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The Schlafen (SLFN) gene family has emerged as a critical subject of study in recent

years, given its involvement in an array of cellular functions such as proliferation,

differentiation, immune responses, viral infection inhibition, and DNA replication.

Additionally, SLFN genes are linked to chemosensitivity, playing a pivotal role in

treatingmalignant tumors. Human SLFNs comprise three domains: the N-terminal,

middle (M), and C-terminal. The N- and C-terminal domains demonstrate

nuclease and helicase/ATPase activities, respectively. Meanwhile, the M-domain

likely functions as a linker that connects the enzymatic domains of the N- and C-

terminals and may engage in interactions with other proteins. This paper aims to

present a comprehensive overview of the SLFN family’s structure and sequence,

examine its significance in various tumors, and explore its connection with

immune infiltrating cells and immune checkpoints. The objective is to assess the

potential of SLFNs as vital targets in cancer therapy and propose novel strategies

for combined treatment approaches.
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1 Article

The mortality rate of malignant tumors remains among the highest globally,

representing a significant global issue. Although early cancer screening has helped

reduce the incidence of certain cancers, such as cervical cancer, the overall impact varies.

According to the American Cancer Society, the incidence of cervical cancer dropped by

65% within seven years among the first cohort vaccinated against human papillomavirus

(HPV) (1). In contrast, the benefits of early screening and prevention for digestive system

tumors are less pronounced due to their nonspecific symptoms and low early diagnosis

rates. This often results in missed opportunities for early intervention and treatment.

Traditional treatment modalities such as surgical excision, radiation therapy, and

chemotherapeutic treatment can be unproductive or poorly tolerated in some patients,

especially considering individual differences and varying tumor stages. Although molecular

targeted drugs like trastuzumab and apatinib have been approved for gastric cancer, the

progress in targeted therapy for gastric cancer lags significantly behind that for lung and

breast cancers (2, 3). Immunotherapy, which enhances the body’s immune response against
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1468484/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1468484/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1468484&domain=pdf&date_stamp=2024-11-04
mailto:908766361@qq.com
mailto:Zhangjunyi77@sina.com
https://doi.org/10.3389/fonc.2024.1468484
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1468484
https://www.frontiersin.org/journals/oncology


Yu et al. 10.3389/fonc.2024.1468484
tumors by activating or mobilizing the immune system, has

garnered extensive clinical attention as a promising treatment

approach. The Schlafen (SLFN) gene family, which belongs to the

gene cluster in vertebrates, produces proteins that show

considerable sequence resemblance and exhibits differential

expression across various tissues and species. These genes are

extensively produced in tumor cells and are essential for the

differentiation of immune cells as well as the regulation of

immune responses. The differential expression of this factor in

tumors suggests its potential as a serological biomarker for

preoperative diagnosis.

Additionally, its involvement in immune regulation,

particularly in inhibiting immune evasion, offers promising new

avenues for immunotherapy. These aspects have been extensively

explored in relevant studies (4). However, the regulatory effects of

the SLFN family are not always positive. Therefore, further

investigation into their roles in different diseases is crucial to

improve therapeutic outcomes in cancer treatment.
2 Overview of the SLFN groups
of genes

2.1 Individuals within the SLFN family

First identified by Schwarz in 1988 in mice, the SLFN gene

family derives its name from the the German term ‘Schlafen,’ which

means ‘slumber’ in English, reflecting the initial finding that

Schlafen proteins halt cell division. In humans, this family

consists of SLFN5, SLFN11, SLFN12, SLFN12L, SLFN13, and

SLFN14 genes (5).

The SLFN genes represent a group of evolutionarily conserved

genes present across various vertebrate species (6). They participate

in numerous biological functions, including cell proliferation,
Frontiers in Oncology 02
differentiation, immune responses, viral pathology inhibition, and

DNA duplication, and play a crucial role in chemo-responsiveness

(7). SLFN intracellular localization proteins differs: in mice, SLFN

proteins predominantly reside in the cytoplasm, while in humans,

SLFN12 and SLFN13 are found in the cytoplasm, while the

localization of SLFN11, SLFN14, and SLFN5 remains uncertain.

