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Radiomics in rectal cancer:
current status of use and
advances in research
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Xiao-Hong Deng, Shi-Xiong Ni and Lina Tang*

Department of Ultrasonography, Clinical Oncology School of Fujian Medical University, Fujian Cancer
Hospital, Fudan University Shanghai Cancer Center, Fuzhou, China
Rectal cancer is a leading cause of morbidity and mortality among patients with

malignant tumors in China. In light of the advances made in therapeutic

approaches such as neoadjuvant therapy and total mesorectal excision, precise

preoperative assessment has become crucial for developing a personalized

treatment plan. As an emerging technology, radiomics has gained widespread

application in the diagnosis, assessment of treatment response, and analysis of

prognosis for rectal cancer by extracting high-throughput quantitative features

from medical images. Radiomics thus demonstrates considerable potential for

optimizing clinical decision-making. In this paper, we reviewed recent research

focusing on advances in the use of radiomics for managing rectal cancer. The

review covers TNM staging of tumors, assessment of neoadjuvant therapy

outcomes, and survival prediction. We also discuss the challenges and

prospects for future developments in translational medicine, particularly the

need for data standardization, consistent feature extraction methodologies, and

rigorous model validation.
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1 Introduction

Colorectal cancer (CRC) is the third-most common cancer globally, accounting for

nearly one-tenth of all cancer-related deaths. Rectal cancer (RC) constitutes a substantial

proportion of all CRC cases, ranging from 27% to 58% (1–3). The rising incidence of CRC

worldwide is attributed to various factors, such as low-fiber and high-fat diets, excessive red

meat consumption, and sedentary lifestyles. Furthermore, CRC is often detected at

advanced metastatic stages because of the absence of sensitive screening methods or

inadequate adherence to screening protocols. In China, the incidence and mortality rates of

CRC are on the rise (4), with the epidemiological characteristics of the disease mainly being

intermediate and low, constituting approximately 65% to 75% of RC (5).

RC exhibits a propensity for extrabowel infiltration, lymph node involvement, and

distant metastasis. In recent decades, the development of therapeutic strategies and
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multidisciplinary treatments, such as local excision, total mesorectal

excision (TME), and neoadjuvant chemoradiotherapy (nCRT), has

reduced the local recurrence and distant metastasis rates (6, 7).

Colonoscopy, transrectal ultrasound, computed tomography (CT),

and magnetic resonance imaging (MRI) are some of the

preoperative imaging methods used to evaluate RC. CT, MRI,

positron emission tomography (PET), ultrasound, and other

imaging techniques are non-invasive and provide information

about tumor morphology and some functional aspects. While CT

and MRI offer standardized examination views, they are more

expensive and time-consuming compared to ultrasound.

Ultrasound, on the other hand, is simpler to operate, safer, and

offers high reproducibility but is more operator-dependent and

subjective compared to MRI.

At present, the widely accepted “gold standard” for pathological

staging in the diagnosis of CRC necessitates post-surgery

procedures. The accuracy of preoperative imaging diagnosis

remains contentious, and there is still no uniform tumor staging

standard. Radiomics, a technology based on machine learning

methods for the quantitative analysis of medical imaging, can

extract information that is not discernible to the naked eye,

thereby enhancing the diagnostic accuracy of diseases (8). In this

paper, we have systematically described the research and use of

radiomics in RC.
2 Concepts and process of analysis
in radiomics

The concept of radiomics was initially introduced by the

American researcher Gillies (9) and further elaborated upon by

the Dutch author Lambin (10). Radiomics is based on medical

images obtained from modalities such as CT, MRI, PET/CT, or

ultrasound and involves the high-throughput extraction of

numerous image features related to diseases. This process involves

the transformation of medical images into high-dimensional data,

the quantification of the characteristic information of various

tumors on medical images, and subsequent statistical analysis of

these features to create a statistical model data matrix equipped with

classification and prediction functions (11, 12).
Abbreviations: AUC, area under the curve; CEA, carcinoembryonic antigen; CE-

