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Implementation of standardized protocols in neurooncology during the surgical

resection of brain tumors is needed to advance the clinical treatment paradigms

that use tissue for diagnosis, prognosis, bio-banking, and treatment. Currently

recommendations on intraoperative tissue procurement only exist for diffuse

gliomas but management of other brain tumor subtypes can also benefit from

these protocols. Fresh tissue from surgical resection can now be used for

intraoperative diagnostics and functional precision medicine assays. A
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multidisciplinary neuro-oncology perspective is critical to develop the best

avenues for practical standardization. This perspective from the

multidisciplinary Oncology Tissue Advisory Board (OTAB) discusses current

advances, future directions, and the imperative of adopting standardized

protocols for diverse brain tumor entities. There is a growing need for

consistent operating room practices to enhance patient care, streamline

research efforts, and optimize outcomes.
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1 Introduction

The average annual age-adjusted incidence rate of primary brain

tumors (malignant and non-malignant) is 24.71 per 100,000

population. The most common malignant and non-malignant

primary brain tumor are glioblastoma and meningioma respectively

(1). Secondary metastatic brain tumors can develop in approximately

20% of all patients with cancer making metastatic brain tumors more

common than primary brain tumors (2). Surgical resection or biopsy

of brain tumors is routinely performed for diagnosis as well as

treatment in many circumstances. The fifth edition of the World

Health Organization Classification of primary brain tumors released

in 2021 has significant updates which require molecular

characterization for tumor classification (3). These classifications

require further assays beyond standard histopathology and thereby

warrant more tissue availability. Besides providing diagnostic

information, the tissue obtained from these surgical procedures can

also be used for translational research purposes such as the

development of preclinical models and provide pharmacodynamic

information in early phase clinical trials such as Phase 0 window of

opportunity trials (4, 5). To date there is no standard operating

procedure for neurosurgeons during surgical resection of brain

tumors. With the advent of fresh tissue being used for various

clinical assays and models, neurosurgeons need to provide feasible

guidelines that can be implemented easily at various centers. While

recent recommendations from the Response Assessment in Neuro-

Oncology (RANO) consortium provide a pivotal framework for

diffuse gliomas, the Oncology Tissue Advisory Board (OTAB) aims

to extend these protocols to encompass all brain tumors for

comprehensive and unified patient care, with more specificity to

the procedures of tissue procurement.
2 Glioma surgery
recommended guidelines

Treatment of newly diagnosed diffuse glioma (DG) involves

surgery, radiation and systemic pharmacotherapy (6). Surgical
02
resection remains the first line of treatment and is necessary for

diagnosis and molecular characterization of the tumor to guide

future therapy. It plays a relevant role during the initial diagnosis

and recurrent disease, aiding to tailor treatment regimens and assist

with the development of novel drugs (7). In The Lancet Oncology,

Karschnia and colleagues report recommendations from the

Response Assessment in Neuro-Oncology (RANO) consortium

on the need for standardized protocols following surgical

resection for accurate clinical tumor evaluation as well as

prospective biobanking for research purposes (8). The framework

proposed requires neurosurgeons to consider surgical resection

trajectories to provide tissue from multiple spatial regions given

the heterogeneity of DG. “Geo-tagging” tumor samples to record

the location of samples within the tumor requires integration with

neuronavigation platforms during the surgical resection (9).

Furthermore, the recommendations include sample processing

immediately in the operating room (OR) following resection

which requires significant infrastructure (4). These advancements

in standardization are necessary given the need for more accurate

characterization of the tumor’s biology when representative tissue is

obtained aiding in diagnosis, prognosis, and treatment.

