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for lung squamous
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Lung cancer, a common type of malignant neoplasm, has seen significant

advancements in the treatment of lung adenocarcinoma (LUAD). However, the

management of lung squamous cell carcinoma (LSCC) continues to pose

challenges. Traditional treatment methods for LSCC encompass surgical

resection, chemotherapy, and radiotherapy. The introduction of targeted

therapy and immunotherapy has greatly benefited LSCC patients, but issues

such as limited immune response rates and adverse reactions persist. Therefore,

gaining a deeper comprehension of the underlying mechanisms holds immense

importance. This review provides an in-depth overview of classical signaling

pathways and therapeutic targets, including the PI3K signaling pathway, CDK4/6

pathway, FGFR1 pathway and EGFR pathway. Additionally, we delve into

alternative signaling pathways and potential targets that could offer new

therapeutic avenues for LSCC. Lastly, we summarize the latest advancements

in targeted therapy combined with immune checkpoint blockade (ICB) therapy

for LSCC and discuss the prospects and challenges in this field.
KEYWORDS
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1 Introduction

Lung cancer, a leading cause of cancer-related deaths worldwide (1), is commonly

classified into small-cell and non-small-cell subtypes (2). Non-small-cell lung cancer

(NSCLC) accounts for approximately 85% of all lung cancer cases, with lung squamous

cell carcinoma (LSCC) making up around 30% of them (3). Smoking history, prolonged

exposure to harmful substances, and familial genetic factors significantly contribute to the risk

of lung cancer (4–6). Patients diagnosed with lung adenocarcinoma (LUAD) often benefit

more from targeted therapy and immunotherapy than those with LSCC (7). Operable

mutations are rarely detected in patients with LSCC, resulting in limited treatment options

(8). Currently, the primary treatments for LSCC encompass surgical resection, chemotherapy,
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radiotherapy, targeted therapy, and immunotherapy (6, 9, 10).

The standard treatment of early and middle-stage LSCC is

primarily surgical treatment, supplemented by radiotherapy

and chemotherapy, and the advanced treatment is mainly

chemotherapy. However, surgical resection is often unfeasible for

advanced LSCC cases (11), and chemotherapy and radiotherapy can

frequently lead to toxicity and drug resistance (12, 13). As an

emerging approach in LSCC therapy, targeted therapy holds

promise in improving patient survival rates and quality of life by

inhibiting specific signaling pathways involved in cancer cell growth.

Prominent pathway alterations, such as phosphoinositide 3-kinase

(PI3K)/protein kinase B (AKT), epidermal growth factor receptor

(EGFR), fibroblast growth factor receptor (FGFR), cell cycle protein-

dependent kinases 4 and 6 (CDK4/6), and rat sarcoma (RAS)

pathways, have been observed. While treatment options for the two

subtypes of NSCLC, namely LSCC and LUAD, were previously

similar (14), LSCC exhibits a higher prevalence of certain mutated

genes, including tumor protein p53, glutamate receptor, metabotropic

8, Erb-B2 receptor tyrosine kinase 4, Kelch-like ECH-associated protein

1 (KEAP1), andmucin 16 (15). However, a single targeted therapeutic

approach still presents certain challenges owing to drug resistance

and tumor heterogeneity.

Immunotherapy treatment for LSCC shows potential benefits,

particularly in histological and mutational states (16, 17). Immune

checkpoints, such as programmed death receptors and their ligands,

naturally regulate the immune system to prevent overreaction and

autoimmune diseases (18). However, tumor cells often exploit

programmed death ligands on their surface to bind to

programmed death acceptors, impeding the function of T cells,

thereby evading immune surveillance (19, 20). Immune checkpoint

blockade (ICB) therapy stimulates the immune system to re-

recognize tumor cells and increase its aggression by inhibiting the

binding of tumor cells to programmed death receptors and their

ligands (18, 21). Current ICB first- and second-line therapies for

advanced LSCC include programmed cell death protein 1 (PD-1)/

programmed cell death ligand 1 (PD-L1) and cytotoxic T-

lymphocyte associated protein 4 (CTLA-4) inhibitors (22).

