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Osteosarcoma (OS) is a malignancy characterized by the proliferation of

osteoblasts that predominantly affects pediatric and adolescent populations. At

present, early detection of OS is significantly lacking, coupled with treatment

challenges such as high recurrence rates, increased side effects, and the

development of drug resistance. Therefore, developing new diagnostic and

therapeutic modalities is clinically significant. Exosomes are naturally occurring

nanoparticles found in the body that contain various materials, including DNA,

RNA, and proteins. Owing to their numerous beneficial properties, including

histocompatibility and in vivo stability, they can be useful as drug carriers. With

the development of competitive endogenous non-coding RNA (ncRNA)

networks, the role of ncRNA in OS cell control has been increasingly studied.

This review provides a thorough summary of multiple potential biogenetic

pathways of different ncRNAs in exosomes, including microRNAs, long

ncRNAs, and circular RNAs. Moreover, the review highlights their effects on OS

cells and their potential applications in the diagnosis, treatment, and control of

OS drug resistance. The interplay between different types of ncRNAs, which

collectively affect OS through the networks of competing endogenous ncRNAs,

is the primary focus of this research.
KEYWORDS

exosome, osteosarcoma, non-coding RNA, micro-RNA, long non-coding RNA,
circular RNA
1 Introduction

In osteosarcoma (OS), a type of osteoblastosis, tumor cells generate neoplastic

osteogenesis or neoplastic osteoid matrix. The disease primarily affects children and

adolescents, typically occurring proximal humerus and near the knee joint of the distal

femur, proximal tibia (1–3). Currently, routine radiography and other imaging procedures,

as well as the clinical manifestations of patients with frequent bone pain without induction

at night, are the primary means of diagnosing OS. Additional diagnostic methods include
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biopsy, pathology, immunohistochemistry, and auxiliary

examinations (4). Before 1970, treatment of OS primarily

involved surgical resection. The current MDT strategy involves

adjuvant chemoradiotherapy, surgical resection, and preoperative

neoadjuvant chemotherapy using a combination of high-dose

methotrexate, adriamycin, and cisplatin (5, 6). Unfortunately,

these treatments have numerous disadvantages, including

incomplete surgical resection, chemoradiotherapy side effects, and

tumor resistance development (7).

Exosomes are extracellular vesicles with diameters ranging from

30 to 100 nm. Moreover, they are packed with various RNAs,

proteins, lipids, and DNA (8). Exosome research has grown rapidly

since 2012, mostly concentrating on the fundamentals of tumor-

targeted therapy. With the advancement in exosome research, the

non-coding RNA (ncRNA) in exosomes has attracted significant

attention. This type of RNA does not translate proteins. There are

numerous types of ncRNA, including miRNA, lncRNA, circRNA,

tRNA, snRNA, siRNA, and piRNA (9). Exosomal ncRNAs have

been explored as potential tools for the early detection and

treatment of bone tumors. These ncRNAs are involved in OS cell

proliferation, metastasis, apoptosis, and drug resistance (10).

However, few studies on the function of ncRNAs in exosomes in

OS have discussed the interactions between different forms of

ncRNAs, which collectively affect OS proliferation, metastasis,

and death. This can be attributed to our inadequate knowledge of

their critical role in these processes. However, they have various

effects on the onset and progression of OS through synergistic or

competitive antagonistic interactions. Moreover, they play a major

role in determining the course of tumor treatment, including

therapeutic targets and drug resistance (11). In this study, three

extensively researched RNAs, circRNAs, lncRNA, and miRNAs,

were chosen for evaluation. The study emphasized their roles in the

diagnosis and treatment of OS, particularly their interactions that

jointly affect growth, proliferation, apoptosis and drug resistance of

OS cells.
2 ncRNA in exosomes

Exosomes are a component of intracellular vesicles, which are

mainly produced through the endocytosis pathway. In the

formation of multivesicular bodies (MVB), exosomes, which serve

as intraluminal vesicles(ILV), are gradually formed and

accumulated in endosomal sorting complexes for transport

(ESCRT)-dependent pathways and ESCRT-independent pathways

through multiple deslamination. Following lysosome-mediated

selective transport screening and other modifications, MVB

fusion with the cell membrane through exocytosis ultimately

releases ILV into the body fluids (12–14). With the progress in

research on exosomes, they have demonstrated significant potential

in the diagnosis and treatment of OS. Exosomes have the potential

to be used as OS biomarkers that could help in early and

individualized tumor diagnosis. Moreover, owing to its numerous

advantages, including membrane stability and biocompatibility, it

can be utilized as a natural drug delivery system to pave a new path

in the field of tumor-targeted therapy (15, 16).
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Nucleic acids, proteins, and lipids are among the numerous

components of exosomes. These vesicles are also intimately engaged

in the growth, development, and spread of tumors (17). Among

these are the ncRNAs that this study mentions. RNAs that aid in the

expression of genes in vivo are known as non-coding RNAs

(ncRNAs), and they can be categorized into different forms based

on factors such as nucleotide length, shape, and function. These

categories include miRNA, lncRNA, circRNA, tRNA, rRNA,

siRNA, snRNA, piRNA, and antisense RNA (18). circRNAs,

miRNAs, and lncRNAs have been thoroughly investigated. They

are also closely associated with OS (19). As a result, the purpose of

the three and their interactions are the main topics of this essay.