These localizations can be identified using immunostaining and

immunofluorescence methods (8). Transcriptional data from the

CCLE (Cancer Cell Line Encyclopedia) repository (9) show that

every SLFN gene is independently transcribed. SLFN11, SLFN5,

SLFN13, and SLFN12 are broadly transcribed in cancer cells, while

SLFN12L, SLFN14, and SLFNL1 display reduced levels of

expression (Table 1).
2.2 Structure of SLFN proteins

SLFN proteins can be grouped into three distinct categories

determined by their structural traits as well as functional fields (10).

The first category comprises proteins with a shared N-terminal

domain featuring nuclease-like structures and a conserved SLFN

motif found within every SLFN protein. The second category

includes proteins that, in addition to the N-terminus, possess an

intermediate linker region (M-region) containing the SWAVDL

pattern and regions potentially involved in protein interactions. The

third and largest category encompasses proteins with a functional

helicase/ATPase domain in the C-terminal region, defined through

the existence of Walker A/B motifs (11). The human SLFN gene

produces polypeptides that are classified solely into group II

(SLFN12) and group III (SLFN5, SLFN11, SLFN13, and

SLFN14) (Figure 1).

The N-terminal section of SLFN family members is a pivotal

structural component linked to tRNA/rRNA endonuclease activity

(12). The structure of the SLFN-N domain is preserved in both
TABLE 1 The association of Schlafen with diseases, chemotherapy, and the primary pathways involved.

SLFN2 SLFN3 SLFN5 SLFN11 SLFN12 SLFN13

Digestive system tumors Gastric cancer √ √

Colorectal cancer √ √ √ √

Liver cancer √

Pancreatic cancer √ √

Respiratory system tumors Lung cancer √ √ √ √

Urological system tumors Renal cancer √

Other systemic tumorsor diseases Prostatic cancer √ √ √

Glioblastoma √ √

Breast cancer √ √ √ √

HIV √ √ √ √

Malignant melanoma √ √

Chemotherapy sensitivity Exist Exist

Signaling Pathway AKT/gsk-3b/b- catenin Notch
fr
The meaning of √ represents the differential expression of the protein/gene in a certain disease, which is related to the disease process.
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SLFN12 and SLFN5, with minor conformational variations (13, 14).

SLFN14 interacts with ribosomes through its M-domain, and

modifications in the M-domain diminish endoribonuclease

activity in the nucleus (15). This implies that the M-region in

SLFN family members may serve as a binding site for nucleotides or

active cofactors. the M-domain in SLFNs might act as a docking site

for nucleic acids or functional cofactors. SLFN11 is capable of

suppressing the translation of viral proteins during HIV infection

by cleaving specific tRNAs, indicating a link between SLFN proteins

and immunity. Furthermore, the ATPase function of SLFN11 is

essential for eliminating cancer cells with replicating DNA damage

and open chromatin, resulting in fatal replication pause and the

induction of stress response genes within the FOS-JUN pathway

(16). Additionally, the monkeypox virus has been shown to carry a

virulence factor with a single SLFN domain (17). Although the role

of this domain in virulence has not been evaluated, its involvement

in controlling host-pathogen interactions seems plausible. Lastly,

the SLFN-associated fold, known as the Smr domain, has been

shown to function as a nuclease in RNA quality control

mechanisms (18). A recent research conducted by Nadezda

Podvalnaya and her collaborators, published in Nature, examined

the role of trimeric schlafen domain nucleases in the processing of

PIWI-interacting RNAs (piRNAs) (19). Collectively, these activities

propose that the SLFN-like domain serves a significantly preserved

function in immunity and stress-related mechanisms. Research has

shown that SLFN domains can form polymeric complexes, which

may reveal highly specific nucleolytic activity. It is conceivable that

proteins incorporating SLFN-associated folds may generate highly

specific enzymes that help organisms defend against infectious

nucleic acids.
2.3 Association of the SLFN group with
immune cell infiltration

The heterogeneity of tumors in terms of their invasive capacity,

growth rate, and drug sensitivity presents significant challenges for

treatment. However, it is well-recognized that tumors engage in

continuous, dynamic interactions with their microenvironment.

