene enrichment analysis

The present study performed gene enrichment analysis using

the DAVID tool (https://david.ncifcrf.gov/) (33) on the identified

hub genes. DAVID, a bioinformatics application, simplifies the

functional analysis of extensive gene lists. Researchers can extract

valuable insights into gene functions, pathways, and biological

processes, enhancing their ability to interpret high-throughput

genomics data.
Exploration of hub expression
regulatory drugs

DrugBank (https://go.drugbank.com/) is a prominent resource

for comprehensive information on drugs, including their

interactions, mechanisms of action, and therapeutic applications

(34). This study harnessed the capabilities of DrugBank to

investigate drugs that may regulate the expression of hub genes in

the treatment of SKCM.
Knockdown of hub genes in SKCM cell line

The siRNA designed to target hub genes was procured from

OBiO Company. To knockdown hub genes (MMP9, MMP12,

MMP14, and MMP16), melanoma cell lines were transfected with

siRNA using a Transfection Reagent (INTERFERin, French).

Following siRNAs were used to knockdown hub genes:

siMMP9 (Sense): 5’-CUAUGGUCCUCGCCCUGAATT-3’

siMMP9 (Anti-sense): 5’-UUCAGGGGCGACCAUAGTT-3’

siMMP12 (Sense): 5′-GCUGUUUUUAACCCACGUUTT-3′
siMMP12 (Anti-sense): 5′-CCGUGAGGAUGUUGACUAC

TT-3′
siMMP14 (Sense): 5′-AACAGGCAAAGCUGAUGCAGAdTd

T‐3′
siMMP14 (Anti-sense): 5′-AAUCUGCAUCAGCUUUGCCUG

dTdT‐3′
siMMP16 (Sense): 5′-CGUGAUGUGGAUAUAACCATT-3′
siMMP16 (Anti-sense): 5′-UGGUUAUAUCCACAUCACGTT-3′
Moreover, the knockdown efficacy of the MMP9, MMP12,

MMP14, and MMP16 was assessed using RT-qPCR and western

blot analyses following the previously mentioned protocols.
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Cell counting Kit-8 and colony
formation assays

To assess the cell proliferation ability of melanoma cells, this

study employed the Cell Counting Kit-8 (CCK-8) from APExBIO,

USA. Initially, 3 × 10^3 cells per well were seeded into 96-well

plates 24 hours post-transfection. Following an incubation period at

37°C for various durations (0, 24, 48, and 72 hours), CCK-8 reagent

was added to each well, and the absorbance was measured at 450

nm. For the colony formation assay, 5 × 10^2 melanoma cells were

cultured in 6-well plates for 10 days under conditions of 37°C and

5% CO2. Subsequently, the cells were stained with 0.1% crystal

violet for 15 minutes, after which colony quantification was

performed using ImageJ software. This approach allowed us to

evaluate the proliferative capacity of melanoma cells over time and

their ability to form colonies, providing valuable insights into their

growth behavior and potential therapeutic targets.
Molecular docking analysis

Ligand and receptor preparation and
docking analysis

To evaluate the binding affinities between Estradiol, Calcitriol,

and the MMP9, MMP12, MMP14, and MMP16 proteins, molecular

docking analysis was conducted using the CB-DOCK (http://

clab.labshare.cn/cb-dock/) web server (35). Estradiol and

Calcitriol structures in SDF format were retrieved from the

PubChem database (https://pubchem.ncbi.nlm.nih.gov/), while

PDB structures for MMP9, MMP12, MMP14, and MMP16

proteins were generated using the SwissModel tool (https://

swissmodel.expasy.org/). The process involved several crucial

steps. Initially, ligand pre-processing was performed, followed by

the removal of excess ligands from the target proteins and the

elimination of crystal water molecules. Hydrogen atoms were then

added to facilitate the molecular docking process. Subsequently,

molecular docking was conducted using the CB-DOCK platform to

compute the binding energies of the molecules across various

conformations. Binding energies falling within the range of -5

kcal/mol to -10 kcal/mol or lower were considered favorable. The

conformation with the highest hydrogen bond energy was identified

as the active component of the protein interaction.

