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Introduction: Hybrid architectures based on convolutional neural networks and

Transformers, effectively captures both the local details and the overall structural

context of lesion tissues and cells, achieving highly competitive segmentation

results in microscopic hyperspectral image (MHSI) segmentation tasks. However,

the fixed tokenization schemes and single-dimensional feature extraction and

fusion in existing methods lead to insufficient global feature extraction in

hyperspectral pathology images.

Methods: Base on this, we propose a multi-scale token divided and spatial-

channel fusion transformer network (MT-SCnet) for MHSIs segmentation.

Specifically, we first designed a Multi-Scale Token Divided module. It divides

token at different scale based on mirror padding and promotes information

interaction and fusion between different tokens to obtain more representative

features for subsequent global feature extraction. Secondly, a novel spatial

channel fusion transformer was designed to capture richer features from

spatial and channel dimensions, and eliminates the semantic gap between

features from different dimensions based on cross-attention fusion block.

Additionally, to better restore spatial information, deformable convolutions

were introduced in decoder.

Results: The Experiments on two MHSI datasets demonstrate that MT-SCnet

outperforms the comparison methods.

Discussion: This advance has significant implications for the field of MHSIs

segmentation. Our code is freely available at https://github.com/sharycao/

MT-SCnet.
KEYWORDS

microscopic hyperspectral image, feature fusion, multi-scale, transformer,
deformable convolution
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1 Introduction

The outstanding performance of hyperspectral imaging

technology in remote sensing has attracted attention from various

domains (1–3). Some researchers applied hyperspectral imaging to

medical field, obtaining microscopic hyperspectral images (MHSIs)

(4, 5). Compared to other images, MHSIs contain not only in high

spatial resolution but also in high spectral resolution. These

abundant spectral features can reflect the biochemical status of

biological tissue cells, providing multi-dimensional information for

tissue analysis and diagnosis (6). This provides strong support for

the early diagnosis and treatment of diseases. The MHSIs

segmentation task is the initial step in utilizing MHSIs to assist

pathologists in diagnosis. Fully and effectively employing spectral-

spatial information to segment tissues not only has significant

research value, but also has critical clinical importance.

In early segmentation tasks, researchers focused on extracting

spectral features (7–9) to segment the tissue. To further enhance the

performance, some researchers employed methods such as Otsu (10),

object-based multiscale analysis (11), and spatial-spectral density

analysis (12) to both extract spatial and spectral features in MHSI.

With the development of deep learning, the encoder-decoder

architectures based on convolutional neural networks (CNNs) (13)

have been widely applied in MHSI segmentation tasks. It can

automatically extract spectral-spatial information from MHSIs,

avoiding the need for complex manually designed features. For

example, Sun et al. (14) designed a cholangiocarcinoma analysis and

diagnosis method based on CNNs and proposed a spectral interval

convolution and normalization scheme to learn richer spatial-spectral

information. Wang et al. (15) designed a 3D fully convolutional

network to extract spatial-spectral features from MHSIs to segment

melanoma. Gao et al. (16) designed a high-level feature channel

attention U-Net. Given the exceptional representation learning

ability of CNNs, these methods have produced remarkable results.

However, due to the limit by the inherent locality of CNNs, they

cannot extract long-range context and global semantics features (17).

Vision Transformer (ViT) (18) is a structure based on self-attention

that possesses powerful capabilities for global context modeling and has

achieved excellent performance in various tasks. Naturally,

incorporating it into MHSI segmentation has also become the key

point of current research. Dai et al. (19) proposed a segmentation

network based on swin-spec transformer to extract feature from both

spatial and spectral dimensions of cholangiocarcinoma hyperspectral

images. Wang et al. (20) designed a dual-modal pathological image

cross-attention U-Net, which designed two cascaded multi head self-

attention for extracting and exchanging the information between HSI

and RGB. The incorporation of global context has contributed to the

outstanding performance of these methods. However, these methods

typically tokenize based on specific kernel scales, resulting in fixed size

area information within the tokens. This limitation restricts the efficient

extraction of subsequent global feature. Additionally, most existing

methods extract features only from the spatial dimension, which result

in insufficient feature extraction. Although some researchers extract

features from both spectral and spatial dimensions, they often overlook

the potential semantic gap between features from different dimensions.
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This may introduce new interference, thereby adversely affecting the

model’s performance.