Stromal and immune cells, as crucial elements of the tumor-

associated microenvironment (TME), have significant impacts on

tumor advancement and therapeutic responses. The cells involved

in shaping the tumor immune microenvironment are referred to as

tumor-infiltrating immune cells (TIICs), which primarily include

macrophages, lymphocytes, fibroblasts, and myeloid-derived
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suppressor cells. Among these, CD8+ T cells are the most

essential for anti-tumor activity in the TME, as they cause tumor

cell death through the secretion of cytokines, including IFN-g.
However, TIICs may also promote tumor progression during

initiation, development, and metastasis stages (20). Thus, TIICs

within the TME can serve as markers for evaluating the efficacy of

immunotherapy (21, 22). We examined the relationship between

SLFN family members and immune cell types utilizing data

obtained from The Cancer Genome Atlas (TCGA) (Figure 2).

The analysis shows that the previously discussed widely expressed

SLFN family members at the transcriptional level in cancers are

correlated with TIICs. Among them, the association between

SLFN11 and dendritic cells as well as CD8+T cells was

significantly enhanced. Of particular note is that the correlation

between various members of Schlafen and macrophages is generally

and consistently strong. Given the crucial role played by CD8+T

cells and macrophages in immune infiltration, this provides a

clearer target for our subsequent research. Previous studies,

including the detailed exploration of The association between the

SLFN gene family and immune cell infiltration in gastric carcinoma,

have demonstrated positive correlations between the levels of

SLFN5, SLFN11, SLFN12, and SLFN12L expression, and SLFN14

in the context of immune infiltration involving CD8+ T cells, CD4+

T cells, macrophages, neutrophilic granulocytes, and antigen-

presenting cells (23). Therefore, it is anticipated that certain

members of the SLFN family may promote the proliferation of

gastric cancer by increasing immune cell infiltration. During the

initial phases of tumorigenesis, immune cells with anti-tumor

functions tend to destroy tumor cells, but eventually, neoplastic

cells can evade immune surveillance occurs via multiple

mechanisms and can also suppress the cytotoxic effects of

immune cells. One such mechanism of immune evasion is the

production of immune checkpoint molecules by neoplastic, such as

the interaction between PD-1-expressing T cells and their

corresponding PD-L1 or PD-L2 ligands present on the surface of

neoplastic cells, leading to T cell inactivation and an inability to kill

tumor cells (24). Currently identified immune checkpoints

comprise various molecules such as CTLA-4, PD-1, TIM-3, and

LAG-3, among others. Research has shown that the levels of SLFN5,

SLFN11, and SLFN12 expression are positively associated with

CTLA-4 et al (23) (Figure 3). Thus, the SLFN family not just

indicates infiltration of immune effector cells in tumors,but also

functions as a predictive factor for expression of immune regulatory

checkpoints, implying its potential role as a biomarker or

therapeutic target in immunotherapy for gastric cancer.
FIGURE 1

Classification of Human SLFN Genes and Proteins.
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As a crucial ecosystem in tumor development, M1 macrophages

exhibit an anti-tumor, pro-inflammatory phenotype, while M2

macrophages play an immunoregulatory role by promoting

immunosuppression and tumor progression, making them a focal

point of tumor immunology research (25). Significant progress has

been made in understanding this relationship through the work of

Professor Ning Ren’s team at Fudan University. Their research

demonstrated that SLFN11 is significantly upregulated in tumors

responding to immune checkpoint inhibitors (ICIs). Tumor-

specific deficiency of SLFN11 enhanced the infiltration of

Suppressive macrophages and exacerbated the progress of

hepatocellular carcinoma (HCC). This effect was mediated by

SLFN11 deficiency inducing the transcription and secretion of

CCL2 in liver cancer cells through the Notch pathway.

Knockdown of SLFN11 in HCC cells facilitated macrophage

movement and M2-like differentiation in a manner dependent on

CCL2, which subsequently increased PD-L1 expression through the

activation of the NF-kB signaling pathway. Blocking CCL2

signaling and M2 macrophage polarization in SLFN11-deficient

tumors improved the efficacy of anti-PD1 therapy for HCC (4).