Despite these advances, further comprehensive studies are

required to address issues such as the search for novel medicines,

immune tolerance management, and hazardous side effects (23, 24).

ICB therapy can cause unique toxicity by enhancing immune

response, consequently inducing immune-related adverse events

(25). Additionally, many patients with LSCC develop immune

escape owing to the human leukocyte antigen gene mutations

(26). Combining immunotherapy with other therapies, including

targeted therapy, may offer a reliable solution. Some classical

signaling pathways, such as PI3K and CDK4/6, are associated

with a tumor mutational burden (TMB) state. Novel targets such

as nuclear receptor-binding SET domain protein 3 (NSD3), lysine

methyltransferase 2 D (KMT2D), and ubiquitin-specific peptidase

28 (USP28), are related to tumor microenvironment (TME) and

immune cells. A recent study involving 1008 patients with LUAD

and LSCC suggests that identifying elevated PD-L1 expression

levels could effectively guide targeted therapy. This is because PD-

L1 is more prevalent in men, smokers, and squamous cell
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carcinoma tumors with a maximum diameter >3 cm, poorly

differentiated, and/or high tumor node metastasis stage (27).

Future LSCC research will continue to focus on individualized

treatment plans (28). This review summarizes the current

knowledge of potential targetable gene alterations in LSCC, and

considers repurposing some targets effective against other cancers,

including LUAD. Considering the complex genome of patients with

LSCC, we further discuss the possibility of multi-target combination

therapy and combining immunotherapy with targeted therapy to

improve the efficacy of LSCC treatment. We anticipate more

advances in LSCC therapy, which will benefit the clinical

outcomes of patients by broadening the pool of possible

therapeutic targets, increasing drug selectivity, and implementing

treatment approaches like targeted therapy in conjunction with

immunotherapy or multi-target combination therapy.
2 Targeting classical targets in LSCC

Previous studies have shown that patients with LSCC exhibit

numerous genetic alterations, affecting various signaling pathways.

The most commonly mutated genes in lung squamous carcinoma

include phosphatase and tensin homolog (PTEN), EGFR, cyclin

dependent kinase inhibitor 2A, and phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (29, 30).

This section introduces several previously identified classical

targets, along with their associated developments, paving the way

for new targets and therapeutic strategies (Figure 1).
2.1 PI3K

Research has identified overactivation of the PI3K/AKT

signaling pathway as a prevalent etiology among cancers (31).

This pathway is disrupted in 68% of LSCC samples (32).

PI3K is divided into three main classes. Class I PI3K, which is

strongly associated with cancer (33), is comprised of the catalytic

subunit p110 (with four subtypes: a, b, g, and d) and regulatory

subunit p85 (34, 35). P110a directly binds to the RAS gene or

recruits the p85 subunit to the tyrosine phosphorylated receptor

and receptor-associated adaptor proteins, signaling downstream

plasma membrane-associated tyrosine kinase (36).

The primary manifestations of PI3K signal distortion in LSCC

are PIK3CA amplification, PIK3CA mutation, and PTEN loss (37,

38). Tumor suppressor PTEN activation impacts the negative

feedback mediating PI3K, significantly inhibiting tumor cell

growth and invasion along with the activity of focal adhesion

kinase (39, 40). PIK3CA mutations often co-mutate with other

oncogenes such as EGFR, RAS, TP53, and so on (41), making it

difficult to accurately target them with existing therapies (42).

Furthermore, several clinical studies and experimental

investigations have yielded negative results. When PI3K is

inhibited, adaptive overexpression occurs in several compensatory

pathways, leading to drug resistance (43). Furthermore,

hyperglycemia has been reported in some patients treated with
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PI3K/AKT inhibitors (44), possibly due to the promotion of

insulin-stimulated glucose uptake and storage by this pathway.

Although the PTEN–PI3K axis has been established in LSCC

studies, this pathway also plays a role in many normal cellular

functions, while mutation-specific inhibitors remain unavailable.