To address the aforementioned issues, this paper proposes a

novel network called multi-scale token division and spatial-channel

fusion transformer (MT-SCnet) for MHSIs segmentation. MT-

SCnet aims to more efficiently extract the spatial-spectral

information in MHSI, which mainly featuring on Multi-scale

Token Division (MSTD) module and Spatial-Channel Fusion

Transformer (SCFormer) block. Specifically, MSTD is designed to

exploit the advantages of multi-scale tokens to enrich the global

dependencies. It utilizes mirror flipping padding to generate

different spatial size feature maps and divides tokens at different

scale on them. Meanwhile, it promotes information interaction and

fusion between tokens for richer and more robust feature

information. SCFormer is proposed to more comprehensively

exploit global spectral-spatial information. It extracts spectral-

spatial information from both spatial and channel dimensions to

obtain more enriched feature representations, and suppress the

semantic gap between features from different dimensions through a

cross attention fusion module (CAF). Furthermore, dense

connection is introduced between channel dimensions to facilitate

the transfer and interaction of global features across different levels.

In addition, for capture local spectral-spatial information, MT-

SCnet employs CNN at shadow encoder, and employ deformable

convolutions (21) to better restore the spatial dimensions of the

feature maps at decoder. The main contributions are as follows:
1. We propose MT-SCnet for MHSI segmentation, which

more effectively and efficiently captures the spectral-

spatial information in MHSIs through multi-scale token

division and multi-dimensional feature extraction. The

proposed MSTD, SCFormer, and the deformable

convolutions all play crucial roles in the network, which

enhanced its overall segmentation performance.

2. We propose a multi-scale token division module, which

enrich the global dependencies by capturing multi-scale

tokens and promoting fusion between different tokens.

3. We design a novel spatial-channel fusion transformer

block. It conducts a more comprehensive extraction of

global feature, and reduce the semantic gap between

different dimensions features through emphasizes the

commonality among them.

4. The experimental results on Gastric Intraepithelial

Ieoplasia (GIN) and intestinal metaplasia (IM) MHSI

datasets demonstrate that the proposed method achieves

competitive results.
2 Related work

2.1 CNN for medical segmentation

The encoder-decoder architectures based on CNNs, such as U-

Net (22) and U-Net++ (23) have exhibited remarkable performance
frontiersin.org
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in medical image segmentation tasks. Currently, researchers have

conducted thorough investigations on the encoder-decoder

architectures and proposed many methods to improve

segmentation performance. For instance, some studies

introducing residual structures into U-Net to address the issue of

network degradation (24, 25). To obtain a better receptive field and

capture more contextual information, researchers have introduced

dilated convolutions (26) and deformable convolutions (27) to U-

Net. Additionally, many studies have utilized attention mechanisms

to help model focus on crucial feature information, which can

further improve segmentation accuracy (28). For example, Gao

et al. (29) designed an attention network for the segmentation of

cholangiocarcinoma MHSIs. Liu et al. (30) designed the global

context and hybrid attention network for lung segmentation.
2.2 Vision Transformer for
medical segmentation

Since the outstanding achievements of ViT in 2020, the

numerous of transformer-based methods have emerged in CV

tasks. These methods divide the input image into patches and treat

each patch as a token, which processed through transformer layers

that includes self-attention mechanisms and feed-forward networks.

Considering the high computational cost of directly processing the

entire feature map, Swin-Transformer (31) divides the input image

into non-overlapping windows and applies attention mechanisms

independently within each window to reduce computational costs.

Base on this, SwinUnet (32) was proposed and has demonstrated

outstanding results in medical image segmentation.

Compared with using pure Transformer, some researchers

designed hybrid networks that concurrently utilize CNNs and

Transformers to achieve higher segmentation performance.

TransUnet (17) was the first to design a hybrid architecture based

on CNN and Transformer, and achieved excellent segmentation

results. Huang et al. (33) introduced MISSFormer, a network

designed to capture more discriminative dependencies and

context, and has better ability to integrate global information and

local context. To further minimize feature loss during the

downsampling process and enhance the restoration of spatial

information during upsampling, Zhang et al. (34) proposed the

FDR-TransUNet based on TransUnet. This module introduces an

amalgamation of concepts from densenet and resnet in encoder,

and upsample through two independent expanding paths. Zhu et al.

(35) proposed a parallel hybrid architecture that feeds input images

concurrently into both CNN and transformer branches, thereby

effectively merging spatial detail features with global

contextual information.
2.3 Multi-scale information extraction for
medical segmentation

To address the complex structural variations in biological

tissues, multi-scale features are commonly utilized in medical

image segmentation tasks. To enhance the quality of feature
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learning, Lin et al. (36) proposed a dual-branch Swin-transformer

in the encoder to extract multi-scale feature representations. He

et al. (37) developed a block within the encoding pathway that

integrates multi-scale information, global features from

transformers, and local details from CNNs, thereby enhancing the

model’s capability for feature representation. Ao et al. (38) designed

a shunt transformer to capture multi-scale features and utilized a

pyramid decoder for decoding, effectively harnessing the fine

features. In addition, some researchers employ multi-scale feature

extraction strategies to bridge the gap between the features in the

encoder and decoder, thereby enhancing the segmentation

accuracy. For example, Fang et al. (39) designed a pyramid input-

output network to compress multi-scale features, which for

reducing the semantic gap between multi-scale features. Sun et al.