SLFN11 thus holds potential as a biomarker in peripheral blood for

forecasting and continuously assessing the response to immune

checkpoint inhibitors (ICIs) in advanced stages liver cancer via as a

biomarker in peripheral blood for forecasting and continuously

assessing the response to immune checkpoint inhibitors (ICIs) in

advanced liver cancer via employing minimal invasiveness

techniques, providing great promise for clinical translation. The

article proposes that CCL2-regulated macrophage infiltration and
Frontiers in Oncology 04
foster a nuanced M2-type polarization, together with the increased

expression of the presence of Programmed Death Ligand 1 (PD-L1)

in tumor cells, may be the underlying mechanisms through which

deficiency in SLFN11 promotes immune escape in liver cancer.

The article suggests that CCL2-dependent macrophage

infiltration and M2-like polarization, along with the upregulation

of PD-L1 in tumor cells, represent the potential mechanisms by

which SLFN11 deficiency facilitates immune evasion in liver cancer.

In a study by Alexander Puck et al. on primary human immune

cells, it was found that the upregulation of SLFN genes is primarily

dependent on autocrine type I interferon signaling. The swift

decline in SLFN expression after T-cell receptor activation

suggests that SLFN plays a crucial role in preserving the

quiescence of human T-cells (26). SLFN4 is also upregulated

during macrophage activation (27). Further research by Edoardo

Isnaldi et al. revealed that elevated levels of SLFN11 expression in

breast cancer is associated with increased invasiveness and

immunoactivated tumors, in contrast, lack of significant SLFN11

expression is associated with tumors that are less aggressive and

exhibit immunosuppressive characteristics (28). Additionally,

SLFN5 was shown to co-localize in conjunction with T cells and

type 2 macrophages in precancerous stomach lesions, indicating an

immunosuppressive function of SLFN5 in gastric cancer (29).

Therefore, interventions targeting the immune microenvironment

may offer a breakthrough in maximizing therapeutic efficacy. Thus,

the SLFN gene family’s association with immune cell infiltration

within tumors, along with its role as a predictive indicator for

immune checkpoint expression, underscores its potential as a

valuable biomarker or therapeutic focus in the realm of gastric

cancer immunotherapy.
3 SLFN family and disease association

The SLFN family is linked to the initiation and advancement of

multiple types of tumors (Table 2). This table covers common

clinical systemic malignancies, including lung cancer,

gastrointestinal tumors, and breast cancer. Below, we will provide

a brief overview of the role of each protein in these diseases.
FIGURE 3

The figure illustrates the relationship between schlafen and
immune checkpoints.
FIGURE 2

The correlation between widely expressed SLFN family genes in cancer and immune-related factors. Darker colors represent stronger correlations.
*p < 0.05, **p < 0.01.
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3.1 Associations of SLFN5 with tumors

Studies have shown that SLFN5, as a transcriptional repressor,

is expressed in breast cancer (BRCA) and plays a role in preventing

epithelial-mesenchymal transition (EMT) (30), a key pathological

process in tumor progression. This has been confirmed to be

regulated through the b-catenin signaling pathway (31, 45).

Additionally, SLFN5 preserves and reestablishes the epithelial

phenotype in BRCA cells via transcriptional downregulation of

ZEB1 (46). The SLFN5 expression exhibits a negative correlation

with tumor progression in human BRCA. Lentiviral overexpression

of SLFN5 in BRCA cell lines inhibited tumorigenicity in nude mice.

Both knockout and overexpression studies of SLFN5 in BRCA cell

lines have demonstrated that SLFN5 suppresses cell proliferation

and colony formation, while promoting apoptosis by upregulating

the transcription of the PTEN gene, located on chromosome 10 and

known for its role as a tumor suppressor, holds significant

importance in oncological contexts. This results in molecularing

changes in the downstream AKT pathway, affecting proliferation

and apoptosis (31). Thus, SLFN5 could potentially be exploited as a

therapeutic intervention for BRCA-related conditions.

