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Accuracy of four models and
update strategies to estimate
liver tumor motion from external
respiratory motion
Payam Samadi Miandoab1,2, Esben Worm1, Rune Hansen1,
Britta Weber1,3, Morten Høyer3, Shahyar Saramad2,
Saeed Setayeshi2 and Per Rugaard Poulsen1,3*

1Department of Oncology, Aarhus University Hospital, Aarhus, Denmark, 2Department of Energy
Engineering and Physics, Amirkabir University of Technology, Tehran, Iran, 3Danish Centre for Particle
Therapy, Aarhus University Hospital, Aarhus, Denmark
Background: This study investigates different strategies for estimating internal

liver tumor motion during radiotherapy based on continuous monitoring of

external respiratory motion combined with sparse internal imaging.

Methods: Fifteen patients underwent three-fraction stereotactic liver radiotherapy.

The 3D internal tumor motion (INT) was monitored by electromagnetic

transponders while a camera monitored the external marker block motion (EXT).

The ability of four external-internal correlation models (ECM) to estimate INT as

function of EXT was investigated: a simple linear model (ECM1), an augmented linear

model (ECM2), an augmented quadratic model (ECM3), and an extended quadratic

model (ECM4). Each ECMwas constructed by fitting INT and EXT during the first 60s

of each fraction. The fit accuracy was calculated as the root-mean-square error

(RMSE) between ECM-estimated and actual tumor motion. Next, the RMSE of the

ECM-estimated tumor motion throughout the fractions was calculated for four

simulated ECM update strategies: (A) no update, 0.33Hz internal sampling with

continuous update of either (B) all ECM parameters based on the last 2 minutes

samples or (C) only the baseline term based on the last 5 samples, (D) full ECM

update every minute using 20s continuous internal sampling.

Results: The augmented quadratic ECM3 had best fit accuracy with mean (± SD))

RMSEs of 0.32 ± 0.11mm (left-right, LR), 0.79 ± 0.30mm (cranio-caudal, CC) and

0.56 ± 0.31mm (anterior-posterior, AP). However, the simpler augmented linear

ECM2 combined with frequent baseline updates (update strategy C) gave best

motion estimations with mean RMSEs of 0.41 ± 0.14mm (LR), 1.02 ± 0.33mm

(CC) and 0.78 ± 0.48mm (AP). This was significantly better than all other ECM-

update strategy combinations for CC motion (Wilcoxon signed rank p<0.05).

Conclusion: The augmented linear ECM2 combined with frequent baseline updates

provided the best compromise between fit accuracy and robustness towards irregular

motion. It allows accurate internal motion monitoring by combining external

motioning with sparse 0.33Hz kV imaging, which is available at conventional linacs.
KEYWORDS

tumor motion monitoring, intrafraction motion, external-internal motion correlation,
real-time tumor tracking, liver radiotherapy
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1 Introduction

Radiotherapy is a cornerstone of cancer treatment that relies on

the ability to accurately irradiate a tumor volume while minimizing

dose to surrounding healthy tissue (1). The treatment accuracy in

the abdomen and thorax is challenged by respiratory motion (2–4).

Here, real-time adaptive techniques such as respiratory gating or

tumor tracking may be utilized to mitigate motion-induced

treatment uncertainties (1, 5, 6) but these techniques require real-

time tumor motion monitoring. The motion monitoring can rely on

either direct internal motion monitoring, external motion

monitoring or hybrid methods that combine external respiratory

motion monitoring with temporally sparse internal monitoring

(1, 5). Techniques for internal monitoring include x-ray

fluoroscopy of implanted fiducial markers (7–9), implanted

electromagnetic transponders (10–12), and MRI based soft-tissue

monitoring (13, 14). External monitoring is typically based on

optical monitoring of a marker block placed on the patient’s

abdomen (15), a belt with pressure sensor (16), spirometry (17)

or surface scanning (18). While direct internal motion monitoring

is the most accurate, external monitoring is more widely available at

standard equipped conventional linear accelerators where it may be

used to guide real-time motion-adaptive techniques such as

respiratory gating (1, 19).

Hybrid methods combining internal and external motion

monitoring are presently used for tumor tracking in specialized

commercial systems such as the Cyberknife Synchrony (20), Vero

(21, 22) and Radixact (23, 24). A research hybrid method has also

been proposed for a conventionally equipped linear accelerator where

sparse 0.33 Hz x-ray imaging was used for internal monitoring during

treatment (25). Hybrid methods rely on an external-internal motion

correlation model (ECM) that estimates internal motion from

measured external motion. ECM construction is typically based on

a short period of simultaneous external-internal motion monitoring

at the beginning of a treatment fraction, followed by different

strategies for ECM validation and update by sparse internal

monitoring during the fraction, for example every 1-5 s (Vero)

(22), every 3 s (standard Varian TrueBeam accelerator 0.33 Hz

imaging), or every 30-60 s (Cyberknife) (1, 21).