First, miRNAs influence gene expression, cell division, and

apoptosis by terminating translation or directly degrading the

target mRNA at the microscopic level by complementary pairing

with the target mRNA (20). Macro-level manifestations include the

regulation of body development and growth (21), fat metabolism

(22), hematopoiesis (23), and anti-inflammatory processes (24).

Second, lncRNAs influence epigenetic, transcriptional translation,

and post-translational modification of genes in cells, thereby

affecting the cell cycle, differentiation, growth, and development

of cells and the body (25, 26). Ultimately, circRNAs function as

competitive endogenous RNA or miRNA sponges that regulate

gene transcription and affect the cell cycle, contributing to the

development and occurrence of malignancies (27) and illnesses of

the cardiovascular system (28–30). More significantly, a substantial

body of research demonstrates that all three of these elements are

interdependent and inseparable from the body and have an impact

on the OS life cycle.
3 Exosomal miRNAs

3.1 Overview of exosomal miRNAs

With 19–25 nucleotides, miRNAs are a type of ncRNAs that

primarily assist in mRNA processing and translation in vivo. By

destroying mRNA or regulating the initial phase of transcription,

miRNAs primarily prevent their translation into proteins (31). In

the natural state of the body, exosomal miRNAs are primarily

formed in the following ways. Prior to maturation, the RNApol II-

catalyzed translation of the miRNA-encoding gene results in pri-

miRNA (19), which is further processed into pre-miRNA by the

Drosha complex. Once the pre-miRNA enters the cytoplasm via the

exportin5 complex (32), it gets processed by the dicer complex (33).

Tang et al. (34) and Zhang et al. (35) summarized several potential

sorting mechanisms in the cytoplasm that may be used to move

mature miRNAs from the cytoplasm to exosomes. These include

pathways that rely on particular miRNA sequences, such as the

hnRNP pathways (36) and miRNA3 ‘-terminal sequence dependent

pathways (37). Additionally, there are pathways that are

independent of particular miRNA sequences, such as the

nSMase2 pathway (38) and potential miRNA-induced silencing

complex (miRISC)/AGO 2 protein-related pathways (39). When

the micronucleus (MN) carrying DNA ruptures and MVB wraps

the genomic DNA that is dispersed into the cytoplasm, it is
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transferred to exosomal vesicles during exosome formation (40, 41).

This exosome-transferred DNA has the ability to encode miRNAs

and other substances which could serve as targets for treatments as

well as biomarkers for the identification of specific diseases (42, 43).

Engineering methods such as artificial cell modification and

transfection, ultrasound, electroporation, and calcium chloride

heat shock (44) can also be used to artificially load miRNAs into

exosomes under unnatural conditions. (Figure 1) Because of space

constraints, these methods are not covered in detail in this study.
3.2 The role of exosomal miRNAs in the life
cycle of OS cells

Exosomal miRNAs affect OS cells in various phases of their life

cycle. According to Zhang et al., exosomal miRNAs have two primary

functions. First, tumor-derived miR-21 and miR-29a can act as ligands

and bind to murine TLR7. Second, they regulate intracellular target

genes and bind to target cell mRNA or other receptors as ligands to

facilitate intercellular communication (35). For instance, Fabbri et al.

(45) discovered human TLR8 receptors, which belong to the Toll-like

receptor (TLR) family, in immune cells. This in turn causes

inflammation, which stimulates tumor growth and migration. As a

result, miRNAs can affect OS cells at various points during their

existence. First, research indicates that certain exosomal miRNAs may

facilitate OS growth and multiplication. For example, Raimondi et al.

(46) showed that the OS cell-derived exosomes miR148a-3p and

miR21-5p could be overexpressed to significantly enhance OS

activity and differentiation. Overexpression of both can stimulate the

production of angiogenic factors in HUVEC, which facilitate the
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creation of blood vessels. Interestingly, this was not the outcome of

the co-transfection. Second, exosomes containing miR-675 (47) and

miR-1228 (48) can promote OS migration and invasion. Previous

studies have demonstrated that a few exosomal miRNAs, including

exosomes miR-208a (49), miR-221-3p (50), and miR-1307 (51),

promote OS growth, metastasis, and invasion. Finally, exosomal

miR-206 is a classic example of an exosomal miRNA that can cause

OS cells to undergo apoptosis or suppress their ability to proliferate and

spread. Zhang et al. (52) demonstrated that the targeted suppression of

TRA 2B and overexpression of miR-206 can dramatically reduce the

growth andmetastasis of OS and induce apoptosis. The other examples

of exosomal miRNAs are miR-144-3p (53), miR-15a (54), and miR-

371b-5p (55).