(40) developed a multi-scale bridging module between the encoder

and decoder to effectively interact with multi-scale context

information. Liu et al. (41) proposed a multi-scale embedding

spatial transformer. This module effectively captures the global

context of images by modeling the spatial relationships between

multi-scale and multi-level image patches. To further achieve a

refined fusion of global and local features, Heidari et al. (42)

designed multiple multi-scale representations based on the Swin

Transformer and CNN-based encoders. Furthermore, some

researchers have designed feature fusion structures within the

decoder to fully decode features at various scales. Such as Yang

et al. (43) proposed a multi query attention module to fuse the

multi-scale features from different levels of decoder sub-network.

Although previous works have utilized CNNs and Transformers

to extract global and local spectral-spatial information and further

enhanced model representation through multi-scale feature

extraction, their single tokenization schemes and simplistic fusion

methods between features from different dimensions have limited

the models’ performance potential.
3 Methods

As shown in Figure 1, MT-SCnet is an encoder-decoder network.

The encoder consists of CNN, MSTD, and three SCFormers to extract

local and global spectral-spatial information in MHSIs. In CNN, we

adopted the design of TransUnet (17) to learn the local context in

MHSI. Next, MSTD is used to learn multi-scale tokens to acquire

richer and better feature representations for subsequent global feature

extract. Additionally, three SCFormer layers are employed to learn

global spectral-spatial information, and the dense connect is used for

enhancing the utilization of global features. In decoder, deformable

convolutions are introduced to obtaining more representative features,

thereby better restore the spatial size. We also employed Principal

Component Analysis (PCA) to reduce the dimensionality of MHSI,

thus mitigating computational costs.
3.1 MSTD

Existing methods typically use a single scale tokenization

scheme, which limits the efficiency of subsequent global
frontiersin.org
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information extraction. Multi-scale information provides an

effective way to address significant morphological differences

between tissues and enhance the model’s ability to represent

details. Therefore, dividing tokens in a more flexible manner to

capture multi-scale information, thereby providing richer and more

robust features for subsequent global feature extraction, is key to

improving segmentation performance. Based on this, MSTD is

proposed to perform multi-scale token division and promote

information interaction and fusion between tokens.

The specific steps of MSTD are shown in Figure 2. Assuming H

andW   represent the height and width of the feature map Z   learned

through CNN. Firstly, MSTD performs multi-scale token division

based on convolution operations and mirror flipping. It uses the

convolution of 2×2 kernels with 2 stride to obtain tokens Z1. Then,

employmirror flipping padding expand the Z to the size of 2H ×2W

and use the convolution of 4×4 kernels with 4 stride to obtain tokens

Z2. Although Z1 and Z2 have the same size and quantity, they

contain different detailed information due to the different scale used

for their division. Therefore, this step enables the obtain richer

information. Secondly, MSTD promotes information interaction

and fusion between tokens to generate more discriminative

features. It evenly divides each scale tokens into two parts along the

channel. This process is demonstrated in Equations 1, 2:

(Z1½0�,Z1½1�) = split(Z1) (1)

(Z2½0�,Z2½1�) = split(Z2) (2)

where split( · ) represents the channel splitting operation. Then,
Z1½1� and Z2½0� added together to obtain the fused feature f ½0�. f ½0�
is element-wise multiplied with Z1½1� and Z2½1� respectively, to
learn the weight matrix. The Tanh+1 was used as active function to

map the aforementioned weight matrix to the range of [0,2]. In

addition, residual connections are introduced to preserve the

original information and accelerate convergence. The above
Frontiers in Oncology 04
process can be represented by Equations 3–5:

f ½0� = Z1½1� + Z2½0� (3)

F1½1� = A(f ½0� � Z1½0�) + Z1½0� (4)

F2½1� = A(f ½0� � Z2½1�) + Z2½1� (5)

where A( · ) represents Tanh+1 activation function, F1½1� and
F2½1� represent the feature maps after residual connections. Then,