The current landscape of neurosurgical ORs exhibits a spectrum

of practices, lacking a cohesive standard across institutions which

can lead to variability in tissue sample retrieval and integrity. This is

reflected by the lack of standardization towards tissue handling,

with no consensus on ideal conditions for surgical tissue

preservation directed towards molecular/pathologic diagnosis and

translational research purposes (10). Inadequate infrastructure and

OR personnel are an additional contributing factor for difficulties in

tissue preservation, collection, and transportation (10). Ideally,

surgical specimens should be processed within 30 minutes of

tissue recollection, especially for ‘omics’ analyses. This is crucial

due to the changes in gene and protein expression caused by

external factors following tissue removal like ischemia (11–13).

Furthermore, the selection of surgical tools for tissue resection is

pivotal for specimen preservation. For example, certain tools, such

as the ultrasonic aspirator, can thermally heat tissue and lead to

direct tissue damage by causing apoptosis of cell membranes.
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Nonetheless, some studies have reported some degree of success

using ultrasonic aspirators. For example, Day et al., used a cavitron

ultrasonic surgical aspirator (CUSA) to obtain 48 samples. The

viability of the recollected tissues was high enough to conduct ex

vivo cell cultures, cytometric analysis, and patient-derived xenograft

intracranial animal models (14). Similar studies have successfully

established brain tumor cell lines obtained from CUSA samples,

with viabilities reported for isolated cells ranging from 67-82%

(15, 16). Other ultrasonic aspirators, like the Söring ultrasonic

aspirator and Stryker Sonopet, are also available and can be used

for research purposes. In cases where surgical resources are limited,

tumor collection chambers can be made with easily accessible and

economical devices (17). For instance, in a study done by Ruparelia

et al., a sterile and disposable mucous extractor device was

employed for collecting brain tumors samples, facilitating tissue

recollection (18).

On the other hand, surgeons can consider using non-

destructive surgical tools that can automatically, biologically,

preserve tissue in a sterile environment, while isolating it from

atmospheric conditions. Different instruments are available for this

purpose. For example, the NICO Myriad/APS System (NICO

Corporation, Indianapolis, IN) is a multi-functional, non-ablative,

tissue resection device that uses a guillotine-like cutting aperture

and variable suction to grasp and cut small, targeted blocks of

architecturally intact tissue. With this system, several cubic

millimeters can be harvested each minute. These tissue blocks are

then biologically maintained in chilled aqueous non-oxygenated
Frontiers in Oncology 03
environment as they are captured within a sterile container, which

can then be used for future downstream assays (Figure 1) (10, 19).

Various handheld devices are used intraoperatively to assist in

surgical resection and comparison of brain tumor tissue collection

parameters, such as tumor cell ex vivo viability, is warranted and

ongoing (20). There is minimal information for neurosurgeons on

how their surgical methods can affect biospecimen quality. In

summary, preferred intra-operative systems should be simplified,

standardized, site annotated, and able to obtain the maximum

amount of tissue possible with minimal perturbation during

acquisition. Furthermore, tissue specimens should be available for

processing as rapidly as possible while being maintained in

physiological conditions.

Another major hurdle for neurosurgeons during surgical

resection of DG is the inability to differentiate tumor from

normal brain. Fluorescence-guided surgery with 5-aminolevulinic

acid (5-ALA; Gleolan ®) is often used during the resection of DG to

augment the ability to achieve maximal surgical resection (21, 22).

5-ALA requires that the surgeon uses a blue filter (400nm

wavelength) to visualize protoporphyrin IX (PpIX) uptake within

the tissue. DG cells metabolize 5-ALA to fluorogenic PpIX via the

heme synthesis pathway and the fluorescence is highly sensitive,

specific, and accurate for labeling of malignant cells and not normal

brain or necrosis making the agent an ideal adjunct to

neurosurgeons. However, not all institutions have optical

platforms with the blue filter available and therefore national

neurosurgical standardization for the utilization of 5-ALA has yet
FIGURE 1

Downstream analysis for CNS tumors in viable resected tissues. The importance of employing intraoperative surgical tools that maintain high cellular
viability is highlighted by different translational applications for CNS tumors. These applications include culturing cells (A), developing preclinical
models using patient derived xenografts (B), and performing downstream sequencing with multi-omics analyses such as the Uniform Manifold
Approximation and Projection (UMAP) or genomic heatmaps from transcriptomics data (C). These are just some of the many options available.
Created with Biorender.com.
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to occur. Recently 5-ALA has also been used for the resection of

other tumor types such as meningiomas (23).
3 Intraoperative considerations for
diverse brain tumors