In summary, exosomal miRNAs significantly affect the onset,

growth, multiplication, metastasis, invasion, and apoptosis of OS

cells. They offer a wide range of potential applications as therapeutic

targets and clinical diagnostic indicators.
3.3 The significance of exosomal miRNAs
in the diagnosis, treatment, and prognosis
of osteosarcoma, as well as their role in
drug resistance

Numerous studies have demonstrated a connection between

aberrant miRNAs and a wide range of illnesses, including cancer,

cardiovascular system disorders, and endocrine and metabolic

disorders (56). In vivo, OS formation, proliferation, migration,

and apoptosis are significantly influenced by exosomal miRNAs

(57). As a result, it has a significant application value in OS
FIGURE 1

Three ways of exosomal miRNA production. The first way to generate pre-miRNA in the nucleus and then transport it to the cytoplasm to form
mature miRNA after processing. Finally, hnRNP pathway (A), miRNA 3’-terminal sequence-dependent pathway (B), nSMase2 pathway (C) and
possible miRNA-induced silencing complex (miRISC)/AG02 protein-related pathway (D) are transported to exosomes to perform corresponding
functions. The second method is to use the raw material in the exosomes to directly undergo enzymatic shear processing to form mature miRNA.
The third way is generated by engineering techniques, such as transfection, sonication, electroporation and Cacl-·Heat Shock. DNA,
Deoxyribonucleic Acid; pri-miRNA, primary microRNA; pre-miRNA, precursor microRNA; MVB, Multivesicular body; miRNA, microRNA.
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diagnosis and therapy. First, Ye et al. (58) determined that patients

with OS had upregulated levels of mir-195-3p, let-7i-3p, miR-92a-

3p, and miR-130a-3p using high-throughput sequencing of

numerous exosomal miRNAs. In particular, the expression of

miR-195-3p. These exosomal miRNAs may serve as biomarkers

for early diagnosis of OS. However, further investigation is required.

By inhibiting BCL6 expression, exosome miR-101 produced from

adipose mesenchymal stromal cells may reduce the incidence and

metastasis of OS cells, as shown by Zhang et al. (59). Therefore, it is

anticipated to be a useful biomarker of metastatic OS. Second,

regarding therapy, McNamara et al. (60) discovered that

chemotherapy medications were administered to patients with

Kaposi’s sarcoma via exosomes and that exosomal miRNAs may

encourage the aggregation of chemotherapy medications within the

exosomes originating from tumors. This discovery raises the

possibility of poisoning certain tumor cells and the surrounding

tissue using chemotherapeutic medicines. In addition, the

utilization of exosomes laden with chemotherapy medications

might also alter tumor migration, improving the prognosis of the

tumor, as demonstrated in the McNamara et al. publication.

Prognosis and treatment are related, and a patient’s treatment

course has a significant impact on the prognosis.

Lastly, despite minor advancements in immunotherapy and other

areas, the primary treatment for OS remains the administration of

methotrexate, doxorubicin, and cisplatin (MAP) as neoadjuvant

chemotherapy drugs in conjunction with surgery (61, 62). As a

result, tumor resistance to chemotherapeutic medications has

inevitably drawn the attention of researchers and is challenging.

Exosomes provide a possible solution for tumor resistance,

prompting researchers to consider them because of the ncRNAs

found within them. Exosomal miRNAs affect drug efflux or

inactivation, metabolic regulation, tumor microenvironment, classical

DNA damage repair mechanisms, and cancer cell apoptosis; therefore,

they can affect tumor resistance to drugs (63, 64). Meng et al. (65), for

instance, discovered that osteosarcoma cells can enhance their cisplatin

resistance through autophagy and exosomal miR-331-3p secretion.

Additionally, they observed that drug-resistant osteosarcoma cells can

employ exosomal transmission to impart drug resistance to

neighboring osteosarcoma cells.Contrary to the findings of earlier

investigations on this miRNA (66), the study by Cai et al. (67) also

discovered that exosomemiR-143-3p was up-regulated in doxorubicin-

resistant osteosarcoma cells.Yoshida et al. (68) showed that intracellular

miR-25-3p increases OS medication resistance.

In conclusion, Exosomal miRNAs have a major influence on overall

OS diagnosis, therapy and drug resistance, although their

implementation is hampered by a lack of clarity surrounding some of

the relevantmechanisms. As a result, we hope to used exosomalmiRNAs

as a starting point to eventually release their huge application potential.
4 Exosomal lncRNA

4.1 Overview of exosomal lncRNAs

Long non-coding RNA (LncRNAs) are RNA molecules longer

than 200nt that often do not encode proteins and have conserved
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secondary structures (69). They share a similar biogenesis with

miRNAs. First, the transcriptional splicing of genomic DNA is

catalyzed by RNA polymerase II in the nucleus. Next, 5’end-

capping and 3’ end-polyadenylation occur. The effectively

processed lncRNA is exported to the cytoplasm by NXF1 (70, 71).

The majority of lncRNAs that enter the cytoplasm are

polyribosomal components, but only a small percentage are

sorted into exosomes to produce exosomal lncRNAs (72).

Unfortunately, the exact mechanism of this sorting process is still

unknown, however, Statello et al. (73) showed that it may be

connected to several RNA-binding proteins, most notably the

Major Vault Protein (MVP), which is able to bind to RNA during

the transfer of RNA from the cytoplasm to exosomes and from

exosomes to recipient cells, thus maintaining the stability of RNA.

On the other hand, exosome lncRNAs may potentially be directly

transcribed by DNA in exosomes because exosomes also include

DNA derived from nuclei (40),the majority of which are non-

coding sections that cannot be expressed. Nevertheless, there aren’t

many studies in this field currently, more research is necessary.