F1½1�, F2½1� and f ½0� are calculated through matrix element-wise

multiplication to obatin the pixel-level relationship map. Tanh+1

and residual connections are also employed to enhance feature

representation. The above operation enables F1½1�, F2½1� and f ½0�
incorporate feature information from different scales, thereby

providing more abundant and robust feature information. Finally,

the F1½1� and F2½1� are added together, and concatenate with F½0�
along the channel dimension. Overall, dividing tokens at different

scales and promoting information interaction and fusion between

tokens of the same scale and different scales can provide richer and

more comprehensive feature representations for subsequent global

feature extraction. Assuming Concate ·f g denotes the concatenate

operation and F is the output of MSTD, the above process can be

expressed as Equations 6, 7:

F½0� = A(f ½0� � F1½1� � F2½1�) + f ½0� (6)

F = Concate F½0�,   (F1½1� + F2½1�)f g (7)
3.2 SCFormer

Global features can better extract the context information of the

overall structure of tissues, which is a crucial step for efficiently
FIGURE 1

Architecture of the MT-SCnet. In (A), we show the overall architecture of MT-SCnet. In (B), we present details of the SCFormer.
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utilizing spectral-spatial information to learn tissue characteristics.

However, most previous methods rely on learning from a single

dimension, leading to insufficient extraction of global spectral-

spatial information. Additionally, while some methods learn

spectral-spatial information from different dimensions, they

simply fuse these features. Considering the semantic gap between

features from different dimensions, simple feature fusion may

introduce new interference, thereby affecting the final segmentation

results. Based on this, the SCFormer was proposed, which not only

extract spectral-spatial information from spatial and channel

dimensions by multi-head spatial attention (MSA) and multi-head

channel attention (MCA), but also highlight common features

between feature from different dimensions for suppressing the

semantic gap by CAF. In addition, dense connections are

incorporate between MCA to enhance feature reuse and improve

the learning of features across different levels. As shown in Figure 3,

the main improve structure of proposed SCFormer module

incorporates MSA, MCA, CAF and multilayer perceptron (MLP).

The MSA and MCA can be represented as Equations 8–13:

MCAj = sof tmax(
Qj

mcaK
j
mca

ffiffiffiffiffi

dk
p )Vj

mca (8)
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MSAj = sof tmax(
Qj

msaK
j
msa

ffiffiffiffiffi

dk
p )Vj

mca (9)

Qj
mca = LN(z(j−1) + d(z)) (10)

Kj
mca = LN(z(j−1) + d(z)) (11)

Vj
mca = LN(z(j−1)) (12)

d(z) = LN(z(j−1) +… + z(1)) (13)

where MCAj and MSAj represents the MCA and MSA in the j
-th SCFormer, respectively. z(j−1) represents the output feature map

of the (j − 1)-th SCFormer, d( · ) represents the dense connection,
and LN represents the fully connected layer.

For CAF in j-th SCFormer, we first perform element-wise

multiplication between the j-th spatial feature and channel feature

to highlight their commonalities, which pay more attention to the

common important information while pay less attention on

insignificance information. Subsequently, we perform same

operation between the output of the (j − 1)-th SCFormer with the

j-th spatial feature and channel feature, respectively, to highlight the
FIGURE 2

Structure of MSTD.
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commonalities between different hierarchical features. Then, point-

wise summation operation and Tanh+1 function is conduct.

Overall, emphasizing the commonalities between features from

different dimensions not only highlights common important

features but also reduces redundancy and interference between

features, thereby suppressing the semantic gap. It can generate

the more efficiently fused feature map. Assuming Fj
out as the output

of j-th CAF, Fj
1, F

j
2 and Fj−1

out represent the output of MCAj, MSAj

and (j − 1)-th SCFormer respectively, the above process can be

expressed as Equation 14:

Fj
out =  A(Fj

1 � Fj
2 + Fj

1 � Fj−1
out + Fj

2 � Fj−1
out) (14)

The MLP consists of two fully connected layers, GELU

activation functions, and two dropout functions. Specific

parameters can be referred to in TransUnet (17).
3.3 Decoder

In decoder, this paper introduces deformable convolution in

decoder to adaptively adjust the shape of the receptive field. By

flexibly choosing sampling locations to handle various

deformations and scale variations, it better restores and refines

the details in the feature maps. Compared to using multi-scale

features or adding convolutional layers to enhance the decoder’s

representation capability, deformable convolutions improve feature

representation by introducing a small number of offset parameters.