Several studies investigated different strategies for hybrid

motion monitoring at specialized radiotherapy systems and

generally confirmed that hybrid monitoring provides higher

accuracy than external monitoring alone while it has shorter

latency and gives less imaging dose than full x-ray based internal

monitoring (1, 19, 25). However, most studies were either based on

artificially generated respiratory traces (22), a very limited number

of traces (20), or sparse low frequency (< 1 Hz) internal motion data

(16, 18, 22). An exception was a study by Seppenwoolde et al. who

analyzed longer series of combined and continuous internal (dual x-

ray) and external (Anzai laser system) motion and observed a small

trend between ECM update frequency and accuracy (26). However,

with an average length of 82 s, the time-series in this study were still

short compared to the duration of a full treatment fraction, allowing

only short time evaluation of the ECM accuracy.

In simulations of a hybrid monitoring method for a

conventional linear accelerator, Bertholet et al. used a dataset of
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continuous internal electromagnetic transponder motion and

external optical monitoring acquired during liver stereotactic

body radiotherapy (SBRT) treatments (25). Due to intrafraction

baseline shifts, frequent ECM updates by 0.33 Hz internal x-ray

monitoring markedly improved the ECM accuracy compared to a

scenario with no ECM update. However, the study focused on

phantom experiments, simulations and clinical application of a

single ECM combined with a simple ECM update strategy to

account for baseline shifts, while the impact of different ECM

models and model update strategies were not investigated.

The present study is based on the same unique and

comprehensive dataset of simultaneous continuous internal

electromagnetic transponder motion and external marker block

motion as Bertholet et al. (25). The motion data were obtained

throughout 45 full treatment fractions of SBRT of tumors in the

liver. This study investigates the accuracy of a wider range of ECMs

in combination with different ECM update strategies with focus on

scenarios that could realistically be implemented for hybrid motion

monitoring at a conventionally equipped linear accelerator.
2 Materials and methods

2.1 Patients and motion monitoring

This study includes internal and external motion data from

fifteen patients with primary liver tumors (n=4) or liver metastases

(n=11), who received three-fraction liver SBRT guided by

implanted electromagnetic transponders in a research protocol

approved by the Research Ethics Committee of Central Denmark

Region (ref no 1-10-72-175-14). The treatments have previously

been thoroughly described (12). In short, each treatment was

delivered with exhale respiratory gating during free-breathing

using a TrueBeam accelerator (Varian Medical Systems, Palo

Alto, CA, USA) equipped with electromagnetic monitoring

(Calypso, version 3.0, Varian Medical Systems). Three Calypso

electromagnetic transponders implanted near the tumor provided

real-time tumor (surrogate) 3D motion monitoring throughout

each treatment fraction at 25 Hz. After the treatments, Calypso

log files that included the centroid transponder motion and couch

position in the left-right (LR), cranio-caudal (CC) and anterior-

posterior (AP) directions (25 Hz resolution) were synchronized

with linear accelerator log files that included the delivered monitor

units (MU) and beam-on/off status (50 Hz resolution). It resulted in

the centroid transponder motion, couch corrections, and

accelerator parameters during the gated treatments (12). Note

that couch corrections were sometimes performed during a

treatment fraction to compensate for tumor baseline drift. For the

present study, these couch corrections were subtracted from the

recorded transponder motion to obtain the internal transponder

motion as it would have been without couch corrections.

During treatment a video camera (Canon LEGRIA HF R606)

mounted at the feet-end of the couch recorded the vertical (AP)

motion of a marker block (RPM, Varian) on the patient’s abdomen

with a frequency of 20 Hz. This in-house developed system

resembled the clinical Varian RPM system for optical monitoring
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of an external marker block but allowed marker block monitoring

despite the presence of the Calypso antenna panel. Several large

manual changes of the table height performed before patient

positioning and after the treatment were recorded with both the

camera and the Calypso system. The simultaneous recording of this

motion by the camera and the Calypso system was used for

retrospective synchronization of the two systems.
2.2 Internal and external motion data

For all 45 fractions, the synchronized internal transponder

motion and external marker block motion were truncated to only

include the time span from start of the acquisition of a pretreatment

setup cone-beam computed tomography (CBCT) scan to the end of

the last treatment field. Next, all motion traces were examined to

identify and remove sections with unreliable or missing motion data

caused by the following reasons:
Fron
1. Loss of the Calypso signal during setup CBCT acquisition

caused by large lateral couch centering that moved the

transponders out of the Calypso measurement zone. When

the Calypso signal during CBCT acquisition was unavailable,

the 60s of motion data immediately before the Calypso signal

loss was added to the trace as replacement as 60s

corresponded to the CBCT scan duration.