Finally, similar to miRNAs, exosomal lncRNAs can also be

produced artificially through genetic engineering methods such as

transfection (74). The development of this field of study opens the

door to the possibility of loading exosomal lncRNAs with

medications for targeted therapy.
4.2 The role of exosomal lncRNA in the life
cycle of OS cells

Exosomal long noncoding RNAs are present in many different

cell types throughout the body, and as research progresses, more

information is being revealed about their roles. It is involved in

various biological processes in the human body. First, considering

the inherent characteristics of lncRNAs, they can control gene

expression by influencing transcriptional and post-transcriptional

modification, epigenetic inheritance, and serve as a sponge for

miRNAs (72, 75). Alternatively, attachment to proteins influences

the functions of related proteins (76). Second, exosomal long

noncoding RNAs (lncRNAs) have the ability to act as mediators

in intercellular communication; Zhang et al. (77) discovered that

when exosomes containing HOTAIR were added to A549 and

H1299 cells, there was an increase in HOTAIR expression as well

as an improvement in cell proliferation and invasion capacity.

These results suggest that lung cancer exosomes mediate

intercellular communication via HOTAIR. And then promote the

proliferation and migration of tumor cells. Lastly, exosomal long

noncoding RNA are involved in the genesis, proliferation,

metastasis, and death of OS cells. Wang et al. (78), for instance,

discovered that the lncRNA ELFN 1-AS1, an exosome generated

from OS cells, can function as an miR-138-5p and miR-1291 sponge

to cause macrophages to polarize towards the M2 type, thereby

encouraging the formation of OS. Zhao et al. (79) found that by

boosting the expression of the oncogenic protein ERG and

preventing the ubiquitination of cancer cells, BMSC-derived

exosomes loaded with lncRNA PVT1 could encourage the

proliferation and migration of OS cells. By studying the miR-29/
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NFIA axis, Zhang et al. (80) showed that the exosomal long

noncoding RNA LIR-AS1 increased the proliferation and invasion

capacity of OS cells and prevented cancer cell apoptosis. Therefore,

it may be a potential therapeutic target for OS. Li et al. (81) showed

that exosome-related lncRNAs influence miR-153 and autophagy-

related protein 5 (ATG5), which, in turn, regulate angiogenesis,

migration, and autophagy in OS cells.
4.3 The significance of exosomal lncRNA in
the diagnosis, treatment and drug
resistance of OS

The primary functions of lncRNAs in vivo include gene

expression, mRNA shearing, epigenetic regulation, cell cycle,

differentiation regulation, and many other processes (82). These

proteins have diverse effects on OS cell activity, proliferation,

metastasis, and death. Consequently, it offers a wide range of

potential applications in tumor diagnosis and treatment.

Exosomal lncRNAs are mostly used as drug delivery vehicles to

treat OS and as diagnostic biomarkers. For instance, Yuan et al. (83)

evaluated the lncRNA DANCR content of exosomes in benign bone

tumors and healthy controls and found that OS patients had

considerably higher DANCR expression in exosomes, with a

statistically significant difference. Consequently, in OS patients,

the exosome lncRNA DANCR could be employed as a potential

tumor biomarker. Huang et al. (84) created the engineered exosome

cRGD-Exo-MEG 3 by transfecting lncRNA MEG3 into exosomes

and altering the targeting ligand. This exosome demonstrated a

noteworthy inhibitory effect on OS. This approach is expected to be

useful in the clinical treatment of OS. Lastly, exosomal lncRNAs

exhibit the potential for use in the treatment of tumor drug

resistance. For instance, Hu et al. (85) demonstrated that

exosome lncRNA ANCR expression may increase patient overall

survival rates in chemotherapy-resistant OS. Furthermore, and

because its blood source is readily available and non-invasive,

ANCR has the potential to be a prognostic biomarker for OS

patients. Additionally, Tao et al. (86) discovered that exosome

lncRNA EWSAT1 might influence tumor growth by causing an

increase in angiogenic factor secretion and enhancing the sensitivity

of vascular endothelial cells, a process known as the “double

stacking effect.”

Exosomal lncRNAs are currently under active investigation for

their potential in diagnosing and treating OS, with further studies

planned for the future.
5 Exosomal circRNA

5.1 Overview of circRNAs in exosomes

CircRNAs, a unique type of ncRNA with nucleotide lengths of

more than 200nt in vivo. Its closed-ring structure allows persistent

expression and resistance to degradation (87). And it is difficult to be

degraded by RNA exonuclease. With advances in research, the

function of exosomal circRNAs in vivo has drawn increasing
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attention. Exosomal circRNAs can be produced in three different

ways, similar to the previously mentioned lncRNAs and miRNAs.

First, a procedure known as “reverse splicing” occurs in the nucleus,

synthesizing circRNAs. This procedure is classified into two models:

lariat splicing and direct reverse splicing, depending on the sequence of

circRNA cyclization and classical splicing (88). In lariat splicing, a

segment comprising certain exons is spliced out first, followed by

transcription of the pre-mRNA from the DNA in the nucleus. This

segment then targets the 3’terminal position of the exon downstream of

the disconnected mRNA and links with it. The remaining ends of the

mRNA are joined end-to-end to create a cyclization, which joins the

ends to produce a linear and circular double-splicing structure.