In Jiwei Ding’s research on HIV-1, SLFN5 was identified as a

mechanism that inhibits HIV-1 transcription through epigenetic

regulation potentially acting as a key determinant of HIV-1 latency

(32). Furthermore, given the rising incidence of pneumonia in

recent years, researchers have found that in a model of

pneumonia induced by lipopolysaccharide (LPS), the knockout of

SLFN5 mitigates LPS-triggered lung injury by modulating the JAK/

STAT pathway (35).

Regarding the treatment of human pancreatic cancer, the team

led by Mariafausta Fischietti identified SLFN5 as a pivotal regulator

of cellular S-phase progression within the cell cycle through its

binding/blocking of the transcriptional repressor E2F7, suggesting

SLFN5 emerges as a promising novel therapeutic focus for

pancreatic malignancies (33). In a separate research endeavor by
Frontiers in Oncology 05
Ahmed et al. (34), it was demonstrated that the expression SLFN5 is

known to enhance cellular motility and aggressiveness of

glioblastoma cells, and elevated SLFN5 expression is significantly

correlated with the presence of high-grade gliomas and poor patient

survival, thereby driving the malignancy of the disease.

In addition to its role in tumors, SLFN5 has been recognized as

a restriction factor for herpes simplex virus (HSV), acting to inhibit

viral transcription (47). Androgen deprivation therapy (ADT) is a

potent therapy for managing prostate malignancy, nevertheless, the

majority of patients ultimately progress to Chronic, treatment-

resistant prostate cancer with a lethal prognosis (CRPC). The

protein SLFN5 has been recognized as an androgen receptor-

regulated entity in castration-resistant prostate cancer (CRPC). A

correlation exists between elevated levels of SLFN5 in CRPC tumors

and diminished patient prognosis (48). Moreover, SLFN5 functions

as a new regulator of LAT1, an important facilitating optimal

biochemical function, and significantly influences mTORC1

activity in chemotherapy-resistant metastatic prostate carcinoma.
3.2 Association of SLFN11 with tumors

SLFN11 is an antiviral restriction factor induced by interferon,

exhibiting both tRNA endoribonuclease and DNA-binding activities

(36). Under replication stress, it is deployed to arrest stalled

replication forks, thereby preventing the replication of select

viruses, including Human Immunodeficiency Virus 1 (HIV-1),

through the regulation of the transfer RNA pool. Chenhao Zhou

et al. demonstrated through experiments that SLFN11 targets RPS4X

via the MTR signaling pathway, suggesting its significance in

suppressing hepatocellular carcinoma (HCC) initiation and

metastasis (49). Furthermore, low SLFN11 expression in HCC

correlates with decreased overall survival and increased risk of

recurrence, making it an independent prognostic factor for HCC

patients. Non-invasive detection of circulating tumor cells (CTCs)

offers a valuable complement to tissue-based techniques such as

immunohistochemistry (IHC) and has the distinct advantage of

allowing longitudinal monitoring. Dynamic expression of SLFN11

in CTCs from small-cell lung cancer (SCLC) patients as a liquid

biomarker provides a viable alternative to biopsy for SCLC detection

(37). Additionally, a study by Professor Ning Ren’s team at

Zhongshan Hospital, Fudan University, found a statistically

significant positive correlation has been observed between elevated

serum levels of SLFN11 protein and the therapeutic efficacy of

immune checkpoint blockade agents in the treatment of

hepatocellular carcinoma (HCC) (4). While SLFN11 is involved in

disease progression, much of the current research focuses on its

therapeutic implications (38, 39). SLFN11 sensitizes cells to

chemotherapeutic agents by preventing DNA damage repair (40),

including cisplatin, carboplatin, irinotecan, mitoxantrone, and

cytarabine. This raises the question of whether upregulating

SLFN11 expression could reverse chemoresistance in tumors with

low SLFN11 expression. Numerous studies have substantiated this

hypothesis (50–53), which clearly illustrated that restoring expression

levels of SLFN11 through epigenetic reversal of hypermethylation

resensitized cells to chemotherapy. Chemotherapeutic compounds
TABLE 2 The role of SLFN family members in disease progression.

