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dynamics simulation, and
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Introduction: Luteolin, a naturally occurring flavonoid compound, demonstrates

promising anti-cancer properties. However, its mechanism against non-small-

cell lung cancer (NSCLC) remains unknown. This study employed network

pharmacology, molecular docking, molecular dynamics simulation (MDS), and

in vitro experiments to investigate the potential mechanisms by which luteolin

against NSCLC.

Methods: Initially, the potential targets of luteolin and NSCLC-related targets

were identified from public databases such as TCMSP, GeneCards, OMIM,

DrugBank, and TTD. Subsequently, the protein-protein interaction (PPI)

network screening and Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses were conducted. The binding affinity

and stability of luteolin with the core targets were assessed using molecular

docking and MDS. Finally, the results were validated by in vitro experiments.

Results: A total of 56 luteolin targets and 2145 NSCLC-related targets were

identified. Six core targets, TP53, EGFR, AKT1, TNF, JUN, and CASP3, were

screened via the PPI network. The GO and KEGG analyses indicated that

luteolin’s activity against NSCLC potentially involves PI3K-Akt, NF-kappa B, and

other signaling pathways. Molecular docking revealed that luteolin had high

binding affinity with the core targets. MDS confirmed the stable interaction
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between luteolin and key proteins TP53 and AKT1. in vitro, luteolin significantly

inhibited the proliferation and migration of A549 cells, while also inducing

apoptosis. In addition, luteolin downregulated the expression of p-Akt (Ser473),

MDM2, and Bcl-2 but upregulated the expression of p53 and Bax, which was

consistent with the effect of LY294002.

Conclusion: Luteolin had a good anti-NSCLC effect, and the apoptosis-inducing

effect might be related to the Akt/MDM2/p53 signaling pathway.
KEYWORDS

luteolin, network pharmacology, non-small-cell lung cancer, Akt/MDM2/p53 signaling
pathway, in vitro experiments
Introduction

Lung cancer is one of the most common cancers and a leading

cause of cancer-related mortality worldwide (1, 2). According to

GLOBOCAN, there were almost 2.5 million new cases and 1.8

million deaths from lung cancer worldwide in 2022 (3). Lung

cancer is categorized into two broad histological subtypes: small-

cell lung cancer and non-small-cell lung cancer, with NSCLC

accounting for approximately 85% of all cases (4, 5). As the

primary histological subtype of lung cancer, NSCLC represents a

significant threat to human health. Currently, the main treatment

options for NSCLC include surgical resection, radiotherapy,

chemotherapy, immunotherapy, and molecular targeted therapy

(6). However, these methods may not fully meet the expectations.

For instance, surgical resection alone is not curative for many patients

with early-stage NSCLC, and the risks of recurrence and metastasis

increase with higher stage (7). Moreover, most conventional

chemotherapeutic drugs exhibit the same limitations, such as non-

specific targeting, low bioavailability, and drug resistance (8).

Compared to conventional drugs, molecular targeted therapy can

selectively kill cancer cells and possess fewer side effects, but there is

also drug resistance.

Pleiotropic natural products represent a promising strategy for

cancer treatment due to their multi-target effects and low toxicity

(9, 10). Approximately 80% of approved chemotherapeutic drugs

and over half of all pharmaceuticals are derived from natural

products such as paclitaxel, vincristine, and adriamycin (11).

Luteolin (3,4,5,7-tetrahydroxy flavone), a natural flavonoid

found in fruits, vegetables, and herbs, exhibits multiple

biological activities including anti-inflammation, anti-oxidation,

anti-allergy, anti-cancer, and immunoregulatory (12, 13). Of

these, luteolin exhibits potent inhibitory effects against a diverse

range of malignant tumors, including breast cancer (14),

pancreatic cancer (15), prostate cancer (16), colon cancer (17),

and lung cancer (18). For example, luteolin has been shown to
02
inhibit the stemness of breast cancer through the Nrf2-mediated

pathway and to enhance chemosensitivity in combination with

paclitaxel (19). Research by Jiang et al. demonstrated that luteolin

suppressed proliferation, induced apoptosis, and decreased PD-L1

expression in lung cancer with KRAS-mutantion (20). Another

study indicated that luteolin reversed epithelial-mesenchymal

transition (EMT) by suppressing the Notch signaling pathway

(21). However, the mechanism of luteolin against NSCLC

remains unclear.