CT, contrast-enhanced CT; CRC, colorectal cancer; CT, Computed tomography;

DCE-T1, dynamic contrast-enhanced T1; DFS, disease-free survival; DWI,

diffusion-weighted imaging; EUS, endorectal ultrasound; EMVI, extramural

vascular invasion; HR-T2WI, high-resolution T2-weighted imaging; kNN, k

nearest neighbors; LASSO, the least absolute shrinkage and selection operator;

LARC, locally advanced rectal cancer; LR, Logistics Regression; MRI, magnetic

resonance imaging; mRMR, the maximum relevance minimum redundancy;

nCR, neo-adjuvant radiochemotherapy; cCR, clinical complete response; PET,

positron emission tomography; PNI, perineural invasion; PVP, portal venous

phase; RC, rectal cancer;RF, random forest; ROI, region of interest; SVM, support

vector machines; SWE, shear wave elastography; TME, total mesorectal excision;

T2w, T2-weighted; OS, overall survival.
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While computerized diagnostic systems are capable of

extracting eight to 20 image features, radiomics utilizes computer

algorithms to extract a significantly larger number of quantitative

features from medical images, ranging from several hundred to

several thousand image features (13). These quantitative imaging

features include aspects such as shape, texture, intensity, and spatial

distribution, which can provide valuable data about the disease. The

information provided about the tumor microenvironment and

phenotype is more detailed when compared to laboratory results,

clinical reports, and genomic or proteomic analysis.

The workflow of radiomics primarily involves extracting a

multitude of multidimensional features from images and applying

automated data characterization algorithms. This process converts

the imaging data in the regions of interest (ROIs) into spatial data

with high resolution and discoverability through quantitative

analysis. The workflow encompasses stages such as data

acquisition and analysis, image segmentation, feature extraction,

and downscaling, as well as model construction and validation (14).
2.1 Data acquisition and analysis

The foundation of radiomics is rooted in the collection of

clinical medical imaging data. The development and validation of

radiomics in CRC involve data from modalities such as CT, MRI,

and PET/CT, among others. The variations in scanning instruments

and modes result in significant differences in image parameters.

Consequently, obtaining standardized medical imaging data has

emerged as a pressing concern in current radiomics research.

Radiomics studies begin with the objective of addressing a

specific clinical issue, starting with the identification of the ROI.

For example, this may involve analyzing images of cancerous

tumors in a study on RC to examine their correlation with

treatment outcomes. Analysis of lesions and normal tissues

involves creating extensive image databases that are capable of

storing a vast repository of image data, forming a comprehensive

network (15). To address the variations in the parameters of the

captured images, it is necessary to gather the datasets required to

solve the clinical problem. Notably, image preprocessing emerges as

an essential step in radiomics research, encompassing methods such

as alignment, denoising, bias field correction, and correction of

image inhomogeneity. However, there is a lack of unified standards

to guide the selection of preprocessing methods.
2.2 Image segmentation

As the data results may be affected by variations in machines or

parameters during the acquisition process, it is necessary to

standardize the original image. This involves separating the

region of interest from the whole image—a process known as

segmentation—which is typically required for medical images.

ROI segmentation can be classified into manual segmentation,

semi-automatic segmentation, and fully automatic segmentation

using software. Each method has its own advantages and

disadvantages. Manual segmentation is more accurate but less
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reproducible. On the other hand, automatic segmentation relies on

efficient algorithms that help eliminate subjective errors (16).