For visualization purposes, PYMOL software (version 2.5.2) was

utilized to render the molecular interactions, enabling a comprehensive

understanding of the bindingmodes and potential binding sites between

the ligands (Estradiol, Calcitriol) and the target proteins (MMP9,

MMP12, MMP14, MMP16). This approach allowed us to elucidate

the molecular mechanisms underlying the interaction between the

chosen drugs and the MMP proteins, providing valuable insights for

further drug development and therapeutic intervention strategies.
Statistics

In this study, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses were conducted
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to elucidate the biological pathways and functions associated with

the studied genes. Fisher’s Exact test was utilized to compute the

differences in enrichment between different gene sets (36).

Additionally, correlational analyses were performed using the

Pearson method to explore potential relationships between

variables of interest. Furthermore, comparisons between groups

were made using a Student’s t-test to assess statistical significance. A

P-value < 0.05 was considered significant.

All statistical analyses were carried out using R version 3.6.3

software, a widely used and powerful tool for data analysis

and visualization.
Results

PPI construction and identification of
hub genes

Firstly, a PPI network of the 24 MMP family members was

established using the STRING web server (Figure 2A). Subsequently,

this network was imported into Cytoscape software to identify hub

genes using the degree method. The Cytohubba application within

Cytoscape identified MMP9, MMP12, MMP14, and MMP16 as the

hub genes (Figure 2B) with the highest degree of centrality.
Experimental expression and promoter
methylation analyses of hub genes in
SKCM cell lines

The expression and promoter methylation levels of the hub

genes across the SKCM (n = 20) and the normal control (n = 20) cell

lines were compared through RT-qPCR, western blot, and bisulfite

sequencing analyses. RT-qPCR analysis results revealed that across

the SKCM cell lines, the mRNA expression of four hub genes

(MMP9, MMP12, MMP14, and MMP16) was significantly higher

as compared to the normal control cell lines (Figure 3A). Western

blot analysis showed that protein expression of MMP9, MMP12,

MMP14, and MMP16 was also higher in the SKCM cell lines group

as compared to the normal controls (Figure 3B).

Additionally, the bisulfite sequencing outcomes indicated that the

promoters of MMP9, MMP12, MMP14, and MMP16 genes exhibited

lower methylation levels in the SKCM cell lines group when compared

to the normal control cell line group, as illustrated in Figure 4A.

ROC analysis was conducted to evaluate the diagnostic potential of

MMP9, MMP12, MMP14, and MMP16 expression, as well as

promoter methylation, in SKCM patients. The observed AUC of >

0.775 suggests that MMP9, MMP12, MMP14, and MMP16 mRNA

expression and promoter methylation levels have strong diagnostic

accuracy for SKCM detection (Figures 3C, 4B).
Experimental mutational analysis of the
hub genes across SKCM cell lines

Mutational analysis of the hub genes was conducted utilizing

the WES technique in 10 SKCM cell lines. The results of this
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comprehensive analysis revealed that only one benign mutation

(NM_004994.3 (MMP9):c.70C>T (p.Arg24Cys)) was identified in

the MMP9 gene across three SKCM cell line samples. However, for

the MMP12, MMP14, and MMP16 genes, no mutations were

observed in the SKCM cell lines. These findings collectively

underscore the infrequent occurrence of mutations in MMP9,

MMP12, MMP14, and MMP16 genes within SKCM cell lines,

suggesting that they are not commonly mutated in this context.
Validation of hub expression using The
Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) datasets

In this part of the study, MMP9, MMP12, MMP14, andMMP16

mRNA expression in SKCM patients from TCGA project was

validated from the GEPIA, TCGA, and GEO databases. Results of

the 3 different SKCM datasets showed that the level of MMP9,

MMP12, MMP14, and MMP16 mRNA expression was significantly

higher in SKCM tissues as compared to the normal tissues

(Figures 5A–C).
Validation of hub gene promoter
methylation level and mutational analysis
across The Cancer Genome Atlas
(TCGA) datasets

Next, the promoter methylation levels of the MMP9, MMP12,

MMP14, and MMP16 genes were validated using the MEXPRESS.

It was observed that the promoter methylation levels of the MMP9,

MMP12, MMP14, and MMP16 were lower in the SKCM samples

from TCGA relative to the corresponding controls (Figure 6).