Network pharmacology, first introduced by the British

pharmacologist Hopskin, is regarded as a novel interdisciplinary

domain of study (22). It can construct complicated pharmacology

networks based on compounds, biological functions, and target

proteins, which is consistent with the overall feature of natural

products and is not available in conventional studies (23). The

integration of network pharmacology, molecular docking and

experimental validation has been widely used to study potential

anticancer compounds (24–26). In this study, network

pharmacology, molecular docking, molecular dynamics simulation,

and in vitro experiments were employed to elucidate the mechanisms

of luteolin against NSCLC, providing a reference for further research

and application of luteolin.
Materials and methods

Targets prediction of luteolin

The keyword “luteolin” was queried in the Traditional Chinese

Medicine Systems Pharmacology Database and Analysis Platform

(TCMSP, https://tcmspw.com/index.php), and the relevant targets

identified from the search were utilized as the predicted targets of

the compound. Subsequently, the target information was entered

into the UniProt database (http://www.uniprot.org/) to retrieve the

corresponding gene names.
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Targets prediction of NSCLC

The GeneCards database was utilized to identify NSCLC-related

targets using a screening criterion of a relative score ≥ 2-fold

median. Additionally, we also performed a search in OMIM

(http://www.omim.org), DrugBank (https://go.drugbank.com),

and TTD (http://db.idrblab.net/ttd) to identify the disease-related

targets. The data retrieved from these databases were

subsequently merged.
Construction of protein-protein
interaction network

The overlapping targets between luteolin and NSCLC were

identified using the jvenn database (http://bioinfo.genotoul.fr/jvenn).

These common targets were then input into the STRING database

(https://string-db.org/) to construct a PPI network. The “organism”

parameter was set to “Homo sapiens,” and the minimum required

interaction score was established at greater than 0.4. The result was

then imported into Cytoscape_v3.7.2 software for visualization. The

“Analyze Network” tool in the Cytoscape software was employed to

calculate the degree values of the nodes. Subsequently, nodes with

high degree values were selected as the core targets.
GO and KEGG enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses of common targets were

conducted using the Metascape database (http://metascape.org/).

Statistical significance was established at P<0.01. Subsequently,

we uti l ized the bioinformatics platform (http://www.

bioinformatics.com.cn/) to generate a KEGG enrichment bubble

diagram and a GO enrichment bar diagram.
Construction of Drug-Target-Pathway-
Disease network

To analyze the complex associations among luteolin, overlapping

targets, related pathways, and NSCLC, we constructed a Drug-

Target-Pathway-Disease network using Cytoscape_v3.7.2 software.
Molecular docking

Molecular docking technology was utilized to analyze the

interactions between luteolin and its core targets. The crystal

structures of TP53 (PDB ID: 6gge), EGFR (PDB ID: 8a27), AKT1

(PDB ID: 1unq), TNF (PDB ID: 5uui), JUN (PDB ID: 1jnm),

CASP3 (PDB ID: 1nme) were obtained from the RCSB Protein

Data Bank (PDB, https://www.rcsb.org/), and the MOL2 (3D)

format file of luteolin was downloaded from the TCMSP
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datebase. Subsequently, the proteins were processed using