2. Erratic Calypso signal caused by couch corrections during

treatments. Five seconds of motion data before and after

each couch correction was removed.

3. Sudden signal loss from the Calypso or external camera

systems which occurred in a few occasions. Five seconds of

motion data before and after each signal loss was removed.

4. Loss of Calypso signal during couch rotations performed

before non-coplanar field delivery.
Removal of the sections with unreliable or missing data (with

the time kept running) resulted in clean datasets of synchronized

internal and external motion. An example is shown in

Supplementary Figure S1.
2.3 External-internal motion
correlation models

ECMs rely on consistent correspondence between external and

internal motion to estimate the internal 3D motion from the

external motion. In this study, four ECMs were investigated,

including a simple linear model (ECM 1, Equation 1), an

augmented linear model (ECM 2, Equation 2), an augmented

quadratic model (ECM 3, Equation 3), and an extended quadratic

model (ECM 4, Equation 4).

dINT(t) = a + b ∗EXT(t) (1)

dINT(t) = a + b ∗EXT(t) + c ∗EXT(t − t) (2)
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dINT(t) = a + b ∗EXT(t) + c ∗ EXT(t − t) + d ∗EXT2(t)

+ e ∗EXT2(t − t) + f ∗EXT(t) ∗EXT(t − t) (3)

dINT(t) = a + b ∗EXT(t) + c ∗EXT2(t) + d ∗ _EXT(t)

+ e ∗ _EXT2(t) (4)

Here, ^INT(t) is the estimated internal position along each axis

(LR, CC, AP) as function of time t, EXT(t) is the external AP

position and t is a fitted time delay accounting for hysteresis or

phase differences between internal and external motion. _EXT(t) is

the first derivative of the external position (i.e. velocity) while a, b, c,

d, e and f are fitting coefficients. Separate ECMs were fitted for the

internal motion in the LR, CC and AP directions. Least squares

fitting was applied for all models.

The simple linear model (ECM 1) assumes that each coordinate

of internal motion is affine in line with the external motion with a

constant offset. The augmented linear model (ECM 2) suggested by

Ruan et al. (27) includes a delayed term that accounts for hysteresis

motion from external-internal motion datasets. The augmented

quadratic model (ECM 3), which was also suggested by Ruan et al.

(27), additionally includes quadratic terms to model non-linear

behavior. The extended quadratic model (ECM 4) was used at the

Vero system (Mitsubishi Heavy Industries, Japan, and BrainLAB

AG, Munich, Germany) (22). By including linear and quadratic

position and velocity terms this ECM also allows modelling of

hysteresis and non-linear motion.
2.4 ECM fit accuracy

For each ECM, the ability to fit internal and external motion was

first investigated by fitting each model based on the internal and

external motion data during the first 60 s of each fraction. The root-

mean-square error (RMSE)between the actual internalmotion and the

ECM fitted internal motion during these 60 s was used to quantify the

fit accuracy. The fit accuracy of the different models was compared

using the Wilcoxon signed rank test (p < 0.05 considered significant).
2.5 ECM estimation of internal motion

For each ECM, four different strategies for fitting and updating

the ECM during the remaining part of the fraction were simulated:
• Strategy A: Fit ECM to 60s motion just before treatment. No

further ECM update.

• Strategy B: Fit ECM to 60s motion just before treatment.

Sample the tumor position every 3s (0.33 Hz) and update all

ECM parameters based on the last 2 minutes sampling.

• Strategy C: Fit ECM to 60s motion just before treatment.

Sample the tumor position every 3s (0.33 Hz) and update

only the constant ECM term (coefficient a in Equations 1-4)

based on the last five samples (15s).
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• Strategy D: Record the internal motion continuously (25 Hz)

for 20s just before each 1-minute interval. Fit the ECM to the

motion in the 20s interval and apply it in the 1-minute interval.
Here, Strategy A simulates a situation, where an ECM is built

based on pre-treatment imaging alone (e.g., CBCT or fluoroscopy).