Brain tumors can be intra-axial or extra-axial and have various

tissue properties. Surgical approaches for tumors require

consideration of the tumor location. Along with traditional

craniotomy techniques, endonasal endoscopic surgery can be

used for various pathologies such as pituitary neuroendocrine

tumors, craniopharyngiomas, chordomas, osteosarcomas, and

skull base meningiomas. The consistency of these tumors can be

quite varied and intraoperative surgical decision-making can be

dependent on the firmness of tumor encountered. Efforts are being

made to develop preoperative imaging tools to better guide

neurosurgeons in predicting the consistency of the tumor (24).

Due to many constraints such as small size, possible firm

consistency, and difficult access, tissue obtained from tumors

resected by endonasal approaches are typically solely used for

diagnostic pathology and not for the development of preclinical

research models. There is a dearth of preclinical research models

for brain tumor pathologies such as pituitary neuroendocrine

tumors and craniopharyngiomas. Transgenic mouse models are

available for some of these pathologies but few patient-derived

models are available (25). Intraventricular tumors have similar

considerations and limitations. Currently the cancer cell

encyclopedia has 117 primary brain tumor cell lines but most

are DG with only 19 embryonal pediatric brain tumors and 4

meningiomas (26).

Advancements in the understanding of cancer biology have

led to the development of novel targeted therapies based on

precise and characteristic genotypic aberrations among tumors,

including those found in brain metastases (BM). In these tumors,

comprehension of their nature is crucial, as they present different

therapeutic barriers, such as genotypical divergence from their

primary origin (27, 28). Additionally, key biological mechanisms

intrinsic to BM carcinogenesis have major therapeutic

implications, such as the brain invasion cascade, blood brain

barrier dynamics, genomic mediators of CNS tropism, and the

brain tumor microenvironment (29). This highlights the

importance of tissue acquisition for guiding treatment and

encouraging clinical trial enrollment. Therefore, characterizing

key components such as the genomic landscape of individual

tumors makes it possible to discern clinically and genomically

distinct features among them, which may be actionable through

personalized treatments (30). This is especially relevant in BM,

given that commonly used therapies in CNS tumors, such as

cytotoxic chemotherapies, have demonstrated exceedingly low

response rates. For example, in melanoma BM, temozolomide

has shown clinical response rates of 3-7% in prospective

studies (31).

Pediatric brain tumors are the most common type of solid cancer

and are the leading cause of cancer-associated death in children.

Medulloblastoma is the most common malignant pediatric brain
Frontiers in Oncology 04
tumor and there are 4 distinct molecular subtypes (32). Pediatric

high-grade gliomas, ependymomas, and atypical teratoid rhabdoid

tumors are tumors that also can have aggressive clinical courses (33).

Given the heterogeneity of these tumors, no standardized protocols

exist for the surgical resection of pediatric brain tumors. Certain

tumors are in locations wherein the risks of neurological morbidity

are very high and therefore surgery is not a consideration. However,

tissue acquisition, even posthumously, has been critical for the

development of therapies for lethal pediatric brain tumors.