PyMOL 2.3.0 to remove water molecules, co-crystallized ligands,

irrelevant protein chains, and ions (27). Thereafter, drug and

protein files were imported into AutoDock Tools 1.5.7 to separate

the proteins, add non-polar hydrogens and calculate the Gasteiger

charges before being saved them in PDBQT format (28). The target

proteins were receptors, and luteolin was ligand. The grid box for

docking was constructed around the geometric center, based on the

position of the original ligands, and adjusted to ensure coverage of

the docking pockets. Molecular docking and affinity calculations

were performed utilizing AutoDock Vina 1.1.2 (29). The lower the

binding energy, the greater the affinity between the ligand and its

receptors. The conformation exhibiting the best affinity was selected

as the final docking conformation and visualized using

PyMOL software.
Molecular dynamics simulation

All-atom molecular dynamics simulations were performed

using the docked complexes as initial structures, and the

simulations were performed using GROMACS v.2022 (30). The

AMBER force field was used to describe the proteins. The pdb2gmx

subprogram was used to add hydrogen atoms to the system, a

truncated cubic TIP3P solvent box was added to the system at a

distance of 10 Å (31), and Na+/Cl- was added to the system for

balancing the system charge, and finally the topology and parameter

files used for the simulations were outputted. Before the

simulations, energy minimization was performed using the

“mdrun” command and steepest descent method (canonical

system synthesis), with the starting step set to 0.01 nm and a

maximum force tolerance of 1000 kJ/mol·nm. After the energy

minimization, a 100 ps NVT (isothermal-isobaric) ensemble

simulation at a fixed volume and constant rate of temperature

increase was used to slowly increase the temperature from 0 K to

310 K. A 100 ps NPT (isobaric-isobaric) ensemble simulation was

then performed using the Berendsen barostat to equilibrate the

pressure of the solvent with the complex system to 1 bar. During

MDS, hydrogen bonds were constrained using the LINCS algorithm

with an integration step of 2 fs. The electrostatic interactions were

calculated using the Particle-mesh Ewald (PME) method with a

cutoff of 1.2 nm. The cutoff for non-bonded interaction was set to 10

Å and updated every 10 steps.
Cell culture

The human p53 wild-type (wt) NSCLC cell lines A549 and

H460 were procured from Procell Life Science & Technology Co.,

Ltd. Both cell lines were cultured in RPMI-1640 medium (Procell,

China) supplemented with 10% fetal bovine serum (FBS, Procell,

China), penicillin (100 U/ml, Gibco, USA), and streptomycin (100

mg/ml, Gibco, USA). The cultures were maintained at 37°C in a 5%

CO2 atmosphere.
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Cell viability assay

A549 and H460 cells were seeded into 96-well plates at a density

of 2×103 cells per well and subsequently treated with various

concentrations of luteolin (0, 10, 20, 40, 60, 80 mM) for 24, 48, or

72 hours. After treatment, 10 mL of CCK-8 solution (Glpbio, USA)

was added to each well and incubated for an additional hour.

Absorbance was measured at 450 nm using a microplate reader

(Tecan, Switzerland).
Colony formation assay

A549 cells were seeded in 6-well plates at a density of 800 cells

per well and subsequently treated with different concentrations of

luteolin (0, 20, 40, 60 mM) for one week, with media refreshments

every three days.

At the end of treatment, cells were fixed using 4%

paraformaldehyde (Biosharp, China) for 15 minutes, stained with

crystal violet staining solution (Beyotime, China) for 10 minutes,

and left to dry overnight. Colonies were then counted using an

inverted microscope (Nexcope, China). A cluster was defined as a

colony if it contained 50 or more cells.
Wound healing assay

A549 cells were seeded in 6-well plates until they reached 80%

confluence. A wound was made at the bottom using a 200-ml pipette
tip. The plates were then washed twice with PBS, and the cells were

treated with luteolin (0, 20, 40, 60 mM). The scratches at 0 h and

24 h were observed using an inverted microscope. The wound area

was quantified with Image J software.
Hoechst 33342 staining

A549 cells were seeded in 6-well plates at a density of 10 × 104

cells per well and subsequently treated with luteolin (0, 20, 40, 60 mM)

and LY294002 for 48 hours. After the treatment, the cells were

stained with Hoechst 33342 staining solution (Beyotime, China) for

15 minutes and imaged under a fluorescence microscope

(Nikon, Japan).
Flow cytometry analysis

A549 cells were seeded in 6-well plates at a density of 10 × 104

cells per well and subsequently treated with luteolin (0, 20, 40, 60 mM)

and LY294002 (CST, USA) for 48 hours. After the treatment, the cells

were digested using a trypsin solution without EDTA (Solarbio,

China). Following collection, the cells were stained using an

Annexin V-PI apoptosis detection kit (Vazyme Biotech, China) and

apoptosis was assessed via flow cytometry (BD Biosciences, USA).
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Western blot