The latter is achieved by coupling intermediate bases in a

complementary manner to produce a Y-shaped structure. The two

ends are then split, and the separated ends are linked to produce a two-

part construction that is both circular and linear. RNA helicases DDX

39A and 39 B then transport the circRNA synthesized in the nucleus to

the cytoplasm, and this process is dependent on the length of the RNA

(27). However, the precise procedure remains unclear. Research by Li

et al. (89) on the sorting of circRNAs into exosomes revealed a

relationship with miR-7, suggesting that the process is mostly

controlled by the miRNA content present in cells. Additionally, Dou

et al. (90) discovered that this sorting process is highly intricate and

may be performed by RNA-binding proteins in exosomes. However,

the precise mechanism governing this process remains unknown.

Second, although exosomes are known to contain DNA and

certain associated transcriptases, there is no concrete evidence that

DNA transcription occurring in exosomes can directly produce

circRNAs. Nonetheless, given the intracellular origin of exosomes, it

is conceivable that circRNAs may be produced directly from DNA

in exosomes via several intricate processes (14). Finally, exosomal

circRNAs can be produced in vitro using artificial modification

techniques such as transfection and artificial cyclization. These

techniques can be used in relevant experiments and serve as

prospective clinical diagnostic markers (91, 92).
5.2 The role of exosome circRNA in the life
cycle of OS cells

Exosomal circRNAs perform various functions in vivo.

circRNAs have the ability to control the molecular expression

level of downstream target genes by acting as a miRNA sponge.

For example, circRNA Rtn4-modified BMSC exosomes function as

miR-146a sponges to prevent TNF-a-induced MC3T3-E1

cytotoxicity and death in mice (93).

Additionally, circRNAs can influence gene expression by

regulating transcription, interacting with RNA-binding proteins,

and acting as protein sponges to influence their function (94). A

small fraction of circRNA is translated into proteins that control

biological processes within cells (95). Furthermore, circRNAs can

act as intercellular communication media by assuming the role of

exosomal content in information transfer between cells. For

instance, Lin et al. (96) summarized the role of exosomal

circRNA in cell-to-cell communication in cancer biology.

Exosomal circRNAs may play a role in the intricate intercellular
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communication that occurs in the tumor microenvironment

between tumor, stromal, and normal cells. Exosomal circRNAs also

play significant roles in OS, including drug resistance, angiogenesis,

metastasis, invasion, apoptosis, and cell proliferation. It significantly

affect OS cell division, migration, invasion, and apoptosis. Li et al. (97)

demonstrated that circRNA circ-0000190 nanovesicles prevent cell

proliferation, migration, and invasion. Additional analyses revealed

that low circRNA expression is associated with tumor growth and

migration. Their study showed that the expression of circ-0000190

was considerably lower inOS cell lines than in normal cells. According

to Yang et al. (98), circKEAP1 can stimulate the growth andmigration

of tumor cells by specifically targeting exosomal miR-486-3p

in OS cells, resulting in the overexpression of MARCH1. These

occurrences imply that exosomal circRNAs affect the OS cell life

cycle, and could serve as diagnostic markers and potential

therapeutic targets for OS.
5.3 The role of exosomal circRNA in OS
diagnosis, treatment, and drug resistance

Owing to their relatively stable ring structure and long half-life in

human serum, circRNAs can serve as serum biomarkers to aid in the

identification of cancers. Numerous studies have been conducted,

and while its clinical applications are still in early stages, efforts to

refine and promote their use are actively underway. Because

exosomal circRNAs and OS cells are intimately connected, they are

expected to aid in clinical diagnosis and treatment. Li et al. discovered

that the content of circ-0000190 was considerably lower in the

extracellular vesicles and tissues of OS patients, with the majority

being encased in extracellular vesicles, as previously described. As a

result, it is anticipated that this RNA will serve as a novel biomarker

for OS diagnosis. Regarding therapy, exosomal circRNAs have been

studied in relation to treating OS; however, owing to numerous

obstacles, their useful clinical application has not yet been realized. It

is conceivable that exosomal circRNAs that can impact the life cycle

of OS cells will serve as therapeutic entry points in the future, and that

medications targeting these characteristics may be developed for the

treatment of OS. It is theoretically feasible to prevent tumor

development and migration by creating tailored exosomes that

block circKEAP1, a miRNA sponge known to promote the

proliferation and metastasis of OS cells, as previously discussed.

This would result in anti-tumor effects. Ultimately, a study by Pan

et al. (99) revealed that exosomes can upregulate their receptor cells’

resistance to cisplatin by mediating exosomal circRNA circ_103801.

Circ_103801 was overexpressed in cisplatin-resistant cells compared

to normal MG63 cells and was abundantly present in a significant

number of exosomes. This overexpression reduced the sensitivity of

MG63 and U2 cells to cisplatin, increased the expression of P-

glycoprotein and multidrug resistance related protein 1, and

decreased apoptosis. Considering these outcomes, circ_103801 may

be employed as a predictive biomarker to assess the effectiveness of

chemotherapy for OS. Moreover, further studies are required to

determine its usefulness in clinical settings as a target to overcome

drug resistance.
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6 Effects of miRNAs, lncRNAs, and
circRNAs interactions within
exosomes on OS