Strategy B and C continuously update the ECM with a frequency of

0.33 Hz, e.g. by triggered kV imaging on the Varian TrueBeam

platform, with Strategy C providing a faster and simpler update that

only accounts for baseline drift between internal and external

motion. Strategy D could offer full on-demand ECM generation

by continuous imaging (e.g. fluoroscopy) immediately before the

delivery of each treatment field during a treatment fraction.
2.6 ECM estimation accuracy

For each combination of ECM (ECM 1-4) and ECM update

strategy (Strategy A-D), the ECM estimation accuracy was

quantified by the RMSE between the ECM estimated internal

motion and actual internal motion. The RMSE was determined

per fraction and compared using the Wilcoxon signed rank test.
3 Results

Three of the 45 fractions were excluded due to corrupted data.

The mean (range) duration of the 42 analyzed motion traces was 26

minutes (16-44 minutes) initially and 25 minutes (14-44 minutes)

after removal of sections with unreliable or missing data. The

cleaned motion traces included missing sections with an average

total duration of 4 minutes per motion trace (range: 0-10 minutes).
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For some motion traces, both the internal and external motion

showed large variations in breathing amplitude or frequency as

illustrated in Figure 1.
3.1 ECM fit accuracy

Figure 2 presents characteristic examples of the internal CC

tumor motion as function of the external marker block motion

during the first minute of three different treatment fractions. The

figure also shows the fit to the motion by the four ECMs. For cases

with a simple linear correlation between internal and external

motion, all models performed equally well (Figure 2, column 1).

For cases with hysteresis motion, the augmented models (ECM 2

and ECM 3) or the extended model (ECM 4) were needed to

estimate the internal motion well (Figure 2, column 2). For non-

linear motion, quadratic models (ECM 3 and ECM 4) were needed

(Figure 2, column 3).

Figure 3 compares the fit accuracy of the 4 ECMs across all

fractions. Since ECM 2 is equal to ECM 1 with an additional fitting

term, while ECM 3 is equal to ECM 2 with more additional fitting

terms, the fit accuracy improved for all traces and all directions

when going from ECM 1 to ECM 2 to ECM 3 (Supplementary

Figure S2 shows the CC fit accuracy for all fractions). These

improvements were all significant (p < 0.001 along all directions).

The fit accuracy of ECM 4 was worse than ECM 3 (p < 0.001 along

all directions) and slightly worse than ECM 2 (p = 0.086 (LR), p =

0.002 (CC), p < 0.001 (AP)), see RMSE in Table 1. The internal

motion was most prominent in the CC direction, where the mean (±

standard deviation) fit RMSE across all fractions was 1.07 ± 0.49

mm (ECM 1), 0.92 ± 0.39 mm (ECM 2), 0.79 ± 0.30 mm (ECM 3),

and 0.96 ± 0.37 mm (ECM 4) (Table 1).
FIGURE 1

External anterior-posterior marker block motion (orange) and internal cranio-caudal (CC) tumor motion (black) for two motion traces with largely
varying (A) amplitude and (B) frequency.
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3.2 ECM estimation accuracy

Figure 4 shows two examples of external AP and internal

motion in the CC direction in the first three minutes of a fraction

along with the estimated internal motion using different ECMs and

update strategies. In Figure 4A, ECM 2 and ECM3 were fitted to the

motion in the first 60s and applied without any updates to estimate

the internal motion in the subsequent time period (Strategy A).

While the quadratic augmented ECM 3 provided a slightly better fit

to the internal motion than the linear augmented ECM 2 for the

first 60 s, ECM 2 more accurately estimated the motion in the

subsequent period as it tended to be more robust to irregular

motion than ECM 3. In Figure 4B, ECM 2 was fitted to the
Frontiers in Oncology 05
motion in the first 60s and then used to estimate internal motion

in the subsequent time period by applying update strategies A (no

model update) and C (0.33 Hz update of constant ECM term). Here,

Strategy C provided considerably better internal motion estimation

than Strategy A as the frequent model updates continuously

adapted the ECM to baseline drifts between internal and

external motion.

Table 1 shows the mean RMSE across all fractions for all

combinations of ECMs (ECM1-4) and model update strategies

(A-D). With a mean RMSE of 0.41 ± 0.14 mm (LR), 1.02 ± 0.33

mm (CC) and 0.78 ± 0.48 mm (AP), the augmented linear ECM 2

combined with the frequent baseline update Strategy C provided the

best overall estimation of internal motion (highlighted with bold
FIGURE 2

Examples of ECM fits to different types of internal cranio-caudal (CC) motion as function of external anterior-posterior (AP) marker block motion,
including linear motion (column 1), hysteresis motion (column 2) and non-linear motion (column 3). Actual motion is shown in black and ECM fits in
blue (ECM 1), red (ECM 2), green (ECM 3) and gold (ECM 4). The root-mean-square errors (RMSE) specify the fit accuracy.
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text in Table 1). Wilcoxon’s signed rank test showed that this

combination was significantly better than all other ECM – strategy

combinations except for ECM 2 with Strategy B and ECM 4 with

Strategy C in the LR direction and ECMs 2 and 3 with Strategy B in

the AP direction (Table 1). The results are visually summarized for

the CC direction in Figure 5 that also shows that the frequent

update strategies (B and C) combined with the linear augmented

ECM 2 were most robust and had no outliers with high RMSE. In

contrast, update Strategy A (no model updates) performed far

worse than strategies B-D, while the quadratic ECMs 3-4 where

less robust towards outliers than the linear ECMs 1-2.