Taken together, these results indicate that decreased methylation

levels in the promoters of MMP9, MMP12, MMP14, and MMP16

may be a contributing factor to the elevated expression of these

genes in SKCM.

To determine mutations in the MMP9, MMP12, MMP14, and

MMP16 genes across TCGA SKCM samples, a comparative analysis

of these genes was conducted using cBioPortal. The analysis

revealed mutations in the hub genes MMP9, MMP12, MMP14,

and MMP16 in only a small fraction (2%, 4%, 1%, and 3%,

respectively) of the SKCM samples under investigation,

suggesting that these mutations play a limited role in the aberrant

regulation of these genes (Figure 7).
Survival analysis and constriction of hub
gene-based prognostic model

The prognostic significance of MMP9, MMP12, MMP14, and

MMP16 expression in SKCM patients was assessed via the KM

Plotter tool. Elevated expression levels of MMP9, MMP12, MMP14,

and MMP16 were strongly linked to poorer OS in SKCM

patients (Figure 8A).
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For the analysis of the prognostic model based on MMP9,

MMP12, MMP14, and MMP16 genes, this study employed a

comprehensive approach utilizing both training and validation

datasets. The TCGA-ACC dataset was utilized as the training

dataset, providing a foundation for model construction, while the

GSE33371, GSE19750, and GSE10927 datasets served as validation

datasets to assess the generalizability and robustness of the model.

To construct the prognostic model, a stepwise Cox regression model
Frontiers in Oncology 08
was implemented, incorporating key parameters such as hazard

ratio, c-index, and risk score. This iterative approach allowed for the

selection of the most informative variables and the optimization of

the model’s predictive performance. Through comprehensive

evaluation using the c-index, it was determined that the

constructed prognostic model effectively and robustly assessed the

prognosis of SKCM patients across all analyzed datasets. This

finding underscores the utility and reliability of the model in
FIGURE 2

Protein-protein interaction (PPI) networks illustrating MMP family proteins and identified hub genes. (A) PPI network featuring MMP family proteins,
and (B) PPI network focuses on the four identified hub genes (MMP9, MMP12, MMP14, and MMP16), which were highlighted based on centrality
metrics in network analysis.
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predicting patient outcomes and informing clinical decision-

making. Figures 8B, C in the study illustrates the performance of

the prognostic model across different datasets, providing visual

confirmation of its predictive efficacy and demonstrating its

potential utility in clinical practice.
Gene enrichment analysis

Hub genes were analyzed to figure out their GO and KEGG

pathways in SKCM. In the CC, “Extracellular matrix, external

encapsulating structure, and collagen-containing extracellular

matrix” etc., terms were significantly associated with the MMP9,

MMP12, MMP14, and MMP16 (Figure 9A). Concerning MF, the

“Metalloaminopeptidase activity, Metallendopeptidase activity, and

collagen binding” etc., terms were closely associated with the

MMP9, MMP12, MMP14, and MMP16 (Figure 9B). In BP, some

vital functions including “Cellular response to UV-A, response to

UV-A, and collagen catabolic proc” etc., terms were significantly

associated with the MMP9, MMP12, MMP14, and MMP16

(Figure 9C). Moreover, MMP9, MMP12, MMP14, and MMP16-
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enriched KEGG pathways include “Bladder cancer, endocrine

resistance, and relaxin signaling pathway” etc., (Figure 9D).
Cell counting Kit-8 and colony
formation assays

The MMP9, MMP12, MMP14, and MMP16 genes work

synergistically to regulate processes such as tissue remodeling,

wound healing, and cancer invasion. Therefore, the simultaneous

silencing of MMP9, MMP12, MMP14, and MMP16, and was

carried out in A2058 cells using siRNA to analyze their functional

synergetic impact on the different parameters. The RT-qPCR and

western blot analysis results, as depicted in Figures 10A, B,

unequivocally demonstrated a significant reduction in the mRNA

and protein expression levels of MMP9, MMP12, MMP14, and

MMP16 in the transfected A2058 cells in comparison to the control

A2058 cells. To gain deeper insights into the repercussions of

MMP9, MMP12, MMP14, and MMP16 knockdown, the

conducted CCK-8 and colony-forming assays, providing

compelling evidence of decreased cellular proliferation in the cells
FIGURE 3

RT-qPCR and western blot-based expression profiling and ROC analysis of the hub genes (A) RT-qPCR-based relative expression of the hub genes
in SKCM and normal control cell lines, (B) Western blot analysis-based expression of hub genes in SKCM and normal control cell lines, and (C) RT-
qPCR expression-based ROC analysis of the hub genes. A p-value < 0.05 was considered significant.
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with silenced MMP9, MMP12, MMP14, and MMP16, in contrast to

the control A2058 cells (Figures 10C–E).
Drug prediction and molecular
docking analysis