Since Salmena et al. (100) proposed competitive endogenous

RNA (ceRNA) regulation networks, ncRNAs have received

increasing attention. Gene expression and cell cycle are regulated

by interactions between various types of ncRNAs. Given that

exosomes originate from the cytoplasm and include a diverse

array of ncRNAs, it is extremely likely that this regulatory

network also exists within exosomes. Therefore, the interactions

between exosomal ncRNAs, their impact on OS cell invasion and

proliferation, and their use in cancer cell diagnosis and treatment

are discussed in this study.
6.1 Interaction between miRNA and
LncRNA in exosomes

As our understanding of this subject has grown, we have

discovered that miRNAs and lncRNAs in exosomes are closely

linked and engage in various interactions. Yin et al. (101)

summarized the relationship between lncRNAs and miRNAs, and

subsequent research has focused on lncRNAs acting as miRNA

sponges to competitively inhibiting miRNAs (79). Various studies

have discussed the effects of lncRNAs and miRNAs on OS cells and

their use in diagnosis and treatment. For instance, Wang et al. (78)

found that the OS cell-derived exosome lncRNA ELFN1-AS1 can

upregulates CREB1 by suppressing miR-138-5p and miR-1291,

promoting macrophage polarization toward M2 and ultimately

enhancing OS cell biogenesis. In a different study, Zhang et al.

(102) also showed that the macrophage-derived exosome lncRNA

LIFR-AS1 suppresses NFIA by downregulating miR-29a, promoting

cell migration and proliferation while suppressing apoptosis.

According to Zhao et al. (79), exosome-coated lncRNA PVT1

suppresses miR-183-5p and raises ERG expression, thereby

boosting OS cell proliferation and metastasis. According to Li et al.

(81), by downregulating miR-153 and upregulating autophagy-

related protein 5, the enrichment of exosome lncRNA OIP5-AS1

may block autophagy and promote the growth, migration, and

angiogenesis of OS cells. As a result, it may be used as an OS

therapeutic target. Guan et al. (103) discovered that cutting down

lncRNA UCA1 boosted the production of miR-145, which inhibited

the malignant growth of OS cells and triggering apoptosis, thereby

achieving anti-tumor effects. Chang et al. (104) discovered that

lncRNA linc00881, an exosome produced by OS cells, acts as an

miR-29c-3p sponge, facilitating intercellular crosstalk between lung

fibroblasts and OS cells, regulating associated proteases and signaling

cascades, and eventually encouraging OS lung metastases (Table 1).

These pathways merit further investigation because they may be

employed as viable targets in the management of OS. A negative

feedback regulatory loop exists between miRNAs and lncRNA (101).

Moreover, lncRNAs control the production of miRNAs by

functioning as precursors to miRNAs (105), modifying chromatin
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(106), and utilizing other mechanisms. This study does not delve into

specifics due to constraints related to the length of the paper.
6.2 Interaction between miRNA and
circRNA in exosomes

The discovery revealing that circRNAs function as miRNA

sponges with competitive inhibitory properties (112) has sparked

a rapid increase in circRNA research. The main linkage between

miRNAs and circRNAs involves circRNAs acting as miRNA

sponges to inhibit miRNA activity and regulate the expression of

downstream target genes. This mechanism can be utilized in diverse

ways for tumor diagnosis and treatment, indirectly influencing

osteosarcoma proliferation, metastasis, and apoptosis. Li et al.

(113) discovered that through complimentary binding with miR-

29c-3p, the circRNA hsa_circ_0001564 may suppress OS cell

proliferation, end the cell cycle, and cause cell death. In the

circ_0009910/miR-449 a/IL 6R axis, Deng et al. (114)

demonstrated that circ_0009910 upregulates the mRNA

expression of the IL-6R gene by suppressing miR-449. This, in

turn, alters the OS cell cycle, thereby encouraging the proliferation

of cancer cells and preventing their apoptosis. Therefore,

circ_0009910 may be a viable target for practical assistance in the

diagnosis and treatment of OS. According to Jin et al. (115), circ-

0016347 functions as an miR-214 sponge to control the expression

of caspase-1, thereby enhancing OS cell invasion and proliferation.

Yang et al. (98) demonstrated that circKEAP1 functions as an

exosomal miR-486-3p sponge and indirectly upregulates miR-214

expression. This promotes the growth of OS cells; thus, upregulating

the expression of miR-486-3p or downregulating the expression of

circKEAP1 can prevent the growth of OS and stop its cell cycle
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(Table 2). However, additional attention is required because what is

known in this field is insufficient, and there are currently few

relevant clinical application transformations.
6.3 Interaction between LncRNA and
circRNA in exosomes

As previously mentioned, circRNAs are a unique class of

lncRNAs that function as miRNA sponges and interact with

miRNAs to regulate metabolism and gene expression. Through

RNA–RNA interactions, lncRNAs and circRNAs collectively

establish a competitive endogenous RNA network with miRNAs

and mRNAs to control apoptosis, cell metabolism, and body growth

and development (116). Research on the regulatory pathways

between circRNAs and lncRNAs in the OS cell cycle is limited,

and the underlying mechanisms are still unknown. But we can

hypothesize that, in ways similar to that of miRNAs, lncRNAs can

also impact their function in vivo by functioning as circRNAs

sponges and so influencing the OSc cells’ life cycle. Conversely,

circRNAs has the same effect on lncRNAs as described above.
6.4 lncRNA/circRNA-miRNA-mRNA axis
in exosomes

As previously discussed, research in this field has steadily grown

since the introduction of competitive endogenous RNA networks.