This approach enhances segmentation performance while avoiding

a significant increase in computational cost. Deformable

convolution can be represented as Equation 15:

y =oK
k=1wk � x(p + pk + Dpk)� Dmk (15)

where K denote the sampling points of the convolution kernel.

pk and Dpk represent the preset offset and the learnable offset,
Frontiers in Oncology 06
respectively. wk and Dmk correspond to the weight and the

modulation scalar for the nth position, respectively.
3.4 Loss function

In the proposed model, the total training loss can be expressed

as Equation 16:

Lseg = 0:7Lce + 0:3
1
Co

c
c=1L

c
DCE (16)

where Lce represents the Cross-Entropy Loss (CE), C denotes

the number of classes, and LcDCE represents the Dice Loss (DCE) for
class C. CE measures the alignment between the predicted

probabilities and the true labels, making it highly effective for

optimizing pixel-level segmentation tasks. However, CE does not

account for the spatial relationships between pixels and is sensitive

to class imbalance issues. In contrast, DCE measures the overlap

between the predicted and true regions, capturing the spatial

relationships between pixels and highlighting target regions,

thereby addressing the potential shortcomings of CE.
4 Experiments

4.1 Datasets

In order to validate the effectiveness of the proposedMT-SCnet, we

conducted experiments on two MHSI datasets (44), including gastric

mucosa intestinal metaplasia MHSI dataset (IM) and Gastric

Intraepithelial Ieoplasia MHSI dataset (GIN). The dataset IM

consists of 412 MHSIs and the dataset GIN consists of 282 MSHIs.

Each hyperspectral data cube is acquired at 10x objective lens, which

contains 40 bands and the spectral range of 450 to 700nm with 6.25nm

spectral resolution. Under the guidance of pathologist, we select and
FIGURE 3

Structure of SCFormer.
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crop the original MHSI images with 512×512 spatial resolution. All

MHSIs are labelled by pathologists with precancerous regions. In this

paper, five-fold cross validation method is used.
4.2 Implementation and evaluation

The MT-SCnet is implemented based on PyTorch, all

experiments were conducted on a computer with 32GB of

memory and an Nvidia GeForce GTX 4090. The stochastic

gradient descent (SGD) is used for backpropagation, the learning

rate was set to 0.01, momentum to 0.9, weight decay to 1e-6, and the

batch size was 4. We utilized Dice Loss and Crossentropy functions

simultaneously as loss functions, with weights set to 0.3 and 0.7,

respectively. The number of epochs is set to 45 and 60 for dataset

IM and GIN. The weights with the lowest loss were chosen as the

optimal weights for testing. In order to better assess the
Frontiers in Oncology 07
performance of the proposed model, four common evaluation

metrics are used: Overall Accuracy (OA), Sensitivity, Intersection

Over Union (IoU) and Dice Similarity Coefficient (DSC).
4.3 Comparison with mainstream methods

We conducted a series of ablation experiments to validate the

effectiveness of different modules in segmentation. We first tested the

effectiveness of the MSTD, SCFormer and deformable convolution in

MT-SCnet and further conducted ablation experiments within

SCFormer and MSTD to validate the rationality of each design. All

experiments were conducted on the IM dataset.

4.3.1 IM dataset
As shown in Table 1, our model achieved the best result with

94.45% OA, 92.06% sensitivity, 86.63% IoU, and 92.82% DSC. It
TABLE 1 Comparison with other methods on IM dataset (%).

Architecture OA Sensitivity IoU DSC Params FLOPs

U-Net 93.19 90.60 83.88 91.23 34.53 M 1.05T

Att-Unet 93.01 90.46 85.19 91.00 34.88M 1.07T

HLCA-Unet 89.64 86.05 76.45 86.63 588.84K 62.92G

MISSFormer 92.44 90.37 82.41 90.33 35.45 M 36.96G

TransUnet 93.09 90.12 83.62 91.06 100.90 M 201.03G

Hiformer-b 93.51 91.77 84.69 91.71 31.69M 355.77G

MT-SCnet 94.45 92.06 86.63 92.82 34.59M 120.91G
The K, M, G, and T represent Kilo, Mega, Giga, and Tera, respectively.
FIGURE 4

Visualization results of each model on MHSIs of IM: (A) false color image of hyperspectral images; (B) ground truth; (C) U-net; (D) Att-Unet; (E)
HLCA-Unet; (F) MISSFormer; (G) TransUnet; (H) Hiformer-b; (I) MT-SCnet.
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outperformed the purely CNN-based U-Net model by 1.26% OA,

1.46% Sensitivity, 2.75% IoU, and 1.59% DSC. Furthermore,

compared to HLCA-Unet, which is also designed for MHSIs

segmentation tasks, the proposed method achieves significant
Frontiers in Oncology 08
improvements across all metrics. In summary, MT-SCNet

outperforms the pure CNN-based comparative models in terms

of performance. Compared to the HiFormer-b, which utilizes both

CNN and Transformer architectures and ranks second in

segmentation accuracy, MT-SCnet showed improvements of

0.94% OA, 0.29% Sensitivity, 1.94% IoU and 1.11 DSC%

respectively. This is benefited to the more efficiency learning of

spectral-spatial information from MHSIs through MSTD,

SCFormer and deformable convolutions. Additionally, MT-SCNet

has 34.59M parameters and 120.91G FLOPs. Compared to

HiFormer-b, which with 31.69M parameters and 355.77G FLOPs,

the proposed method achieves a better balance in terms of accuracy,

memory usage, and computational cost. The K, M, G, and T in the

Table 1 represent Kilo, Mega, Giga, and Tera, respectively.