DrugBank database was searched to explore potential drugs

that could down-regulate the expression of MMP9, MMP12,

MMP14, and MMP16 genes in the context of SKCM treatment.
Frontiers in Oncology 10
The findings unveiled two promising drugs (Estradiol and

Calcitriol) within this database that exhibit the potential to

reduce the expression of MMP9, MMP12, MMP14, and

MMP16 genes.

In the next step, the role of Estradiol and Calcitriol in the

expression reduction was further validated through molecular

docking analysis. Docking results show that binding affinities of

Estradiol and Calcitriol with MMP9, MMP12, MMP14, and

MMP16 vary between -7.7 and -8.5 kcal/mol (Figure 11). The

binding affinities of -7.7 to -8.5 kcal/mol suggest a relatively strong
FIGURE 4

Bisulfite sequencing-based promoter methylation level profiling and ROC analysis of the hub genes (A) Bisulfite sequencing-based relative promoter
methylation levels of the hub genes in SKCM and normal control cell lines, and (B) Promoter methylation level-based ROC analysis of the hub genes.
A p-value < 0.05 was considered significant.
FIGURE 5

mRNA expression profiling of the hub genes using TCGA and GEO SKCM datasets. (A, B) Box plot presentation of hub gene mRNA expression in
TCGA SKCM datasets, and (C) Box plot presentation of hub gene mRNA expression in GEO SKCM dataset (GSE65904). A p-value < 0.05 was
considered significant. p*-value < 0.05.
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interaction between Estradiol and Calcitriol with MMP9, MMP12,

MMP14, and MMP16 proteins (Figure 11). In summary, while the

binding affinities suggest strong interactions, the actual effectiveness

of Estradiol and Calcitriol as inhibitors for MMP9, MMP12,

MMP14, and MMP16 proteins would require comprehensive in

vitro and in vivo studies.
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Discussion

SKCM is a malignant neoplasm originating from melanocytes,

the pigment-producing cells found in the skin (37). It is the most

lethal form of skin cancer due to its propensity for metastasis, and

its incidence has been steadily increasing in recent years, making it a
FIGURE 6

Promoter methylation analysis of the hub genes across TCGA SKCM and normal control samples via MEXPRESS database. This analysis provides
insights into the epigenetic regulation of the hub genes in SKCM. A p-value < 0.05 was considered significant.
FIGURE 7

Mutational analysis of hub genes across TCGA SKCM samples via cBioPortal databases. (A) Percentage of the mutated SKCM samples, (B) Summery
of the observed genetic alterations in hub genes across SKCM samples, and (C) depiction of amino acid change due to mutations at the
protein levels.
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significant public health concern (38, 39). The incidence of SKCM

varies geographically, with higher rates observed in regions with

greater sun exposure (40). Fair-skinned individuals and those with a

history of intense sun exposure or sunburns are at a higher risk of

developing SKCM (41, 42). Moreover, a family history of melanoma

and certain genetic factors can also increase the chances of SKCM

development (43, 44). Recently, numerous preceding studies have

emphasized the role of MMPs in the development and progression

of cancer (45–47). Additionally, MMPs play a significant role in

immune evasion (48). They can modulate the tumor

microenvironment by cleaving ECM components, which can alter

the recruitment and activation of immune cells (49). For instance,
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certain MMPs have been shown to facilitate the infiltration of

immunosuppressive cells, such as regulatory T cells and myeloid-

derived suppressor cells, into the tumor site (50). This immune

modulation not only helps tumors evade detection by the immune

system but also supports their growth and survival (51).

Considering the pivotal function of ECM alteration in the

advancement of tumors, gaining insights into the contribution of

particular MMPs to SKCM could offer valuable information

regarding its underlying mechanisms.