Currently, there is no proven algorithm for automated

segmentation of RC. Manual segmentation is used in most

radiomics studies pertaining to RC to identify the location and

precise boundaries of ROIs.
2.3 Feature extraction and
dimensionality reduction

Various quantitative features are extracted from the segmented

images. These features include shape-based, histogram (first-order),

and texture (second-order) features, as well as features related to

intensity and perfusion. A large number of image features are

extracted, which include the following: (1) shape-based features

that describe the morphological characteristics of the ROI,

including voxel volume, ROI area, maximum diameter, and so

on; (2) first-order features that use a distribution of individual pixel

values without considering spatial relationships—these are typically

histogram-based methods that reduce the ROI to a single value for

the mean, median, maximum, minimum, and homogeneity or

randomness (entropy) of the intensities on the image, as well as

histograms of the values of skewness (asymmetry) and kurtosis

(flatness); and (3) texture features that are used to describe

statistical interrelationships between voxels with similar or

dissimilar contrast (17). The extracted features must possess the

capability to differentiate between various tissues or disease states.

In addition, feature selection is necessary to eliminate redundant

and irrelevant features in order to enhance the predictive

performance of the model.
2.4 Model construction and validation

Exploratory and predictive analyses of the extracted features are

conducted using statistical analysis methods. Common statistical

methods include univariate analysis, multivariate regression, and

machine learning algorithms. The creation of predictive models

establishes correlations between image features and clinical

outcomes, facilitating tasks such as disease diagnosis, prognosis

assessment, and prediction of treatment response.

As the number of features extracted from an image is

substantial, an excessive number of features can result in

overfitting. This necessitates the need for dimensionality

reduction (18, 19). Dimensionality reduction methods that are

commonly used (20) include support vector machines (SVM),

maximum relevance minimum redundancy (mRMR), random

forest (RF), and least absolute shrinkage and selection operator

(LASSO) regression. Machine learning methods such as decision

trees, naive Bayes, k-nearest neighbors (kNN), logistic regression

(LR), SVM, bagging, RF, extremely randomized trees, adaBoost, and

gradient boosting decision tree (GBDT) are combined to model and

optimize dimensionality reduction results. This is done to extract

the most informative features and reduce overfitting, ultimately

improving the model’s performance and interpretability.
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Study quality evaluation and validation: In radiomics research,

assessing the quality and reliability of the study is crucial. This includes

scrutinizing the consistency of the data, evaluating the robustness of

the model, and validating the predictive performance. Various

methods that are commonly used for this include cross-validation,

external validation, and ROC curve analysis. Once constructed, models

are subjected to rigorous evaluation and performance validation in new

samples. All models are initially internally validated and subsequently

externally validated (validated in multiple centers) as and when

conditions permit. A predictive model that lacks a standardized

assessment of its performance may not be suitable for clinical

decision-making (21). Therefore, quality assessment should ensure

the reproducibility of the study as well as validate the model.
3 Deep learning-based radiomics

Deep learning-based radiomics differs from traditional

radiomics in that the constructed model can automatically learn

to extract and select image features and make predictions, enabling

a more comprehensive and in-depth exploration of the information

in the image.

Currently, the most commonly used methods for image analysis

in radiomics include convolutional neural networks (CNN) and

sparse auto-encoders (SAE), among others. Deep learning-based

radiomics offers several advantages when compared to traditional

quantitative analysis methods in radiomics. First, it enables

automated feature extraction, thus eliminating the need for

manual or traditional methods while improving the efficiency and

accuracy of feature extraction. Second, the deep learning model can

process and recognize high-dimensional data. Third, after adequate

training, the deep learning-based radiomics model demonstrates

better generalization ability and stable performance across different

datasets and image types. Fourth, deep learning-based radiomics

supports the integration of multimodal data, such as combining CT,

MRI, and PET images, to provide a more comprehensive disease

analysis. Fifth, it allows for the extraction of deeper biological

information from clinical images.

Deep learning-based radiomics can effectively identify

microstructural changes in tumor tissues and predict the

aggressiveness of lesions and patient prognosis. However, there

are several challenges in practical applications of deep learning-

based radiomics in image analysis, including issues related to model

interpretability and limitations in generalization ability. To address

concerns about interpretability, it is necessary to enhance the

transparency of the algorithms and the verifiability of the results.
4 Radiomics in the diagnosis of RC

4.1 Preoperative prediction of tumor
TNM stage

Before beginning treatment for RC, patients undergo a

comprehensive tumor clinical staging process, which involves

clinical examination and imaging investigations. The TNM
frontiersin.org
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system is a commonly used staging system for RC that evaluates and

classifies tumors based on the T (tumor), N (lymph node), and M

(distant metastasis) characteristics. Accurate pre-treatment staging

is essential for ensuring precise treatment of RC and serves as a

crucial indicator for assessing patient outcomes and prognosis (22).