Through tissue acquisition of Diffuse intrinsic pontine glioma

(DIPG) and other H3K27M-mutated diffuse midline gliomas

(DMGs), a targetable disialoganglioside GD2 was identified and

ultimately used in a Phase 1 clinical trial for patients with this

devastating disease (34). This example sheds light on the critical

importance of tissue acquisition for therapeutic development.
4 OTAB proposed framework

In the era of precision medicine, brain tumor biobanking can

lead to significant advances in further understanding

pathophysiology, developing therapy, and providing clinically

relevant models (35). Brain tumors exhibit considerable

heterogeneity and standardized protocols must navigate the

challenges posed by varying tumor characteristics. A critical

aspect of standardization involves unifying operating room

practices for all neurosurgical interventions. From preoperative

imaging to postoperative tissue handling, protocols should

transcend tumor types, fostering a seamless and standardized

workflow. These workflows need to integrate perspectives from

radiologists, neurosurgeons, and pathologists. During preoperative

planning, considerations can be made about locations within the

tumor that will be harvested for tissue sampling. Furthermore, in

cases where multiple tumors are removed at one time, annotation of

the location and tumor are needed. Considerations of geolocations

allow for studies of inter and intra-tumor heterogeneity (Figure 2A).

Brain tumors that are accessed endoscopically (either via

transnasal or intraventricular approaches) can pose considerable

limitations. Due to the long operative corridor needed for these

approaches, some surgical tools are not able to be used in these

limited working spaces. The surgeon also needs to consider having

equipment available that ‘traps’ tissue obtained from surgical suction

canisters to prevent tissue wasting and optimize tissue harvesting

from all locations (Figure 2B). During surgical resection, it is critical

to obtain diagnostic tissue and therefore collaboration between the

surgeon and pathologist are warranted intraoperatively.

Multidisciplinary crosstalk is needed to assure that the tissue

needed by the pathology team is not compromised. Analysis of

intraoperative samples for frozen sectioning is often employed to

assess the presence of diagnostic tissue. The generation of advanced

preclinical models and functional assays oftentimes requires fresh

tissue of high quality without necrotic regions (Figure 2C). The

pathology team can aid the neurosurgeon in choosing the best tissue

for these various applications. Preoperative input from the neuro-

oncologist is also needed to determine patients that can benefit

clinically from these assays. Therefore, intraoperative tissue
frontiersin.org
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sampling requires a multidisciplinary approach and has immense

translational capabilities.
5 Current challenges

Numerous challenges arise when establishing high-quality

tissue biobanks, especially in under resourced institutions. One of

the main barriers to successful biobanking is ensuring that

healthcare workers understand its value and thereby are

motivated to support these efforts. There is a dependency on the

knowledge and attitude of healthcare providers for ensuring

successful biobanking as lack of support has been as a major

hindrance to obtaining high-quality samples (36). We therefore
Frontiers in Oncology 05
advocate for the formation of consortiums to provide necessary

education and aid in the formation of sustainable standard

operating procedures that can be implemented at various

organizations. Insights from international biobanking networks

can help identify and address barriers (37, 38). For centers

without the necessary infrastructure on site, samples could be

potentially sent to a larger center. Furthermore, big data

integration with biobanking to further precision medicine

strategies can allow for patients from multiple centers to benefit.

Biobanking efforts must take into account the ethical challenges

involved in using biospecimens for research. The legal landscape

surrounding biospecimen utilization in biomedical research may

change drastically in the near future with legal cases pending which

will challenge the scope of research allowed on non-identified
FIGURE 2

Proposed workflow for CNS tumors. Standardization of the management of CNS tumors enables better unification of neurosurgical practice by
establishing the best current approaches for managing such diverse pathologies. By acknowledging the intricate nature and diversity of CNS tumors,
including intratumor and intertumor heterogeneity (A), an array of cranial approaches (B) can be employed, including endonasal endoscopic (I), open
“classic” craniotomy (II) and endoscopic intraventricular (III) techniques for tumor removal. With the use of precision medicine (C), the retrieved
tissue could be utilized for developing clinically relevant models, such as organoids and spheroid tumor models (I), and functional assays (II),
demonstrating susceptibility patterns to a variety of chemotherapeutic drugs. This information could guide physicians in determining appropriate
treatments. Created with Biorender.com.
frontiersin.org
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specimens in the United States (39). These new regulations will