Supplementary Figure S3 shows a part of the fraction with

highest RMSE of 16.0 mm (see ECM 3 with Strategy D in

Figure 5). The high RMSE was due to a large difference between

motion during the modelling phases and motion during the

estimation phases of Strategy D which especially resulted in poor

motion estimation for the quadratic models that tended to amplify

irregularities in external and internal motion.

Figure 6 shows the CC ECM estimation accuracy by the

augmented linear ECM 2 combined with update strategies A and

C as a function of time across all fractions. Without model updates

(Figure 6A, Strategy A), the ECM estimation accuracy clearly

worsened as the time progressed. With frequent ECM baseline

updates (Figure 6B, Strategy C), the ECM estimation accuracy

stayed on level with the initial fit accuracy even though this

strategy only updated the constant term in Equation 2. It shows

(1) that baseline drifts were poorly described by the ECM and (2)

that except for baseline drifts, an augmented linear ECM

constructed before the treatment remained a stable estimator of

internal motion during the time span of a typical treatment fraction.
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4 Discussion

The present study utilized a unique dataset of independently

measured internal and external motion throughout 42 liver SBRT

fractions to investigate the accuracy of ECM based internal motion

estimation. The study included modelling of four different ECMs of

varying complexity combined with four different ECM update

strategies. All scenarios could realistically be implemented at a

conventionally equipped linear accelerator, for example by

combining monoscopic kilovoltage intrafraction motion monitoring

(KIM) with the external optical signal from the integrated gating

system (25). While the more complex augmented quadratic ECM 3

provided the best model fit, the simpler augmented linear ECM2with

frequent ECM updates (Strategy C) provided the most robust and

accurate estimation throughout the fractions.

On a conventionally equipped linear accelerator the gate on/off

state in a respiratory gated treatment is typically determined by the

position of an external marker block relative to a preset gating

window (15, 28). Such gating in principle assumes a constant linear

relationship between external and internal motion and corresponds

to our simplest scenario of ECM 1 with no model updates during

treatment (Strategy A). However, due to hysteresis motion a simple

linear ECM will not always provide an accurate model fit between

external and internal motion (Figure 2, top, Table 1). Additionally,

primarily due to baseline drift during treatment, scenarios without

ECM updates could not accurately estimate the internal motion

throughout the fractions (Figure 6A, Table 1). These results confirm

work by Ge et al., who concluded, from fluoroscopic imaging during

respiratory gating, that “inconsistent respiratory gating accuracy

occurred within individual treatment fractions” (15).
FIGURE 3

Boxplots of the ECM fit root-mean-square error (RMSE) in the left-right (LR), cranio-caudal (CC), and anterior-posterior (AP) directions during the
first 60 s of all treatment fractions. For each box, the horizontal line shows the median, the x-mark shows the mean, bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. Outliers are plotted separately as dots.
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For improved ECM fit accuracy, we showed that the augmented

linear model (ECM 2) including a term to handle hysteresis motion

provided a good compromise between fit accuracy and robustness

towards irregular motion. More complex quadratic models (ECM 3

and 4) provided better or similar model fits but were less robust

towards irregular motion. For improved internal motion estimation

during treatment, three different ECM update strategies (B-D) were

investigated. Strategies B and C simulated continuous ECM update

every 3 s (0.33 Hz), with Strategy C providing a faster and simpler

update based only on the last five samples and accounting only for

baseline drifts between internal and external motion. Strategy D

employed on-demand ECM building by 20 s modelling followed by

60 s estimation, thereby simulating full ECM generation before

delivery of individual treatment fields. With a mean RMSE of 0.41 ±

0.14 (LR), 1.02 ± 0.33 mm (CC) and 0.78 ± 0.48 mm (AP), the best

result was obtained by ECM 2 combined with strategy C (Figure 5,

Table 1). While the ECM position estimation during treatment

cannot be expected to be better than the fit accuracy itself, the

RMSE of ECM 2 combined with Strategy C throughout the fractions

was only 0.04 mm (LR), 0.10 mm (CC) and 0.15 mm (AP) larger

than the fit accuracy during the first 60 s (Table 1, Figure 6B).
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Hence, frequent adaptation to baseline drift (parameter a in ECM 2,

Equation 2) ensured accurate hybrid motion monitoring, indicating

that the other parameters in the ECM (b, c, t) remained stable

during the treatment sessions. While updating only the constant

term with 0.33 Hz frequency (Strategy C) was the best update

strategy for the linear ECMs 1 and 2, a full update of all ECM

parameters tended to be a better strategy for the augmented

quadratic ECM 3 (Strategy B, Table 1). This could indicate a

tendency of over-fitting by the more complex ECM 3.