4.1.1 Prediction of the tumor T-stage
Accurate preoperative staging is essential for selecting

appropriate treatment methods and minimizing or preventing

drug-induced toxic reactions. Radiomics demonstrates significant

clinical application value in the context of T-stage classification.

Zhou et al. (23) found that the radiomics features of MRI images in

RC are the primary influencing factors in distinguishing between T2

and T3 stages of RC. Wang et al. (24) confirmed that texture feature

parameters, such as entropy, standard deviation, and homogeneity,

in the combined texture analysis of MRI can significantly enhance

the preoperative differential diagnostic ability of rectal partially

mucinous adenocarcinomas and classic adenocarcinomas

accompanied by focal necrosis. Ma et al. (25) conducted an MRI-

based T2-weighted (T2w) radiomics study, demonstrating its ability

to differentiate between patients with T1 or T2 and those with T3 or

T4 RC for the T-staging diagnosis (AUC 0.813, sensitivity 0.933,

and specificity 0.925).

Therefore, the use of radiomics in T-staging of RC prior to

treatment can assist doctors in accurately assessing the stage of the

tumor and provide an important reference for patients to formulate

the most suitable treatment plan. The findings of all these studies

indicate that certain features extracted from RC imaging are

valuable for predicting pathological T-staging preoperatively. This

can assist clinicians in selecting appropriate treatment strategies.

4.1.2 Prediction of the tumor N-stage
Accurate assessment of lymph node (LN) status is crucial for

treatment planning, predicting local recurrence, and overall survival

in patients with CRC. Additionally, radiomics features of RC

provide more detailed morphological and anatomical

information, aiding in the identification of the metastatic status of

the lymph nodes in RC, thereby accurately predicting the risk of

lymph node involvement (26, 27). Huang et al. (28) analyzed and

modeled the radiomic features extracted from CT images of patients

with RC using statistical and machine learning methods. Using

multivariate logistic regression, they constructed a nomogram

prediction model by combining the radiomic features with

clinical data. This model demonstrated satisfactory performance

in predicting lymph node metastasis in CRC (AUC 0.736). Another

prediction model that was constructed based on the radiomic

features of preoperative MRI images of RC achieved an AUC of

0.818–0.94 for predicting lymph node metastasis in RC (29–34).

Ultrasound-based radiomics also holds clinical value for

determining preoperative lymph node metastasis in RC. In their

study, Pan et al. (20) obtained an AUC value of 0.827 for the test set

for diagnosing lymph node metastasis, with a sensitivity of 0.818 and

a specificity of 0.750. The findings of Li et al. (35) on the ultrasound-

based radiomics features of RC using 3D ultrasonography highlighted

the significant value of the random forest model built using these

features in preoperatively identifying the lymph node metastatic
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status in RC. Xian et al. (36) constructed shear wave ultrasound-

based radiomics from preoperative ultrasound examinations of 87

patients with RC, achieving a sensitivity of 87.5% and a specificity of

78.8% with 13 ultrastructures that were selected as significant features.

Chen et al. (37) developed a preoperative predictive radiomics

for lymph node metastasis based on rectal tumors, lymph nodes,

and surrounding tissues obtained from endorectal ultrasound

(EUS), CT scans, and shear wave elastography (SWE) of 115

patients with RC, combined with their clinical data. The

multiparametric radiomics pattern graph had the highest

predictive accuracy for lymph node metastasis, with a consistency

index of 0.857. This makes it a useful tool for preoperative

prediction of lymph node metastasis, capturing blood supply and

stiffness phenotypes. In patients with RC, analyzing the imaging

data obtained using radiomics, extracting the imaging features

associated with lymph node metastasis status, and subsequently

establishing a prediction model can assist clinicians in predicting

the risk of lymph node metastasis. Consequently, radiomics analysis

of both the primary tumor and lymph nodes can aid in predicting

the lymph node status of patients with CRC.