Proposed Mechanism

SLFN5 Prevention of epithelial-mesenchymal transition(EMT)in breast
cancer (30)
Is inversely associated with tumor growth in human BRCA (31)
Inhibition of HIV-1 transcription by epigenetics (32)
New therapeutic targets for pancreatic cancer (33)
Enhance the malignant degree of glioblastoma (34)
Reduce lung damage in pneumonia (35)

SLFN11 Inhibit HIV-1 virus replication (36)

It is expected to be a biological marker for lung cancer and liver
cancer (4, 37)
Increased sensitivity to chemotherapy (38. 39, 40)

SLFN12 To improve the efficacy of radiotherapy and chemotherapy for triple
negative breast cancer (41, 42)

Improve the prognosis of lung adenocarcinoma and identify it as a
therapeutic target (43)

SLFN13
Increase the body's resistance to HIV-1 (8)
Improve the ability to resist glioblastoma (44)
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targeting Topoisomerase I (TOP1), such as irinotecan and its

metabolite SN-38, induce double-stranded DNA damage as a key

mechanism of their action. Numerous research findings indicate a

significant correlation between elevated SLFN11 levels and the

susceptibility of cancer cells to these agents that cause DNA

damage (40, 54). Additionally, decitabine can increase SLFN11

expression, rendering cells sensitive to the leading competitive

inhibitor, SN-38. TROP2 antibody-drug complexes (ADCs), such

as sacituzumab govitecan (SG) antibody-drug conjugate, have shown

particularly promising efficacy in triple-negative breast cancer

(TNBC). Epigenetic upregulation of both TROP2 and SLFN11 can

enhance the therapeutic efficacy of SG (39).
3.3 Connection between SLFN12
and cancer

Triple-negative subtype of breast cancer (TNBC) is linked to a poor

prognosis and does not have specific targeted treatments available. The

Schlafen (SLFN) gene family, especially SLFN12, is essential for

regulating the biological processes associated with triple-negative

breast cancer (TNBC). Research conducted by AHMED ADHAM

RAAFAT ELSAYED et al. (41, 42) have demonstrated that SLFN12

exerts a potentiation effect on the responsiveness of triple-negative

breast cancer (TNBC) to DNA-damaging therapies, which is achieved

in part through the suppression of CHK1/2 phosphorylation.

Enhanced sensitivity has been observed to potentially enhance

survival outcomes in Triple Negative Breast Cancer (TNBC) patients

characterized by elevated levels of SLFN12 expression, proposing that

the expression levels of SLFN12 be considered to serve as a predictive

indicator for assessing the efficacy of radiotherapy and chemotherapy

in TNBC. In investigating the regulation of SLFN expression in TNBC,

Savannah R. Brown and colleagues conducted experiments (55)

showing that the administration of IFN-a2 results in the

upregulation of SLFN5, SLFN11, SLFN12, a homolog of SLFN12,

SLFN13, and SLFN14 in triple-negative breast cancer (TNBC) cell

lines, concurrently leading to a decrease in cellular proliferation. The

discovery holds promising potential for the advancement of precision

treatment strategies in Triple Negative Breast Cancer (TNBC).

SLFN12 is also known to mediate the differentiation of intestinal

epithelial cells, as well as prostate and breast cancer cells (23). Jonathan

Pacella et al. demonstrated through experiments that SLFN12 improves

the prognosis of lung adenocarcinoma, at least in part, by slowing

proliferation via the c-Myc pathway (43). The study further suggests

that SLFN12 and its downstream effectors may serve as valuable targets

for future precision drug design in lung adenocarcinoma treatment.Like

other members of the family, it also participated in the HIV intervention

process.Schlafen 12 limits HIV-1 latency reversal by imposing a codon-

usage-dependent post-transcriptional block in CD4+ T cells (56).
3.4 Connection between SLFN13
and cancer

The biochemical cleavage of tRNA and rRNA molecules is a

crucial and conserved step in translational control that helps cells
Frontiers in Oncology 06
overcome various environmental stresses. SLFN13, as a tRNA/

rRNA-targeting endoribonuclease, assumes a pivotal function in

this process and its knockout significantly reduces cellular

resistance to HIV (8).

Based on information from “The Cancer Genome Atlas,” the

expression of SLFN13 is reduced in pulmonary squamous cell cancer

and rectal cancer, but increased in pancreatic adenocarcinoma and

krenal cell cancer (57).