To further validate the segmentation performance of MT-SCnet

on IM, the segmentation results of all models were visualized. As

shown in Figure 4, the first column displays the false-color images
TABLE 2 Comparison with other methods on GIN dataset (%).

Architecture OA Sensitivity IoU DSC

U-net 88.44 88.95 79.11 88.33

Att-Unet 88.40 87.93 78.85 88.17

HLCA-Unet 85.08 82.26 73.06 84.42

MISSFormer 85.70 84.81 74.48 85.37

TransUnet 86.20 87.17 75.66 86.14

Hiformer-b 88.66 89.86 79.58 88.62

MT-SCnet 88.93 88.58 79.75 88.71
FIGURE 5

Visualization results of each model on MHSIs of GIN: (A) false color image of hyperspectral images; (B) ground truth; (C) U-net; (D) Att-Unet; (E)
HLCA-Unet; (F) MISSFormer; (G) TransUnet; (H) Hiformer-b; (I) MT-SCnet.
TABLE 3 Ablation study on the proposed components of the MT-SCnet with the IM dataset (%).

No. MSTD SCFormer
Deformable
Convolution

OA Sensitivity IoU DSC

1 × × × 92.41 90.07 82.26 90.26

2 ✓ × × 92.87 91.07 83.39 90.92

3 × ✓ × 93.31 91.73 84.26 91.45

4 × × ✓ 93.90 91.03 85.36 92.09

5 ✓ ✓ × 93.70 93.17 85.25 92.03

6 ✓ ✓ ✓ 94.45 92.06 86.63 92.82
× indicates that the module was not used, while √ indicates that it was employed.
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of MHSIs, the second column shows the true labels, and the

subsequent column present the prediction results of the U-Net,

Att-Unet, HLCA-Unet, MISSFormer, TransUnet, HiFormer-b and

MT-SCnet networks. As shown in Figure 4, the prediction maps of

MT-SCNet exhibit smoother boundaries and provide a more

accurate and comprehensive delineation of precancerous lesion

areas. Compared to HiFormer-b, the proposed network more

clearly delineates the boundaries of different tissues in densely

distributed regions (as shown in the fourth row). In summary,

MT-SCNet achieves superior recognition of contiguous regions,
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producing segmentation results that align more closely with the true

labels compared to other models.

4.3.2 GIN dataset
As presented in Table 2, MT-SCnet achieve the results with 88.93%

OA, 88.58% sensitivity, 79.75% IoU, 88.71% DSC on the GIN dataset.

Compared to other methods, the proposed method achieves the

highest accuracy in terms of OA, IoU, and DSC. However, in terms

of sensitivity, MT-SCNet performs slightly lower than U-Net and

HiFormer-b. Considering that the cancerous regions predicted by MT-

SCNet exhibit a higher overlap with the actual regions and demonstrate

more accurate overall prediction accuracy, this may be attributed to the

fact that, although U-Net and HiFormer-b are more sensitive in

detecting cancerous regions, this sensitivity comes at the cost of

generating more false positives. Overall, the proposed method

demonstrates superior performance when considering all

aspects comprehensively.

We have also conducted visualization of the segmentation

results on the GIN dataset. As shown in Figure 5, the first

column shows the MHSI false color images, the second column
TABLE 4 Ablation study on the SCFormer of the MT-SCnet with the IM dataset (%).

No.
MSA MCA Dense

Connect
CAF

OA Sensitivity IoU DSC

1 ✓ × × × 92.41 90.07 82.26 90.26

2 × ✓ × × 92.56 90.29 82.60 90.46

3 × ✓ ✓ × 92.71 90.18 82.86 90.62

4 ✓ ✓ ✓ × 92.39 90.28 82.25 90.25

5 ✓ ✓ ✓ ✓ 93.31 91.73 84.26 91.45
× indicates that the module was not used, while √ indicates that it was employed.
FIGURE 6

Visualization of the first five principal component of the original hyperspectral pathology image alongside the first five bands of the image after
dimensionality reduction via PCA.
TABLE 5 Ablation study results on the key blocks of the MSTD with the
IM dataset (%).