4.1.3 Prediction of the tumor M-stage
The liver is the most likely organ for CRC to metastasize. Liver

metastasis in CRC accounts for 75% to 83% of CRC metastases (38).

Early and accurate diagnosis of liver metastasis from CRC is crucial

for determining the appropriate treatment for patients. Radiomics

analysis of RC can yield valuable insights for predicting the presence

of liver metastases that are synchronous (already present at the time

of diagnosis) or metachronous (occurring after treatment) (39, 40),

as well as synchronous metastases to other sites (41).

Machine learning models that are constructed based on CT and

MRI image-based radiomics analysis can be used to predict the

development of metachronous liver metastases in RC (42). In a

study of a radiomics model based on whole-hepatic portal venous

phase (PVP) contrast-enhanced CT (CE-CT) images for predicting

metachronous liver metastasis (MLM) in RC within 24 months after

surgery (43), the AUCs of the training and validation groups of the

radiomics model were 0.84 and 0.84, respectively, indicating that

the radiomics model for preoperative whole liver PVP CE-CT could

predict MLM within 24 months following RC surgery.

Liang (39) conducted a retrospective analysis of MRI image data

from 108 patients to develop a model for predicting MLM. The

model was based on t2-weighted images and venous phase sequence

images, combined with two machine learning algorithms (SVM and

LR). The finding was that the combination of baseline rectal MRI-

based radiomics and LR yielded the most effective predictions,

achieving a sensitivity of 83%. This was done by employing machine

learning models that utilize radiomics and clinical risk profiles to

forecast the probability of liver metastasis in patients with CRC.

Based on this, implementing neoadjuvant radiotherapy and/or

more rigorous follow-up protocols for high-risk patients can

mitigate the likelihood of their developing MLM.

By extracting high-throughput information from MRI scans,

radiomics can be used to predict distant metastasis in locally

advanced rectal cancer (LARC) (44). In a multicenter study

involving 235 patients who underwent nCRT (45), a predictive
frontiersin.org
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pattern graph derived from multiparametric MRI, combined with

clinicopathological factors after deep learning, yielded a C-index of

0.775. MRI-based deep learning radiomics has the potential to

predict distant metastasis in patients with LARC undergoing

nCRT and can help assess the risk of distant metastasis in

patients with varying responses to nCRT. These studies

investigated the use of radiomics features to analyze CT images or

other imaging data for predicting the development of MLM in RC.

However, there are only a few studies on the use of ultrasound

image-based radiomics for predicting the development of MLM and

distant metastasis in RC.
4.2 Evaluation of treatment response in RC

According to guidelines, MRI assessment is necessary for locally

advanced rectal cancer. For patients with microsatellite stable/

mismatch repair proficient (MSS/pMMR), total neoadjuvant therapy

(TNT) should be regarded as the initial treatment for patients with low

rectal cancer and/or those at high risk. Patients without high-risk

factors may consider chemotherapy accompanied by selective

chemoradiotherapy (CRT), TNT, neoadjuvant long-course CRT or

short-course radiotherapy (RT) based on the degree of response. For

patients suitable for TNT, the preferred chemotherapy timing is after

radiotherapy. Non-surgical treatment (NOM) can serve as an

alternative to total mesorectal excision (TME) for patients with

clinical complete response (cCR) after neoadjuvant treatment. For

patients with highly microsatellite unstable/mismatch repair deficient

(MSI-H/dMMR), immunotherapy is recommended. The

immunophenotype and immune cell composition were different in

each radiomic assessment group (46). nCRT significantly improves

locoregional disease-free survival, negative surgical margins, and

complete response rates (47). Clinical complete response (cCR) is

achieved in some patients, with the percentage ranging from

approximately 15% to 33% (48, 49). The concept of non-surgical

treatment has become feasible for patients who show a cCR after nCRT

(50), serving as an alternative to conventional surgery (51). However,

there is currently no reliable method for diagnosing a

complete response.