A standard linear accelerator does not offer hybrid motion

monitoring as a commercial solution and is only equipped with

monoscopic kV imaging. Still, the hybrid monitoring methods

investigated in this study could be implemented and integrated in a

clinical workflow with proper software updates. The internal 3D

motion (e.g. of implanted fiducial markers) needed to establish the

pre-treatment ECM can be estimated with high accuracy from

marker segmentation in a sequence of 2D x-ray images acquired

from different directions by the method of KIM (29). The projection

images acquired during a standard CBCT scan constitute a suitable

and widely available dataset for this as shown in several studies that

have determined 3D marker motion in patient coordinates from
TABLE 1 Mean (± standard deviation) across all treatment fractions of the root-mean-square error (RMSE) for ECM fitting (in first 60s of each fraction)
and ECM estimation (in remaining part of the fraction) by all combinations of external-internal motion correlation models (ECM 1-4) with ECM update
strategies (A-D).

Directions Model ECM fit accuracy (RMSE) ECM estimation accuracy (RMSE)

First 60s Strategy A Strategy B Strategy C Strategy D

LR (mm)

ECM 1 0.43 ± 0.16
0.84 ± 0.45
(p < 0.001)

0.46 ± 0.14
(p < 0.001)

0.45 ± 0.18
(p = 0.002)

0.49 ± 0.17
(p < 0.001)

ECM 2 0.37 ± 0.13
0.83 ± 0.52
(p < 0.001)

0.43 ± 0.13
(p = 0.086)

0.41 ± 0.14 0.47 ± 0.16
(p = 0.003)

ECM 3 0.32 ± 0.11
0.87 ± 0.52
(p < 0.001)

0.44 ± 0.18
(p = 0.043)

0.46 ± 0.21
(p = 0.005)

0.66 ± 0.83
(p < 0.001)

ECM 4 0.37 ± 0.13
0.84 ± 0.45
(p < 0.001)

0.47 ± 0.20
(p = 0.001)

0.45 ± 0.19
(p = 0.070)

0.50 ± 0.25
(p < 0.001)

CC (mm)

ECM 1 1.07 ± 0.49
2.92 ± 2.43
(p < 0.001)

1.21 ± 0.43
(p < 0.001)

1.10 ± 0.40
(p = 0.001)

1.34 ± 0.51
(p < 0.001)

ECM 2 0.92 ± 0.39
2.65 ± 2.19
(p < 0.001)

1.09 ± 0.32
(p = 0.008)

1.02 ± 0.33 1.25 ± 0.46
(p < 0.001)

ECM 3 0.79 ± 0.30
2.74 ± 2.45
(p < 0.001)

1.13 ± 0.39
(p = 0.020)

1.21 ± 0.60
(p = 0.029)

1.70 ± 2.30
(p < 0.001)

ECM 4 0.96 ± 0.37
3.00 ± 2.88
(p < 0.001)

1.26 ± 0.54
(p < 0.001)

1.17 ± 0.52
(p < 0.001)

1.49 ± 0.97
(p < 0.001)

AP (mm)

ECM 1 0.80 ± 0.45
1.57 ± 0.79
(p < 0.001)

0.91 ± 0.46
(p < 0.001)

0.92 ± 0.56
(p < 0.001)

0.98 ± 0.57
(p < 0.001)

ECM 2 0.63 ± 0.34
1.34 ± 0.61
(p < 0.001)

0.77 ± 0.39
(p = 0.67)

0.78 ± 0.48 0.88 ± 0.57
(p = 0.035)

ECM 3 0.56 ± 0.31
1.73 ± 1.61
(p < 0.001)

0.84 ± 0.61
(p = 0.38)

0.90 ± 0.51
(p = 0.028)

1.65 ± 4.22
(p < 0.001)

ECM 4 0.69 ± 0.38
1.67 ± 1.19
(p < 0.001)

0.94 ± 0.64
(p < 0.001)

0.93 ± 0.51
(p < 0.001)

1.20 ± 1.35
(p < 0.001)
The p-values compare the RMSE of each ECM-strategy combination with the ECM 2 – Strategy C combination, which in general had lowest RMSE (Wilcoxon signed rank test). Bold type
indicates statistically significant differences (p < 0.05).
LR, Left -right; CC, Cranio-caudal; AP, Anterior-posterior.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1470650
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Samadi Miandoab et al. 10.3389/fonc.2024.1470650
CBCT projections by the KIM method (2, 3, 30–33). It provides the

internal motion for typically 60 s with 11-15 Hz temporal resolution.