No. MSTD1 MSTD2 OA Sensitivity IoU DSC

1 × × 92.41 90.07 82.26 90.26

2 ✓ × 92.47 90.05 82.37 90.32

3 ✓ ✓ 92.87 91.07 83.39 90.92
× indicates that the module was not used, while √ indicates that it was employed.
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represents the ground truth, and the subsequent columns

sequentially display the comparison results of U-Net, Att-Unet,

HLCA-Unet, MISSFormer, TransUnet, HiFormer-b and MT-

SCnet. It is evident that, compared to other methods, MT-SCNet

exhibits fewer misclassifications and omissions, demonstrating

more accurate segmentation performance with results that are

closer to the ground truth. From the aforementioned results, it
Frontiers in Oncology 10
can be observed that the MT-SCnet in this paper demonstrates

stronger segmentation performance.

4.4 Ablation experiments

We conducted a series of ablation experiments to validate the

effectiveness of different modules in segmentation. We first tested
FIGURE 7

The effect of PCA on segmentation results on IM.
FIGURE 8

The effect of PCA on segmentation results on GIN.
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the effectiveness of the MSTD, SCFormer and deformable

convolution in MT-SCnet and further conducted ablation

experiments within SCFormer to validate the rationality of each

design. All experiments were conducted on the IM dataset. The

result show in Tables 3, 4. In the tables, � indicates that the module

was not used, while √ indicates that it was employed.

4.4.1 Ablation study on proposed components
Table 3 shows the ablation experimental results of the proposed

components. Experiment 1 is the baseline result, which only uses three

transformer blocks withMSA. The comparisons between Experiment 1

and Experiment 2, as well as between Experiment 3 and Experiment 5,

demonstrate that the addition of MSTD has improved OA, Sensitivity,

IoU, and DSC indicators. This indicates that the addition of MSTD has

led to an increase in overall prediction accuracy, and the overlap and

similarity of the segmented regions are also enhanced. Additionally,

comparing Experiment 1 with Experiment 3, as well as Experiment 2

with Experiment 5, it is evident that the integration of SCFormer results

in a significant segmentation performance improvement. Furthermore,

from the comparison in Experiment 1 and Experiment 4, as well as

Experiment 5 and Experiment 6, deformable convolution further

enhances the segmentation accuracy of the model. This is because

the incorporation of deformable convolution enhances local detail

capture and improves the fusion of deep and shallow features. In

summary, compared to the baseline, the proposed model achieved

improvements of 2.04% OA, 1.99% Sensitivity, 4.37% IoU, and 2.56%

DSC, achieving the best performance. Overall, the proposed modules

all have a beneficial impact on the model’s segmentation performance.

4.4.2 Ablation study on SCFormer module
Next, we conducted ablation experiments on SCFormer, and the

results are presented in Table 4. As mentioned above, SCFormer

extracts features from both spatial and channel dimensions by MSA

and MCA, and then fuses these features from different dimensions
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based on a CAF. To evaluate the impact of these components on

segmentation performance, five experiments were conducted in this

section. All experiments were performed on the baseline model. The

comparison between Experiment 2 and Experiment 3 shows that

the addition of dense connections improves the model’s

performance. In Experiment 4, MSA was added on the basis of

Experiment 3. However, the results showed a certain degree of

decline in OA, Sensitivity, and DSC metrics. This may be because

the semantic gap from different dimensions makes simple fusion

introduce new redundancy and interference. In Experiment 5, the

CAF module was added to Experiment 4 to alleviate the semantic

differences between features from different dimensions, resulting in

the best performance among all experiments. This demonstrates

that CAF can suppress the semantic gap between features from

different dimensions by highlighting commonalities between

feature, thereby enhancing the model’s segmentation performance.

4.4.3 Ablation study on MSTD module
Finally, we perform an ablation study on MSTD and present the

results in Table 5. In Table 5, MSTD1 represents divide multiscale

token based on mirror padding, and MSTD2 represents the

interaction and fusion of information between different token. With

the addition of MSTD1, the model achieved improvements of 0.06%,

0.11%, and 0.06% in OA, IoU, and DSC, respectively, while sensitivity

decreased by 0.02%. After add the MSTD2, the model achieved

92.87% in OA, 91.07% in sensitivity, 83.39% in IoU, and 90.92% in

DSC, which improve the increases of 0.4% in OA, 1.02% in sensitivity,

1.02% in IoU, and 0.6% in DSC compare with using onlyMSTD1. The

above results indicate that using MSTD1 alone provides limited

contributions to model accuracy, likely due to the consideration of

only two scales during token partitioning, resulting in limited detail

capture. However, with the addition of MSTD2, the proposed method

shows substantial improvements across all four evaluation metrics.