The two primary axes are circRNA-miRNA-mRNA and lncRNA-

miRNA-mRNA. Through various mechanisms, they affect

treatment resistance, tumor growth, metastasis, the tumor

microenvironment, and cell cycle events such as OS cell
TABLE 1 Effects of the interactions between miRNAs and lncRNAs in exosomes on OS.

Exosome
lncRNA

miRNA Mechanism axis
Biological function

References

ELFN1-AS1 miR-138-5p (–)
miR-1291(-)

LncRNA ELFN1-AS1/miR-138-5p、
miR-1291/CREB1

Promotes the polarization of macrophages toward M2;promotes
OS cells biogenesis.

(78)

LIFR-AS1 miR-29a(-) LncRNA LIFR-AS1/miR-29a/NFIA Promotes OS cells migration and proliferation;inhibit
cell apoptosis.

(102)

PVT1 miR-183-5p(-) LncRNA PVT1/miR-183-5p/ERG Promotes OS cell proliferation and metastasis. (79)

OIP5-AS1 miR-153(-) LncRNA OIP5-AS1/miR-153/ATG5 Inhibits OS cells autophagy; promotes OS cell growth, migration,
and angiogenesis.

(107)

UCA1 miR-145(-) LncRNA UCA1/miR-145/Wnt/b-
catenin
pathway

Promotes the malignant growth of OS cells;inhibits OS
cells apoptosis.

(103)

Linc 00881 miR-29c-3p(-) LncRNA Linc 00881/miR-29c-3p/
MMP2/NF-kB pathway

Promotes OS lung metastases. (104)

XIST miR-21-5p(-)
miR-375-3p(-)

LncRNA XIST/miR-21-5p/PDCD4;
LncRNA XIST/miR-375-3p/AKT/
mTOR signaling pathway

Inhibits OS cell proliferation and mobility;Promotes cell growth
and autophagy; inhibits cell apoptosis.

(108)
(109)

Linc 00852 miR-7-5P(-) LncRNA Linc 00852/
miR-7-5p/AXL

Promotes tumor growth and metastasis. (110)

CASC15 miR-338-3p(-) LncRNA CASC15/miR-3383p/RAB14 Promotes OS cell growth and metastasis. (111)
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proliferation and apoptosis. Wang et al. (117) demonstrated that the

Notch signaling pathway, PI3K/AKT pathway, JNK and Wnt

pathways, SNHG20/miR-139/RUNX2 axis, and other signaling

pathways are various signaling pathways through which the

lncRNA-miRNA-mRNA axis can influence the growth and

metastasis of OS. For instance, by blocking miR-195-5p, lncRNA

SNHG12 enhances Notch2 expression and promotes the

development and spread of OS (118). As an miR-33a-5p sponge,

lncRNA DANCR promotes the AKT signaling pathway,

upregulates the expression of AXL, and accelerates the

development of OS (119). The miR-39/RUNX2 axis can be

targeted by the downregulation of lncRNA SNHG20, which can

also trigger the mitochondrial apoptosis pathway, limit OS

development, and cause OS apoptosis (120).

Additionally, the circRNA-miRNA-mRNA axis affects the

growth, metastasis, and treatment resistance of OS cells. Liu et al.

(121) discovered that by influencing the three axes of miRNA-

TRIM21, MAP3K5, and PRKX, the downregulation of

circ_0001060 may ultimately decrease the proliferation and

metastasis of OS cells. In their research, Qin et al. (122)

concluded that competitive endogenous RNA pathways can

impact tumor resistance to chemotherapeutic treatments such as

doxorubicin and cisplatin through various signaling pathways,

including the Wnt/b-catenin pathway and the miRNA-RASSF6

axis. In summary, competitive endogenous RNA networks have a

significant impact on OS, and further research is essential to explore

their potential clinical applications (Figure 2).
7 Interactions of other ncRNAs and
their significance in the diagnosis and
treatment of OS

ncRNAs encompass not only the three RNA types mentioned

above but also siRNAs, piRNAs, snoRNA, tRNA, and long mRNA-

like ncRNAs. These RNAs can also influence other RNAs, such as

miRNAs and lncRNAs, to change the course of the OS cell life cycle.

The characteristics and applications of siRNAs, piRNAs, and

snoRNAs are briefly described in the following section.

First, cells create a class of double-stranded RNA called small

interfering RNA (siRNAs), which are 21–25nt in length. Dicer

nuclease cuts RNA and depends on the Argonaute family of

proteins to accomplish its function (123). It controls the post-

transcriptional degradation of mRNA generated by target genes.

Zhao et al. (124) synthesized biomimetic nanoparticles by co-
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polymerizing survivin siRNA and doxorubicin hydrochloride into

tumor cells. They observed that these nanoparticles had good

tumor-targeting properties, were safe in vivo, and possibly have

antitumor therapeutic effects in vivo. After producing chemically

altered siRad 18 loaded with engineered RGD-exosomes (RGD-

EXOs), Du et al. (125) discovered that lowering the expression of

Rad 18 significantly boosted the susceptibility of OS cells to

adriamycin. By altering the host liver, Yu et al. (126) were able to

transfer small cell vesicles containing VEGFR2 siRNA to the lung.