Out of the total analyzed 24 MMP family members, MMP9,

MMP12, MMP14, and MMP16 genes were recognized as the key

genes due to high centrality among others. Expression analysis
FIGURE 8

Survival analysis and the construction of the hub gene-based prognostic model. (A) GEPIA-based OS analysis of the hub genes in TCGA SKCM samples,
(B) Univariate Cox regression analysis, (C) Risk scores. A p-value < 0.05 was considered significant. p*-value < 0.05; p**-value < 0.01; P****-value < 0.0001.
FIGURE 9

Gene enrichment analysis of MMP9, MMP12, MMP14, and MMP16 via DAVID tool. (A) MMP9, MMP12, MMP14, and MMP16 gene-associated CC
terms, (B) MMP9, MMP12, MMP14, and MMP16 gene-associated BP terms, (C) MMP9, MMP12, MMP14, and MMP16 gene-associated MF terms, and
(D) MMP9, MMP12, MMP14, and MMP16 gene-associated KEGG terms. A p-value < 0.05 was considered significant.
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indicated that MMP9, MMP12, MMP14, and MMP16 genes were

significantly up-regulated at both mRNA and protein levels in

SKCM. Therefore, it is speculated that elevated levels of MMP9,

MMP12, MMP14, and MMP16 may interfere with the wound

healing process in SKCM. These observations align with previous

studies that have reported elevated expression of specific MMPs in

various cancer types. For instance, earlier studies (52, 53)

demonstrated the overexpression of MMP9, MMP12, MMP14,

and MMP16 in breast and kidney cancers, emphasizing their role

in tumor progression and metastasis. However, to our knowledge,
Frontiers in Oncology 13
this study is the first to report overexpression of these key genes

in SKCM.

The inverse correlation between promoter methylation and gene

expression observed in this study is in concordance with established

epigenetic mechanisms of gene regulation (54, 55). Previous research

in SKCM and other cancer types has emphasized the significance of

promoter methylation in gene expression control (56, 57). A study by

Huang et al. (58) in SKCM highlighted the hypomethylation of genes

associated with cancer progression, consistent with the findings of

this study regarding the MMP family.
FIGURE 11

Molecular docking outcomes of Estradiol and Calcitriol with MMP9, MMP12, MMP14, and MMP16 hub genes. The MMP9, MMP12, MMP14, and
MMP16 proteins are represented in blue structures, while Estradiol and Calcitriol drugs are depicted in gray molecules, showcasing their docking
interactions with the target proteins.
FIGURE 10

Knockdown of MMP9, MMP12, MMP14, and MMP16 impairs the growth and metastatic potential of A2058 cells. (A) The transfection efficiency of si-
MMP9, si-MMP12, si-MMP14, and si-MMP16 was checked with the help of RT-qPCR, (B) The transfection efficiency of si-MMP9, si-MMP12, si-
MMP14, and si-MMP16 was checked with the help of western blot, (C) A2058 control and transfected cells were analyzed proliferation, (D, E) Colony
formation. A p-value < 0.05 was considered significant.
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ROC analysis demonstrated the diagnostic potential of MMP9,

MMP12, MMP14, and MMP16 in SKCM. These findings align with

earlier studies emphasizing the diagnostic and prognostic utility of

MMPs in cancer. Previous studies investigated the diagnostic value

of MMPs in various cancers, including melanoma, reinforcing the

significance of these genes as potential biomarkers (59–61).

Moreover, the present study identified a low mutation rate in the

MMP family genes within SKCM. This finding resonates with

earlier research suggesting that genetic mutations in MMPs may

not be frequent drivers of cancer development (62). Previous studies

have also reported relatively low mutation rates in MMPs,

emphasizing the complex regulation of MMP gene expression

(63, 64). However, it is essential to acknowledge that genetic

mutations may have context-specific roles in cancer biology (65–

68), and additional investigations are required to fully comprehend

their impact.

The prognostic value of high expression levels of MMP9,

MMP12, MMP14, and MMP16 in various cancers, as indicated in

this study, has also been reported in prior research. For example, a

study by McGowan et al. (69) demonstrated a link between elevated

MMP expression and adverse clinical outcomes in breast cancer

patients. However, to our knowledge, this study is the first to report

prognostic values of MMP9, MMP12, MMP14, and MMP16

in SKCM.