Total cellular protein was extracted using RIPA lysis buffer

(Servicebio, China). Protein concentrations were measured with a

BCA protein assay kit (Share-bio, China). Equal amounts of proteins

were separated using 12.5% SDS-PAGE gel electrophoresis (Sangon

Biotech, China) and subsequently transferred to PVDF membranes

(Millipore, USA). The membranes were then blocked with 5% BSA

(Solarbio, China) for 2 hours at room temperature and incubated

overnight at 4°C with primary antibodies. Following this, the

membranes were washed with TBST buffer (Solarbio, China) and

incubated for 1 hour at room temperature with secondary antibodies.

Finally, the target proteins were visualized with an ECL kit (Glpbio,

USA), and the band gray values were analyzed using Image

J software.

The primary antibodies used in these experiments included:

anti-Akt (Cat No: WL0003b, Wanleibio, China), anti-phospho-Akt

(Cat No: 4060, CST, USA), anti-MDM2 (Cat No: TA801705S,

OriGene, USA), anti-p53 (Cat No: ab179477, Abcam, USA), anti-

Bcl-2 (Cat No: ab32124, Abcam, USA), anti-Bax (Cat No:

TA810334S, OriGene, USA), and anti-b-actin (Cat No: 81115-1-

RR, Proteintech, USA).
Statistical analysis

GraphPad Prism 8.0 software was used for statistical analysis of

the results. All results were expressed as mean ± standard error (SE)

of three independent experiments. Comparisons between groups

were performed by one-way analysis of variance (ANOVA). The

difference between the groups was considered statistically

significant if the P-value was less than 0.05.
Results

Potential targets of luteolin

A total of 56 potential targets of luteolin were identified using

the TCMSP database, and their corresponding gene names were

retrieved through the UniProt database (Supplementary Table S1).
Related targets of NSCLC

We conducted a search in the GeneCards database for targets

related to NSCLC and calculated the median relative score.

Subsequently, we isolated 1662 targets with a relative score ≥

31.33. Moreover, we retrieved 468 targets from the OMIM

database, 53 from the DrugBank database, and 102 from the TTD

database. After eliminating duplicates, we identified 2,145 relevant

targets for NSCLC (Supplementary Table S2).
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PPI network

The jvenn database was ultilized to identify overlapping targets,

resulting in 47 common targets (Figure 1A). These common targets

were then imported into the STRING database to construct a PPI

network, subsequently visualized using Cytoscape_v3.7.2

(Figure 1B). The targets with the highest degree values,

specifically TP53, EGFR, AKT1, TNF, JUN, and CASP3, were

identified as core targets.
GO and KEGG enrichment analysis

GO and KEGG enrichment analyses were conducted on common

targets using theMetascape database. The top 10 enriched terms from

biological process (BP), cellular component (CC), and molecular

function (MF) were visualized in a bar diagram (Figure 2A). BP terms

primarily involved negative regulation of apoptotic signaling

pathway, positive regulation of phosphorylation, response to UV,

and response to oxidative stress. CC terms mainly included

membrane raft, protein kinase complex, and transcription regular

complex. MF terms mainly included kinase regulator activity, kinase

binding, and protein domain specific binding.

The top 15 enriched KEGG terms were visualized in a bubble

diagram (Figure 2B). KEGG enrichment analysis indicated that

luteolin against NSCLC via the PI3K-Akt signaling pathway,

proteoglycans in cancer, NF-kappa B signaling pathway, and

transcriptional misregulation in cancer. The PI3K-AKT pathway is

a pivotal signaling pathway in the progression of lung cancer.