By applying external monitoring with a standard gating system

during setup CBCT acquisition, the ECM may therefore be

generated without extra imaging dose or workflow procedures. As

demonstrated by Cho et al. monoscopic imaging can perform just as

well as stereoscopic imaging for ECM parameter estimation (33).

During rotational VMAT treatments, the 3D internal 0.33 Hzmotion

monitoring for ECM update strategies B and C is possible by

combining the KIM method with 2D triggered kV imaging, which

is available on the most widespread conventional treatment platform

(Varian TrueBeam (34),). This was demonstrated during liver SBRT

treatments by Bertholet et al. who named their hybrid real-time

monitoring method COSMIK (25). The on-demand 20 s 3D motion

monitoring for update strategy D may also be implemented on a

conventional linear accelerator by combining KIM with monoscopic

kV fluoroscopy during a 120 degree gantry rotation as demonstrated

by Keall et al. (29).

Bertholet et al. simulated hybrid tumor motion monitoring for

the same patient cohort as the present study using a scenario similar
Frontiers in Oncology 08
to ECM 2 with update strategy C and reported RMSE very similar to

ours (LR: 0.46 mm, CC: 1.12 mm, AP: 0.82 mm) (25). For

comparison, they achieved similar or smaller errors by full kV

monitoring with the KIM method (LR: 0.50 mm, CC: 0.13 mm, AP:

0.53). For an ECM strategy without updates, Bertholet et al.

reported smaller mean RMSE than ours (CC: 1.78 mm versus

ours of 2.65 mm). This difference is due to shorter motion traces

applied by Bertholet et al. who used the longest unbroken motion

trace while the current paper used longer motion traces that

spanned sections of data missing e.g. due to loss of the Calypso

signal during setup CBCT acquisition or couch rotations at

some fractions.

Different hybrid motion monitoring scenarios have been

investigated in previous studies however without long sequences

of independently measured internal and external motion. Poels

et al. compared the Cyberknife Synchrony and Vero systems that

both apply hybrid kV/optical motion monitoring (21). The

Cyberknife system applies ECM updates every minute by adding

the new x-ray target position to the data and uses second order

polynomial ECMs with a fallback strategy to a linear model if the
FIGURE 4

External AP motion (orange) and internal CC motion (black) in the first three minutes of two fractions. (A) Result of ECM fit (first 60 s) and
subsequent internal motion estimation (60-180 s) using ECM 2 (red) and ECM 3 (green) with no model update (Strategy A). (B) Result of using ECM2
with update strategies A (no update, red) and C (baseline update with 0.33 Hz frequency, blue). The root-mean-square errors (RMSE) indicate the
fitting accuracy (0-60 s) and ECM estimation accuracy (60-120s and 120-180 s).
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external breathing amplitude exceeds the amplitude during ECM

training. This strategy is supported by our study, where the

quadratic models were less robust towards irregular motion and

sometimes had large estimation errors when the external motion

amplitude was much larger than during the model fitting period

(see ECM 3 in Supplementary Figure S3). The Vero applies a second

order polynomial ECM dependent on both the position and speed

of the external signal and uses stereoscopic 0.5 Hz imaging during

treatment for ECM validation. Both systems perform full ECM

rebuilding if large errors (Cyberknife > 5mm, Vero > 3mm) are

detected in stereoscopic images. This requires treatment

interruption and imaging over an extended period of time. Our

data indicate that a simpler strategy of only constant (baseline) term

rebuilding may be advantageous because it in principle only

requires one image (or a few images for better robustness) and

still mitigates most of the errors. For a group of liver and lung

patients, Poels at al (21). reported no significant accuracy

differences between the Cyberknife and Vero ECMs (95th

percentile ECM error = 3.7 - 4.1 mm without model updates)

over extended periods of time (average 7 min). Their study was

based on sparse 0.5 Hz stereoscopic imaging of internal motion.