In our quest to identify promising therapeutic drugs for the

treatment of SKCM, Estradiol and Calcitriol drugs were selected

from the DrugBank database after a thorough examination of their

pharmacological properties and their known effects on dysregulated

MMP9, MMP12, MMP14, and MMP16 genes. Estradiol, a potent

estrogen hormone, and Calcitriol, the active form of vitamin D,

have garnered significant interest in the realm of cancer research

due to their ability to modulate gene expression patterns (70–72).

Specifically, previous studies have highlighted their potential in

regulating the activity of Matrix Metalloproteinases (MMPs), which

play pivotal roles in cancer progression and metastasis (73, 74). By

targeting MMP activity, it is possible to impede these processes and

potentially limit the spread of cancer. Importantly, the efficacy of

Estradiol and Calcitriol in modulating MMP activity has been

demonstrated across different cancer types, providing a

compelling basis for their consideration in the context of SKCM

treatment (70–72). Studies have shown that these compounds can

regulate the expression and activity of MMPs, thereby exerting anti-

tumor effects and inhibiting metastatic spread. By targeting MMP9,

MMP12, MMP14, and MMP16, it is conceivable that Estradiol and

Calcitriol could disrupt critical pathways involved in melanoma

progression, offering a novel and potentially effective approach for

combating this aggressive form of skin cancer. Looking ahead,

future in vitro validations could involve treating SKCM cell lines

with Estradiol and Calcitriol to assess changes in MMP expression

and activity, as well as evaluating effects on cell proliferation,

migration, and invasion. Additionally, in vivo studies using

relevant animal models of SKCM could further elucidate the

therapeutic potential of these compounds by examining their

impact on tumor growth, metastasis, and overall survival.

Together, these experimental approaches would provide critical

insights into the effectiveness of Estradiol and Calcitriol as
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therapeutic agents, potentially leading to their integration into

clinical treatment strategies for patients with SKCM.

Research on MMPs in cancer is continually evolving, and

numerous complexities in their roles and regulation have been

recognized. While this study provides valuable insights, further in-

depth exploration of the regulatory mechanisms governing MMP

expression is warranted for a comprehensive understanding of their

diagnostic, prognostic, and therapeutic potential.

The study’s strengths include its thorough analysis of 24 MMP

genes and its use of a multi-omics approach, integrating protein-

protein interaction networks, gene expression profiling, and

functional assays. This comprehensive methodology and the use

of advanced tools and databases ensure robust findings and

potential therapeutic insights. However, the study’s limitations

include the use of a limited number of cell lines, which may not

fully represent SKCM’s clinical diversity, and the reliance on

single-method validation for some analyses. These factors

suggest a need for further research to confirm and expand upon

the study’s results.

To build on the findings of this study, future research should

incorporate a larger and more diverse panel of SKCM cell lines, as

well as primary tumor samples, to better capture the clinical

heterogeneity of the disease. Additionally, incorporating in vivo

models could enhance the relevance of the results and validate the

therapeutic potential of targeting specific MMPs. Expanding the

analysis to include other omics layers, such as epigenomics and

metabolomics, would provide a more holistic understanding of

the molecular mechanisms driving melanoma progression.

Lastly, integrating CRISPR-Cas9 gene editing or RNA

interference techniques could be used to validate key MMP

targets in functional assays and uncover their role in SKCM

more definitively.
Conclusion

Our study highlights MMP9, MMP12, MMP14, and MMP16 as

critical hub genes in SKCM, showing elevated mRNA and protein

levels compared to normal controls. Their reduced promoter

methylation suggests hypomethylation contributes to their

overexpression. These genes are rarely mutated, indicating that

their dysregulation is likely due to expression changes rather than

genetic mutations. Elevated expression correlates with poorer survival

and a prognostic model incorporating these genes accurately predicts

patient outcomes. Functional assays reveal that silencing these genes

impairs cellular proliferation. Drug prediction andmolecular docking

suggest Estradiol and Calcitriol as potential inhibitors, though further

studies are needed. These findings underscore the genes’ roles as

biomarkers and therapeutic targets in SKCM.
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