need to be implemented in biobanking protocols with efforts to

respect the autonomy and beliefs of donor participants (40).
6 Future directions

Recently, fresh tumor tissue from neurosurgical resections has been

utilized for emerging clinical protocols. Obtaining real-time diagnostic

information during surgical resection has become feasible. During the

initial phases of resection, neurosurgeons can submit small tumor

samples to undergo rapid genetic sequencing and, in combination with

a machine learning platform, can lead to a rapid and accurate tumor

diagnosis (41). Advances in diagnostic technologies facilitate the

management of CNS tumors. The implementation of cutting-edge

systems into surgical workflow overcomes traditional tissue processing

barriers and improves diagnostic efficiency by providing rapid and

accurate diagnoses. Different studies have demonstrated the benefits of

intraoperative technologies, including high-resolution optical devices,

such as fiber laser-based and label-free contrast Raman histology, or

machine-learning methods, such as deep neural networks for analyzing

pathological specimens (41–45). For example, Hollon et al., used

stimulated Raman histology (RH) and convolutional neural networks

(CNN), trained with over 2.5 million labeled patches from RH, for near

real-time diagnosis of 278 tumor patients. The results of this study

demonstrated the noninferiority of CNN-RH based diagnosis

compared to pathologist-based interpretation of conventional

histopathology techniques (e.g., H&E), with accuracies of 94.6% and

93.9%, respectively (45). These technologies enable neurosurgeons to

adjust their surgical strategy towards a less or more aggressive resection

depending on the brain tumor subtype. Maximal surgical resection is

often the goal for DG and other brain tumors, but this must be

balanced with the risk of causing neurological morbidity. In this way,

intraoperative diagnostic information can aid neurosurgeons in

determining the extent of resection goals especially when linked to

brain mapping and neuromonitoring techniques.

Another emerging utility for fresh tissue includes functional

precision medicine (FPM) wherein patient tissues are directly

exposed to standard and novel agents to identify tumor

vulnerabilities. In newly diagnosed high-grade glioma (HGG)

patients, a FPM assay based on ex vivo spheroids generated from

surgically resected tissue samples was able to predict temozolomide

(standard of care chemotherapy for HGG) responders from non-

responders (46). In a recent trial in recurrent HGG patients,

physician choice was compared to a glioma stem cell (GSC)

guided FPM assay derived from biopsy tissue. The FPM group

had longer median survival and lower risk of death demonstrating

the feasibility of integrating these protocols into clinical regimens

(47). These developing applications of fresh surgical brain tumor

tissue specimens highlight the emerging imperative to obtain high-

quality fresh tissue. The accuracy of diagnostic and therapeutic

interventions is intricately linked to the quality of biological

samples, underscoring the importance of a standardized framework.

Finally, the integration of cell-free and circulating tumor DNA

in liquid biopsies (e.g., blood or cerebrospinal fluid) complements
Frontiers in Oncology 06
the genomic profiling of each tumor and serves as an important tool

for monitoring circulating biomarkers that could potentially predict

disease progression and response to established treatments (48, 49).

In such cases, sequencing technologies hold great potential, as their

improvement in the detection of these biomarkers will facilitate the

integration of disease monitoring throughout the course of

the disease.
7 Conclusion

In conclusion, multidisciplinary neuro-oncology teams must

champion the call for standardized operating room protocols to

harness the full potential of these recommendations. Integrating

multimodal approaches from different medical teams, starting from

initial surgical planning to maximize the resection and viability of

malignant tissues. This includes the use of multiple trajectories in

relevant geolocations to ensure heterogeneous sampling of the

tumors, along with pre-, intra- and post-operative inputs from

neuro-oncologists and neuropathologists. This approach would

help establish appropriate and personalized treatments based on

genomic profiling outputs, with further extrapolation to

translational and preclinical models to improve cancer

management. By doing so, they not only optimize their workflows

and enhance patient safety but also pave the way for advancements

in advanced molecular diagnostics and functional precision

medicine assays, ushering in a new era of precision neuro-

oncology. This unified approach marks a significant stride toward

advancing brain tumor patient care.
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