According to the PPI network, AKT and TP53 are core targets of

luteolin in the treatment of NSCLC. TP53, a vital oncogene, is crucial
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in inducing apoptosis in lung cancer cells. It has been found that AKT

mediates the degradation of wild-type p53 by activating the ubiquitin

ligase MDM2 (32, 33). Notably, MDM2 is a common target for both

luteolin and NSCLC. Therefore, we hypothesized that luteolin maight

trigger apoptosis by inhibiting the Akt/MDM2/P53 pathway.
Drug-Target-Pathway-Disease network

Utilizing Cytoscape v3.7.2 software, a Drug-Target-Pathway-

Disease network diagram was constructed, as shown in Figure 3.
Molecular docking

To investigate the docking mode and binding affinity of luteolin

with the core targets, molecular docking was conducted. As shown

in Table 1, the binding affinity of the core targets with luteolin was

all less than -5.0 kcal/mol, indicating these targets could stably bind

with luteolin (34, 35). The molecular docking modes are shown in

Figure 4. These findings demonstrated the reliability of network

pharmacological results.
Molecular dynamics simulation

Prior to in vitro validation, we investigated the stability and

structural changes of luteolin binding to core proteins within the

AKT/MDM2/P53 signaling pathway through molecular dynamics

simulations. Following the molecular docking results, simulations of

both luteolin-TP53 and luteolin-AKT1 were conducted for 500 ns. The
FIGURE 1

Venn diagram and PPI network analysis. (A) Venn diagram of the overlapping targets. (B) PPI network of the common targets of luteolin and NSCLC.
The size and color depth of the nodes is proportional to their degree values.
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RootMean Square Deviation (RMSD) is commonly employed to assess

the extent of structural variations from the initial molecular structure.

As shown in Figures 5A1, A2, the RMSD values of both the luteolin-

P53 system and the luteolin-AKT1 system were stabilized after 20 ns,

indicating that the binding of luteolin to P53 and AKT1 was stable. The

Root Mean Square Fluctuation (RMSF) is commonly used to represent

the degree of fluctuation of individual atoms in molecules. As shown in

Figures 5B1, B2, the RMSF values of amino acid residues in the

luteolin-P53 system (except the residues 117~124, 150~157,

168~172, and 198~203) were lower than those in the P53 system.

Similarly, the RMSF values of residues in the luteolin-AKT1 system

(except the residues 14~23 and 78~83) were lower than those in the

AKT1 system. The Radius of Gyration (Rg) is used to identify the
Frontiers in Oncology 06
compactness of molecules. As shown in Figures 5C1, C2, the

fluctuation ranges of the Rg values of both the luteolin-TP53 system

and the luteolin-AKT1 system were small throughout the simulations.
Luteolin inhibited the proliferation of A549
cells and H460 cells

The impact of luteolin on the viability of A549 and H460 cells was

assessed using a CCK8 assay. As shown in Figures 6A, B, luteolin

significantly reduced the viability of both A549 and H460 cells in a

concentration-dependent and time-dependent manner. The IC50

values for A549 at 24 h, 48 h, and 72 h were 41.59 mM, 27.12 mM,
FIGURE 2

GO and KEGG enrichment analysis. (A) GO enrichment analysis of common targets (top 10 were listed). (B) KEGG pathways enrichment analysis of
common targets (top 15 were listed).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1471109
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1471109
and 24.53 mM, respectively, while for H460 cells, they were 48.47 mM,

18.93 mM, and 20.76 mM, respectively. In the following experiments,

A549 cells were selected as the experimental model and treated with

luteolin at concentrations of 20 mM, 40 mM, and 60 mM. The colony

formation assay indicated that luteolin significantly reduced the

number of colonies formed by A549 cells (Figures 6C, D). These

results collectively suggest that luteolin inhibits the proliferation of

NSCLC cell lines.
Luteolin inhibited the migration of
A549 cells

The impact of luteolin on A549 cell migration was assessed using

a wound healing assay. As shown in Figures 6E, F, luteolin suppressed

the migration of A549 cells in a concentration-dependent manner.
Luteolin and LY294002 induced the
apoptosis of A549 cells