In this context, radiomics has emerged as a promising tool that

can be used as an imaging biomarker to assess response after tumor

treatment. In a recent meta-analysis, the sensitivity and specificity

of MRI, endorectal ultrasonography, and CT examinations were

95%/31%, 97%/30%, and 96%/21%, respectively (52). Several

clinical features have been suggested to increase the likelihood of

cCR, including low levels of carcinoembryonic antigen (CEA) (53–

56), small tumor size (57, 58), low tumor/nodal stage (59), low

histological grade (60), a small range of tumor circumference (61),

high hemoglobin levels (53, 60), and a low neutrophil-to-

lymphocyte ratio (61).

Radiomics enables a more comprehensive assessment of tumor

characteristics than single-image morphology. Mao et al. (62)

conducted a study on the combination of 340 radiomics features

derived from 216 CT images, along with clinical variables including

the distance of the mass from the anal verge, the lymphocyte/

monocyte ratio in the blood, and CEA. They developed a prediction
Frontiers in Oncology 05
model to distinguish between the presence and absence of cCR. The

AUCs of the combined model were 0.926 and 0.872 for the training

and validation groups, respectively.

Radiomics features inferred from MRI-based T2W images

demonstrate the potential to predict cCR (63–67). In a

retrospective study by Shin et al. (65), radiological features were

extracted from the ROC of T2-weighted images and apparent

diffusion coefficient (ADC) graphs of MRI after nCRT using LR

to generate three models: T2-weighted, ADC, and T2-weighted and

ADC (combined) radiomics models. The AUCs for predicting cCR

after neoadjuvant radiotherapy for locally advanced RC were 0.82,

0.79, and 0.82, respectively.

Apart from MRI and CT images, radiomics modeling based on

intrarectal ultrasound can be utilized as a pretreatment biomarker

to predict the pathological characteristics of RC. Abbaspour et al.

(68) analyzed the radiomics features of EUS images from 43

patients with locally progressive RC. Different machine learning

methods were used to construct models, and the study found that

the machine learning methods (LR and SVM) performed better in

radiomics histological features for EUS. The AUC was 0.71 and 0.76

for LR and SVM, respectively, with an accuracy of 70.0% and 71.5%,

sensitivity of 69.8% and 80.2%, and specificity of 70.0% and

60.9%, respectively.

The integration of different imaging modalities in radiomics also

has significant clinical value in predicting cCR (69–71). In a study, CT

and MRI images of 118 cases of RC prior to neoadjuvant

chemotherapy were evaluated by Li et al. (69) Based on the

performance of different modalities of CT and MRI, including

ADC, dynamic contrast-enhanced T1 (DCE-T1) images, and high-

resolution T2-weighted imaging (HR-T2WI), imaging features were

used to construct a multimodal imaging radiomics model for

predicting pathological response. The AUC of the model in the

training group and validation group was 0.925 and 0.93, respectively.

Feng et al. (71) developed an integrated radiological-

pathological histology prediction system using machine learning.

The system is based on three feature sets: radiomics MRI features,

pathological nuclear features, and pathological microenvironmental

features from a retrospective training cohort. The study was

conducted in multiple centers and aimed to predict pathological

complete remission. The model predicted cCR with good accuracy

(AUC 0.870), 88.8% sensitivity, and 74.0% specificity, which was

significantly better than the unimodal prediction model.