This confirms that promoting interaction and fusion between markers

of different sizes to obtain more discriminative features can further

improve segmentation performance.
4.5 The effect of the PCA

Due to the high correlation and similarity among spectral

bands in hyperspectral pathology images, researchers typically

employ PCA to preprocess these images. To further illustrate the

rationale for using PCA, we present the first five principal

component of the original MHSIs alongside the first five bands

of the image after dimensionality reduction via PCA in Figure 6.

The first row shows the original MHSIs, while the second row

displays the images after PCA dimensionality reduction. It can be

observed that the original spectral bands of the hyperspectral

pathology image exhibit high similarity and a significant degree of

correlation. After dimensionality reduction using PCA, the

features between the principal components show significant

variation, with the leading principal components retaining most

of the useful information. This dimensionality reduction helps

subsequent models focus on the most relevant feature
TABLE 6 Effect of division scale in MSTD on IM dataset (%).

No.
Dense

Connect
OA Sensitivity IoU DSC

1 (2,3) 94.36 91.34 86.35 92.66

2 (2,4) 94.45 92.06 86.63 92.82

3 (2,5) 94.08 91.01 85.68 92.27

4 (3,5) 93.37 89.74 84.07 91.33
TABLE 7 Effect of division scale in MSTD on GIN dataset (%).

No.
Dense

Connect
OA Sensitivity IoU DSC

1 (2,3) 87.32 90.79 77.96 87.58

2 (2,4) 88.93 88.58 79.75 88.71

3 (2,5) 88.61 90.56 79.66 88.67

4 (3,5) 88.42 89.45 79.18 88.36
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information, thereby enhancing the efficiency and performance of

image segmentation tasks.

Figures 7 and 8 respectively illustrate the impact of PCA on the

final segmentation results for the IM and GIN datasets. In the

Figures, experiments 1 through 5 correspond to selecting the first 1

to 5 bands following PCA. The experiment results on two datasets

demonstrate that as the number of bands increases, the

performance on OA, IoU and DSC metrics initially improves and

subsequently declines. This occurs because MHSI not only contain

abundant spatial and spectral information but also includes

redundant and interfering information. Increasing the number of

bands excessively can introduce these features, consequently

diminishing the segmentation accuracy. With the increase in the

number of bands, the sensitivity results initially decrease

significantly and then slightly increase. However, compared to

using fewer PCA bands, the results still remain at a lower

accuracy level. Overall, results on two datasets show that a

moderate increase in the number of bands helps improve

segmentation accuracy, but too many bands can lead to a decline

in model segmentation performance.
4.6 The effect of token scale in MSTD

To study the impact of tokens at different scales on the final

segmentation results, we evaluated the combinations that involved

partitioning using kernels with (2,3), (2,4), (2,5), (3,5). For example,

(2,3) means 2×2 kernel with 2 stride to generate 2×2 token, and use

3×3 kernel with 3 stride to generate 3×3 token. The results for IM

and GIN are presented in Tables 6, 7. The experiment results on the

IM show that the best performance across all metrics occurs when

the token scale combination is set to (2,4). For GIN, token scale set

to (2,4) achieve the best results in OA, IoU and DSC, while the

lowest results in Sensitivity. Additionally, the experimental results

on the two datasets indicate that as the token size increases, the

network segmentation performance generally shows a trend of

initial improvement followed by a decline. In summary, we

selected (2,4) as the final token partitioning dimensions in

this study.
5 Conclusion

In this study, we introduce a novel network named MT-SCnet

for the segmentation of MHSIs. The most significant features of this

network are its MSTD and SCFormer components. In MSTD,

multi-scale token division and the interaction and fusion of

information between different tokens provide richer and more

robust feature information for subsequent global feature

extraction. In SCFormer, global features are first extracted from

both spatial and channel dimensions, and dense connections are

introduced to obtain richer spectral-spatial information. Secondly,
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cross attention is used to highlight the common important features

and reduce redundant information between different dimensions,

thereby minimizing the semantic gap between features from

different dimensions, further enhancing the model representation.

Additionally, to better decode feature information in MHSIs,

deformable convolutions are introduced. Results from two MHSIs

datasets demonstrate that MT-SCnet exhibits strong performance,

outperforming current state-of-the-art segmentation methods. In

future studies, we will focus on exploring more flexible ways, such as

quadrilateral, to divide tokens and on how to suppress the semantic

gap between local context and global information.
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