Glioblastoma (GBM) is characterized by its invasive nature and

association with dormancy. During the TMZ-promoted dormancy

of GBM, several genes are regulated. SLFN13 is involved in TMZ-

promoted dormancy and has been shown to be potentially linked to

stemness in GBM (44) This suggests that targeting SLFN13 might

enhance the antitumor efficacy of TMZ.
3.5 Connection between other SLFN family
members and cancer

To investigate the expansive function of SLFN in cancer,

studies involving mouse models have demonstrated that SLFN2

and SLFN3 regulate tumor development in malignant cutaneous

melanoma and renal tumors by modulating cell multiplication

(58). Research on SLFN family members, particularly their

involvement in various diseases and immune system infiltration,

highlights their potential significance in cancer therapy. SLFN3,

for instance, is closely linked with the differentiation process of gut

epithelial tissues (59). In colon cancer cells that exhibit resistance

to FOLFOX and are enriched with cancer stem cells, SLFN3

expression suppresses several malignant characteristics. These

include inducing differentiation, reducing the formation of

tumor spheres and colonospheres, decreasing pharmacokinetic

transporter function, and inhibiting autocrine-stimulated

proliferation. Consequently, the expression of SLFN3 may

enhance the susceptibility of colon cancer stem cells to

chemotherapeutic agents (60). In the study conducted by

Sulaiman Sheriff et al., mouse SLFN4 and its human counterpart

SLFN12L were identified as markers of a population of cells that

travel to the stomach in response to Helicobacter pylori infection

and later gain the functionality of myeloid-derived suppressor

cells (MDSCs), the gastric metaplasia process commences with a

series of intricate biological transformations (23). Further

investigations demonstrated that the deletion of SLFN4 in mice,

or inhibition of SLFN4 through sildenafil treatment post-H. pylori

infection, both significantly reduced H. pylori-induced gastric

epithelial metaplasia (61).
4 Conclusion

We have identified that Schlafen (SLFN) proteins act as a key

player in tumorigenesis, advancement, and treatment. Regarding

breast cancer patients with aggressive disease and poor tolerance to

chemotherapy, assessing and increasing the expression of SLFN5

may be essential. On one hand, SLFN5 can inhibit epithelial-

mesenchymal transition (EMT), slowing the malignant behavior
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of the disease; on the other, it suppresses tumor cell proliferation.

This raises the question of whether modulating SLFN5 expression

might offer a viable therapeutic strategy for such patients.

Furthermore, the inhibition of SLFN12L has been shown to

alleviate Helicobacter pylori (HP)-induced gastric metaplasia,

suggesting potential support for clinical treatments where HP

eradication is challenging.

Previous studies have demonstrated that the roles of the SLFN

family are not universal, and their interaction networks in various

diseases are highly complex. Each SLFN protein has distinct

mechanisms and functions across different tumors, indicating the

need for further exploration of their expression patterns, prognostic

significance, and therapeutic potential in specific tumor subtypes.

For example, SLFN5 and SLFN12 exhibit positive feedback in breast

cancer, while SLFN5, SLFN11, and SLFN13 all play roles in HIV-1

regulation. This raises the intriguing possibility that coordinated

regulation of these proteins could provide significant therapeutic

benefit, potentially amplifying the impact of interventions targeting

disease progression.

The prospect of utilizing SLFN family members as non-invasive

preoperative biomarkers for cancer is promising, although

substantial experimental evidence is still required. Given the close

association between Schlafen proteins and tumor-infiltrating

immune cells and immune checkpoints, along with their

confirmed role in modulating chemotherapy sensitivity and

resistance, assessing their expression and regulatory levels could

provide new avenues for combining chemotherapy with

immunotherapy. This approach could pave the way for

personalized and precision-based treatment strategies. However,

whether this advantage can be successfully translated into clinical

applications, extending patient survival without introducing long-

term adverse effects, requires comprehensive and multi-faceted

experimental validation.

In summary, the SLFN family represents a promising group of

proteins with significant implications in disease biology,
Frontiers in Oncology 07
particularly cancer, and warrants further investigation to uncover

their full therapeutic potential.
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