Scholars have explored the use of imaging to analyze radiomics

features through various modalities such as CT, MRI, PET/CT, and

ultrasound images. The aim is to develop a prediction model and

corresponding clinical indices to forecast the pathological response

of patients with RC following neoadjuvant therapy. However, there

are variations in the sample size and methodology across these

studies, and as of yet, none of them have undergone validation and

confirmation through research for actual clinical applications.
4.3 Predicting the prognosis of RC patients

Imaging technologies have also been utilized to predict the survival

expectancy of patients with RC, offering valuable insights for treatment
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selection and patient stratification. Several studies have indicated an

association between imaging characteristics and both progression-free

survival (PFS) and overall survival (OS). Additionally, clinicopathologic

factors and imaging information have been found to be related to the

prognosis of patients with locally advanced RC (44, 72–77).

Some histopathologic features, such as extramural vascular

invasion (EMVI), degree of differentiation, and perineural invasion

(PNI), were associated with a poor clinical prognosis (49). EMVI is a

significant factor contributing to a higher risk of recurrence and serves

as an independent indicator of a poorer prognosis in RC (78). PNI

status was shown to independently predict the local recurrence or

progression of RC (79), suggesting that the tumor may have a more

aggressive phenotype. It is a key factor in determining whether patients

with stage II RC are likely to benefit from nCRT and postoperative

adjuvant chemotherapy. High levels of CEA, tumors located less than 5

cm from the anal verge, and a younger age may be associated with a

poor prognosis for early-stage rectal cancer after CRT and surgery (80).

However, the predictive accuracy of these factors remains low, and

there is a need for more precise prognostic factors or predictive models.

Radiomics models have proven clinically valuable in predicting

the prognosis of patients with locally advanced RC. Chen et al. (81)

demonstrated that radiomics based on combinations of multiple MRI

sequences could accurately differentiate between recurrent lesions

(LR) at the anastomotic site and non-recurrent lesions. In a

multicenter, randomized retrospective study (82), MRI images of

LARC treated with nCRT were extracted from 3D MS. A radiomics

model for predicting disease-free survival (DFS) was established using

a hyperparameter-tuned Random Forest classifier. The predictive

value of the radiomics model surpassed that of qualitative parameters.

Tumor characteristics were analyzed by extracting variables (t2-

weighted, diffusion kurtosis imaging, and enhanced t1-weighted)

from preoperative and postoperative multiparametric MRIs (83).

Radiomics predictive models were generated based on feature

stability and the Cox proportional hazards model, showing

predictive potential (C-index ≥ 0.77). Additionally, radiomics

feature modeling of CT scans after neoadjuvant radiotherapy (84)

enhanced the predictive accuracy of OS from 0.672 when using only

clinical features to 0.730 when incorporating radiomics features. This

improvement can offer valuable insights for tailoring future

treatments for patients with LARC.
5 Conclusion and outlook

Radiomics has shown considerable potential in the investigation of

RC, covering crucial aspects such as diagnosis, treatment evaluation,

and prognosis prediction. Despite significant advancements, there

remains a need for multicenter and prospective validation studies to

ensure the reliability of its clinical application. Currently, radiomics

studies of RC predominantly focus on CT and MRI, with limited

research on ultrasound, despite its advantages in terms of ease of use,

safety, absence of radiation, and high reproducibility. The fusion and

combined analysis of various types of imaging data, includingMRI, CT,

PET, and ultrasound, is anticipated to offer more comprehensive and

accurate information, thereby enhancing the reliability of prognostic

assessment and treatment decisions.
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will enable a more comprehensive assessment of the prognostic risk for

patients with RC. This approach will provide more accurate guidance

for individualized treatment by combining insights from imaging,

genetics, and other relevant fields. The use of deep learning and

artificial intelligence technologies is crucial in extracting and

analyzing large-scale imaging data. These technologies help in

identifying potential prognostic predictors and imaging features that

can enhance the accuracy of prognostic assessment and

personalized treatment.

With radiomics poised for continued growth in the future,

certain challenges, such as data standardization, consistent feature

extraction, model validation, and clinical feasibility, remain to be

addressed. Future studies should aim to address these issues and

strengthen the integration with clinical practice to fully harness the

potential of radiomics in managing RC. This will also lead to the

development of more comprehensive screening and surveillance

methods in modern medicine.
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