By silencing the VEGFR2 gene, siRNA decreased OS cell lung

metastasis. Moreover, siRNAs contributed to drug resistance in OS

cells. For instance, siRNA knockdown of lncRNA ANCR affects

exosomal ANCR in patients with OS and doxorubicin resistance

(127). These findings are expected to be applicable in clinical

settings, providing an alternative treatment approach for OS.

Second, a family of short ncRNAs, called PIWI-interacting

RNAs (piRNAs), with a length of approximately 30nt interacts

with Piwi proteins in a functional manner. It performs biological

tasks, including maintaining germline and stem cell functions,

controlling translation and mRNA stability, and silencing

transcribed genes (128). This type of RNA can also affect OS cell

growth and metastasis. According to Das et al. (129), piRNA-39980

can activate MMP-2 and impede SERPINB1 to increase the

invasion and metastasis of OS cells while suppressing their death.

Wang et al. (130) also discovered notable alterations in the

expression of numerous short ncRNAs, such as piRNAs,

snoRNAs, and miRNAs, in MG63 OS cells using sequencing and

other methods. Tumor cell growth and metastasis have been

reported to be inhibited by piRNA DQ596225, snoRNA

ENST00000364830.2, snRNA ENST00000410533.1, and miRNA

hsa-miR-369-5p. Some medications act on piRNAs and can alter

the life cycle of OS cells. Cui et al. (131) discovered that butorphanol

suppresses the expression of mRNA FN1 and increases the

expression of piRNA hsa_piR_006613, thereby preventing OS cell

growth and metastasis. This suggests that butorphanol could serve

as a novel therapeutic target for OS. Finally, a class of tiny ncRNAs

called small nucleolar RNA (snoRNA) is found in the nucleolus of

eukaryotic cells and is involved in the processing of mRNA3

‘terminal and ribosomal RNA in vivo (132). Regarding its impact

on OS cells, Xu et al. (133) discovered that lncRNA H19 suppresses

the development of OS by controlling snoRNA expression. This

suppression occurs by regulating snoRNA expression, including the

suppression of SNORA 7A, and influencing the DNA damage

response and repair protein complex. As mentioned above,

snoRNA ENST00000364830.2, discovered by Wang et al. (130),

can also be utilized as a biomarker for OS diagnosis. Other ncRNAs
TABLE 2 Effects of interactions between miRNAs and circRNAs on OS.

Exosome circRNA MiRNA Mechanism axis Biological function References

hsa_circ_0001564 miR-29c-3p(-) circRNA hsa_circ_0001564/miR-29c-3p Promotes OS cell proliferation; inhibits cell apoptosis. (113)

circ_0009910 miR-449 a(-) circRNA circ_0009910/miR-449 a/IL 6R Promotes OS cell proliferation and inhibits cell apoptosis. (114)

circ-0016347 miR-214(-) circRNA circ-0016347/miR-214/caspase-1 Promotes OS cell invasion and proliferation (115)

circKEAP1 miR-486-3p(-) miR-486-3p/circKEAP1/MARCH1 Promotes OS cell growth and progression (98)
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may also have an impact on OS cell growth, metastasis, and other

functions; however space constraints prevent a more detailed

exploration of this study. In conclusion, these ncRNAs have a

significant effect on the pathophysiology of OS and hold

considerable promise for use in both diagnosis and treatment.
8 Conclusions and future prospects

At present, there are several issues associated with primary

chemotherapy and surgical treatment of OS, such as drug-resistant

tumor cells and postoperative recurrence. Targeted tumor therapy has

been widely pursued in the treatment of OS. Recent discoveries in the

field of exosomes have led to advancements in this area. Various

studies have demonstrated that ncRNA depth influences cell

developmental cycles, including in OS cells. Thus, artificial

manipulation of these ncRNAs for diagnosing and treating OS is a

highly appropriate large entry point. However, ncRNAs are fragile in

both serum and intracellular environments, and their widespread

distribution poses a challenge in therapeutic applications, limiting

their efficiency. Addressing these challenges could provide a valuable

solution. Exosomes can be used as natural carriers of ncRNA and

medications to treat OS, showing promise due to their relatively stable

presence in the blood and cells and excellent tissue targeting. Previous

research has focused on the function of a single ncRNA, neglecting the

endogenous competitive network that ncRNAs form in vivo. This
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makes it difficult to avoid the effects of other substances in vivo when

the research results are applied. However, progress has been made

since the discovery of competitive endogenous RNA networks. In

addition, the study of single RNAs in RNA networks is gradually

transitioning toward exploring pathways involving multiple RNAs.

Despite these advancements, several challenges must be

addressed before exosomes can effectively serve as carriers for

ncRNAs in OS therapy. These challenges include difficulties in

exosome enrichment, which prevents their widespread application

in therapy, inadequate understanding of endogenous RNA

networks to enable the development of more reliable molecular

pathways that impede OS cells, and it is difficult that the carrier of

loading effective ncRNAs and drugs into exosomes in a stable

manner. Furthermore, there is a lack of sufficient clinical trials to

confirm the efficacy of using exosomes for delivering medicines.

Addressing these issues through comprehensive studies is crucial to

making exosome-based therapies applicable in clinical practice,

offering potential solutions to combat cancer effectively.
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