To investigate whether luteolin induces apoptosis in A549 cells,

Hoechst 33342 staining and flow cytometry analysis were
Frontiers in Oncology 07
conducted. Hoechst 33342 serves as a nuclear stain displaying

blue fluorescence. Under this staining, nuclei of normal cells

exhibit a uniform blue, while nuclei of apoptotic cells show bright

blue due to condensation and disruption (36, 37). As shown in

Figure 7A, A549 cells treated with luteolin exhibited greater nuclear

condensation compared to the control group. Flow cytometry

analysis indicated that luteolin treatment enhanced the apoptosis

rate in A549 cells, with pronounced effects observed in the 60mM
group (Figures 7B, C). Additionally, western blot was employed to

assess the expression of apoptosis-related proteins. The BCL-2
FIGURE 3

Drug-Target-Pathway-Disease network diagram. Purple nodes represent the common targets. Green rectangles represent the signaling pathways.
Yellow diamond represents luteolin. Red arrow represents NSCLC.
TABLE 1 The docking information of the core targets with luteolin.

Targets PDB ID
Grid Box Center

(x, y, z)
Affinity

(kcal/mol)

TP53 6gge (91.29, 95.207, -44.555) -7.1

EGFR 8a27 (24.621, -10.003, -13.829) -9.2

AKT1 1unq (15.18, 24.427, 16.345) -5.9

TNF 5uui (41.438, 43.124, 1.354) -5.4

JUN 1jnm (10.22, 0.513, 29.418) -5.7

CASP3 1nme (36.18, 93.474, 18.309) -7.5
frontiersin.org

https://doi.org/10.3389/fonc.2024.1471109
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1471109
family, which regulates the cellular life-or-death switch and includes

both pro- and anti-apoptotic members, was analyzed. As shown in

Figures 7D, E, luteolin treatment downregulated the expression of

the anti-apoptotic protein Bcl-2 and upregulated the expression of

the pro-apoptotic protein Bax.

To demonstrate that the downregulation of the AKT pathway

mediated apoptosis, A549 cells were treated with LY294002.

LY294002 is a highly selective inhibitor of phosphatidylinositol 3

(PI3) kinase, functioning by blocking PI3K-dependent Akt

phosphorylation and kinase activity (38). In this study, LY294002

(40 mM) significantly induced apoptosis in A549 cells, which

corresponded with the downregulation of Bcl-2 protein expression

and the upregulation of Bax expression. These results suggest that the

Akt pathway is implicated in the apoptosis of A549 cells.
Effect of luteolin and LY294002 on Akt/
MDM2/p53 pathway

Based on the predicted outcomes of network pharmacology and

molecular docking, it has been determined that luteolin’s therapeutic

effect on NSCLC involves core targets such as TP53, EGFR, and

AKT1, closely associating with the PI3K-Akt signaling pathway.

Research indicates that the tumor factor mouse double minute 2

(MDM2), a downstream activating molecule of Akt, is significantly
Frontiers in Oncology 08
overexpressed in cancers like lung cancer and serves as a criticial

negative regulator of p53 (39, 40). We hypothesized that luteolin

could induce apoptosis in A549 cells via the Akt/MDM2/p53

signaling pathway. To verify the effect of luteolin and LY294002 on

the AKT/MDM2/P53 pathway, western blot analysis was conducted.

As shown in Figure 8, luteolin decreased the expression of

phosphorylated Akt (Ser473) and did not significantly affect total

Akt expression. Additionally, luteolin reduced MDM2 expression

while increasing p53 expression, aligning with the outcomes observed

following treatment with LY294002.
Discussion

Luteolin is a natural flavonoid compound exhibiting a range of

biological activities. Previous research has demonstrated that the

anti-cancer properties of luteolin are related to the prevention of

metabolic activation of carcinogens, induction of apoptosis,

inhibition of cell proliferation, metastasis, and angiogenesis (41).

To explore the multi-target and multi-pathway properties of natural

compounds, network pharmacology, molecular docking, molecular

dynamics simulation and in vitro experiments were employed to

elucidate the mechanisms of luteolin in treating NSCLC.