Another recent study compared the Radixact and Cyberknife

hybrid systems (23). The Radixact hybrid system is an adaptation

of the Cyberknife Syncrony Respiratory Tracking System where the

internal motion is estimated by monoscopic x-ray imaging. The

study reported RMSE in the range of 0.2-3.5mm for the two

systems, with a slight tendency for better performance by the

Radixact system. However, the study only included three traces of

lung tumor motion where the internal motion itself was estimated

based on Cyberknife ECMs (35). It clearly stresses the need for

databases containing complete long-duration motion traces with

independently measured internal and external motion.
Frontiers in Oncology 09
In an early study, Seppenwoolde et al. analyzed shorter high-

frequency motion traces with an average length of 82 s of combined

internal x-ray monitoring and external surface monitoring by a laser

system (26). Consistent with the present study, hybrid monitoring

(Cyberknife model) was found to be able to reduce errors to a fewmm

though no direct population error metric was reported. A small trend

between ECMupdate frequency and accuracy was observed. Based on

a database of Cyberknife lung and pancreas treatments, Malinowski

et al. also confirmed the importance of ECM model updates to reach

mean tumor estimation errors below 2 mm (36). In an initial

assessment of the Vero system, Depuydt et al. analyzed seven lung

(training) sessionswith combined external optical and internal 1Hz x-

ray monitoring for approximately 60 s and found that the 2D ECM

error was below 3.08 mm (90th percentile) for that system without

model updates (22).

Compared to direct internal monitoring by fluoroscopic imaging,

hybrid monitoring has the advantages of reduced imaging dose,

usability for non-coplanar fields where imagers cannot be deployed,

increased robustness towards occasional erroneous marker

segmentation and low system latency (37). Compared to standard

external marker-based gating at conventional linear accelerators,

ECMs could provide accurate continuous estimation of internal

motion during treatment for triggering based on internal gating

levels. With respect to real-time tumor tracking treatments, the

reduced latency of an external optical signal compared to x-ray

based monitoring is an important advantage since it reduces the

need for motion prediction algorithms in tracking treatments

(37–39). The continuous motion signal could also be employed for

(real-time) assessment of the actual target dose delivered during

treatment taking the intrafraction motion into account (40).

Limitations of the present work include the missing sections in

some of the motion traces and different trace lengths, which
FIGURE 5

Root-mean-square error (RMSE) of internal motion estimation along the cranio-caudal (CC) direction across all fractions for all combinations of
external-internal motion correlation models (ECM1-4) and model update strategies (A–D). For each box, the horizontal line shows the median, the
x-mark shows the mean, the bottom and top of the box show the 25th and 75th percentile, respectively. Outliers are shown separately as dots.
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resulted in different numbers of included fractions as function of

time (Figure 6, Supplementary Figure S1). Also, only a limited

number of ECMs and ECM update strategies were investigated,

focusing on the previously demonstrated hybrid methodology of

COSMIK (25) and similar strategies that may be realized at a

conventional LINAC. Future work should in more detail investigate

the performance of different available systems and possible

improvements hereof including optimization of the training

duration used for pre-treatment ECM building, the imaging

interval between ECM update imaging, and the number of images

(i.e. motion history length) used for ECM updates. It would also be

advantageous to include detection of irregular external motion that

may signal a hampered ECM e.g. due to coughing, deep breaths or

the patient falling asleep. This could mitigate the risk of ECM

building during non-representative motion periods and trigger

ECM updates when needed during treatment. The present study
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also only considered rigid motion. While not supported by the

current standard hardware and software solutions at a clinical linear

accelerator, an ideal hybrid ECM-based monitoring system should

include detection and modelling of deformations and rotations for

optimal targeting accuracy (3, 7). Monitoring of individual internal

marker motion (3) and surface-guided radiotherapy (41) may play a

role in this respect. Finally, verification of the model choice and

update strategy in an independent dataset of internal and external

motion is warranted to confirm our findings.

In conclusion, we utilized a unique dataset of synchronized

external and internal motion to investigate the accuracy of four

different ECMs and ECM update strategies for hybrid motion

monitoring during radiotherapy. Of the investigated scenarios, an

augmented linear ECM with continuous frequent update of the

baseline term in the ECM model provided the best compromise

between fit accuracy and robustness towards irregular motion.
FIGURE 6

Root-mean-square error (RMSE) across all fractions for each 1-minute interval by the augmented linear model (ECM 2) in the CC-direction for (A)
update Strategy A (no updates) and (B) update Strategy C (baseline update with 0.33 Hz frequency). The first minute shows the ECM fit accuracy of
ECM 2, while the remaining minutes indicate the ECM estimation accuracy. For each box, the horizontal line shows the median, the x-mark shows
the mean, the bottom and top of the box show the 25th and 75th percentile, respectively. For clarity, outliers are not shown. The number of samples
in each boxplot (indicated in the bottom of the figures) varied between the different timepoints due to the sections with unreliable or missing data.
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