The network pharmacology analysis indicated that there were 47

potential targets of luteolin in treating NSCLC such as TP53, AKT1,
FIGURE 4

Molecular docking modes of luteolin with the core targets. (A) luteolin-TP53, (B) luteolin-EGFR, (C) luteolin-AKT1, (D) luteolin-TNF, (E) luteolin-JUN,
and (F) luteolin-CASP3.
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EGFR, CASP3, TNF, JUN, VEGFA, MMP1, MMP9, HMOX1,

MDM2, PIK3CG, BCL2L1, etc. We then constructed a PPI

network to investigate the interactions among these targets. The

core targets of luteolin in treating NSCLC were identified: TP53,

EGFR, AKT1, TNF, JUN, and CASP3. Molecular docking

demonstrated that luteolin binds stably to these core targets. TP53,

known as the guardian of the genome, is a crucial tumor suppressor,

mainly acting as a transcription factor and binds to DNA to exert its

anti-tumor effects (42). It enhances apoptosis by facilitating the

release of downstream BCL-2 family proteins, playing a crucial role

in anti-tumor therapies. However, the suppression or mutation of

p53 is frequently observed in cancer. Mutant p53 not only loses its

original anti-tumor activity, but also exhibits cancer-promoting

effects that conntribute to tumor proliferation, invasion, metastasis,

inflammation, tissue remodeling, and immune escape (43, 44).
Frontiers in Oncology 09
Therefore, restoring the wild-type function of p53 or increasing the

activity of p53 is an effective anti-tumor strategy. AKT1 is a member

of the AKT kinase family that is involved in the cell apoptosis and

proliferation. Active AKT can cause tumorigenesis of a large number

of human cancers, including lung, brain, gastric, colon, breast, and

prostate cancer. In subsequent molecular dynamics simulations, we

concentrated on the luteolin-TP53 and luteolin-AKT1 systems. The

results indicated that both systems exhibited a high degree of stability.

GO enrichment analysis revealed that the biological processes

and molecular functions associated with luteolin’s anti-NSCLC

effects primarily encompass the negative regulation of apoptotic

signaling pathways, positive regulation of phosphorylation, kinase

regulatory activity, and kinase binding. Apoptosis, a type of

programmed cell death, plays a crucial role in cancer progression.

Induction of apoptosis in cancer cells is the most important target of
FIGURE 5

The results of molecular dynamics simulation. (A1, A2) Root Mean Square Deviation (RMSD) values. (B1, B2) Root Mean Square Fluctuation (RMSF)
values during molecular dynamics simulations. (C1, C2) Radius of Gyration (Rg) analysis.
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many anti-cancer drugs. KEGG enrichment analysis showed that

the PI3K-Akt and NF-kappa B pathways are essential for luteolin’s

action on NSCLC. The PI3K-Akt signaling pathway, crucial for

promoting cell survival and growth, participates in diverse cellular

processes including cell cycle, growth, proliferation, survival,

protein synthesis, and glucose metabolism. The dysregulation of

this pathway has been implicated as a pivotal driver in 30% of

cancers, with mechanisms involving activating mutations in

PIK3CA, loss of function mutations in PTEN, excessive activation

of upstream molecules, and gain-of-function mutations as well as

amplification of AKT (45–47). Current studies have demonstrated

that luteolin inhibits tumor cells by suppressing the PI3K-Akt

signaling pathway. For instance, Yao et al. (48) found that

luteolin inhibits the proliferation and induces apoptosis in A375

human melanoma cells by downregulating MMP-2 and MMP-9 via

the PI3K-Akt pathway. Similarly, Chen et al. (49) reported that

luteolin inhibits TGF-b1-induced epithelial-mesenchymal
Frontiers in Oncology 10
transition in lung cancer cells (A549) by interfering with the

PI3K/Akt-NF-kB-Snail signaling pathway.

Akt serves as an upstream regulator of p53, playing a role in the

negative regulation of p53 via the mediation on MDM2. It has been

demonstrated that the phosphorylation of MDM2 on serine 166

and serine 186 by Akt is necessary for the nuclear entry of MDM2

(50). In cells containing wild-type p53, MDM2 binds directly to the

p53 protein through its amino terminu, and inhibits p53 activity

through following mechanisms (1): MDM2 functions as an

ubiquitin ligase, promoting the degradation of p53 via the

proteasome; (2) Blocking p53 from binding to target DNA; (3)

Facilitating the export of p53 from the nucleus, thus impeding its

role as a transcription factor (51–53). Consequently, activating wt

p53 by inhibiting MDM2 represents a crucial strategy in anticancer

drug development. Notably, MDM2 is the potential target of

luteolin in treating NSCLC. Therefore, we hypothesized that

luteolin against NSCLC via Akt/MDM2/p53 signaling pathway.
FIGURE 6

Luteolin inhibited the proliferation and migration of NSCLC cell lines. (A, B) The CCK8 assay demonstrated that luteolin inhibited the viability of A549
cells and H460 cells in both concentration- and time-dependent manner. (C, D) Colony formation assay showed that luteolin inhibited the
proliferation of A549 cells. (E, F) Wound healing assay showed that luteolin inhibited the migration of A549 cells in a concentration-dependent
manner. All data were presented as mean ± SE of three independent experiments. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 compared with
control group (luteolin 0 mM).
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To clarify the mechanism of luteolin against NSCLC, we

conducted in vitro experiments to validate the predictions. The

p53 wild-type cell lines A549 and H460 were chosen as the

experimental models. The CCK8 assay, colony formation assay
Frontiers in Oncology 11
and wound healing assay demonstrated that luteolin significantly

inhibited the proliferation and migration of A549 cells in a

concentration-dependent manner. Subsequently, we found that

luteolin significantly induced apoptosis in A549 cells at a
FIGURE 7

Luteolin and LY294002 induced apoptosis in A549 cells and modulated the expression of Bcl-2 and Bax. (A–C) The effect of luteolin and LY294002
on the apoptosis of A549 cells was detected by Hoechst 33342 staining and flow cytometry assay. The result showed that both luteolin (60 mM) and
LY294002 induced the apoptosis of A549 cells. (D, E) Western blot analysis demonstrated that luteolin and LY294002 decreased Bcl-2 levels while
increasing Bax expression. All data were presented as mean ± SE of three independent experiments. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001
compared with control group (luteolin 0 mM).
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concentration of 60 mM, increased the expression of the pro-

apoptotic protein Bax, and decreased the expression of the anti-

apoptotic protein Bcl-2. Western blot analysis showed that luteolin

downregulated the expression of p-Akt (Ser 473) and MDM2, while

upregulating p53 in A549 cells. Futhermore, we also treated cells

with LY294002, an AKT inhibitor, to serve as a positive control. The

results indicated that the inhibition of AKT activity led to increased

cell apoptosis, reduced MDM2 expression, and upregulated P53

expression. In conclusion, luteolin maight mediate apoptosis via the
Frontiers in Oncology 12
AKT/MDM2/P53 signaling pathway. However, whether luteolin

exerts anti-NSCLC effects mainly through the AKT/MDM2/p53

signaling pathway requires further investigation.

There are several limitations of this study that need to be

highlighted. First, this study was not validated in vivo. In

addition, other signaling pathways predicted by network

pharmacology, such as proteoglycans in cancers and NF-kB
signaling pathway, may also contribute to luteolin’s antitumor

effects in NSCLC. This warrants further investigation.
FIGURE 8

Luteolin and LY294002 decreased the expression of p-Akt (Ser473) and MDM2, while increasing the expression of p53. (A) Protein bands of Western
blot. (B–E) Quantitative results of Akt, p-Akt, MDM2 and P53 normalized to b-actin. All data were presented as mean ± SE of three independent
experiments. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 compared with control group (luteolin 0 mM).
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Conclusion

In this study, we investigated the effects and mechanisms of

luteolin on NSCLC using network pharmacology and in vitro

experiments. The findings indicated that luteolin could against

NSCLC by inhibiting cell proliferation and migration, and by

inducing apoptosis in A549 cells. The pro-apoptotic effect of

luteolin may be associated with the modulation of the Akt/MDM2/

p53 signaling pathway.
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