Ultimately, we need to deepen our understanding of PI3K’s

function in cancer environment and enhance the durability and

specificity of relevant treatments.
2.2 EGFR

The erbB-1 gene encodes EGFR, a transmembrane protein

crucial for cell functions such as proliferation, growth, apoptosis,

repair, and survival (45, 46). Mutations in the EGFR tyrosine kinase

region, mainly in exons 18–21, are strongly associated with a subset

of patients with LSCC, particularly women and non-smokers (30,

47, 48). Roughly half of patients with lung cancer exhibit EGFR

mutations, with a notable increase in EGFR protein expression in

LSCC compared with LUAD (49, 50). Furthermore, the mRNA

abundance of the five EGFR ligands strongly correlates with EGFR-
Frontiers in Oncology 03
amplified LSCC cohorts, but no increase in EGFR pathway activity

was observed (51). This suggests that EGFR ligand abundance is a

more accurate indicator of EGFR inhibitor responsiveness in

these patients.

Currently, EGFR-tyrosine kinase inhibitors (TKI) are a key

therapeutic option for patients with LSCC and EGFR-activating

mutations, significantly improving clinical outcomes (28).

However, owing to an altered EGFR signaling pathway and

activation of abnormal bypass pathway, acquired resistance of 1st,

2nd, and 3rd generation EGFR-TKI remains inevitable (52, 53). For

EGFR-mutated patients with NSCLC who progress after EGFR-TKI

treatment, a combination with immune checkpoint inhibitors

(ICIs), chemotherapy, and anti-vascularization offers the greatest

survival benefit, according to a statistical analysis of 2,085 patients

in 17 studies (54).
2.3 FGFR

The FGFR family is key in tissue development and cancer

progression, forming complexes with fibroblast growth factor
FIGURE 1

Signaling pathways associated with classical/novel targets.
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(FGF) which activates several downstream signal transduction

pathways (55, 56). Dysregulation of FGFR expression can

contribute to tumor cell proliferation, survival, resistance, and

immune escape (56), with LSCC showing higher FGFR1 levels

than LUAD (37, 57).

FGF regulates the FGFR signaling pathway, maintaining tissue

homeostasis, promoting repair and development, and influencing

cell proliferation, differentiation, migration, survival, and

angiogenesis (58, 59). FGF19 is crucial in prostate and breast

cancer progression as it binds to the FGFR4 and Klotho

complexes to initiate downstream signaling, significantly affecting

LSCC development and proliferation (60–63). GLI family zinc

finger 2 (GLI2), a downstream effector of FGF19, is induced by

the TGF-B/SMAD pathway and is significant in promoting cancer

metastasis (64). High FGF19 expression is associated with poor

outcomes in LSCC, driving cell invasion through GLI2-mediated

epithelial-mesenchymal transition (EMT) (65). As a result,

therapeutic strategies that focus on the positive feedback loop of

FGF19-GLI2 may be effective in treating LSCC.

FGFR emerges as a potential therapeutic target for LSCC (66).

Current targeted therapeutics of FGFR include ortho-binding

inhibitors, allosteric inhibitors, ligand traps, and small-molecule

kinase inhibitors (67). FGFR1 amplification, the most common

FGFR mutation affecting approximately 20% of patients with LSCC

(51), has not been proven to be a reliable predictor in therapeutic

trials (57, 68). Furthermore, the complex action mechanism of

NSCLC and the uncertain origins of FGFR1 mutations warrant

further research to understand or determine FGFR1 signaling in

LSCC pathophysiology.
2.4 ALK

Anaplastic lymphoma kinase (ALK) regulates the function of

the frontal cortex and hippocampus of the adult brain as well as

influences tumor cell cycle control, thus impacting tumor

transformation (69). Although unessential for normal growth and

development, ALK's activation of signaling pathways, such as Janus

kinase/signal transducer of activation, mitogen-activated protein

kinase (MAPK), PI3K/AKT, and mitogen-activated protein kinase

kinase (MEK) 5-extracellular signal-regulated kinase (ERK) 5,

underscores its essential role in cell proliferation, differentiation,

and apoptosis inhibition, making it a potential target for cancer

therapy (70).

ALK rearrangements, particularly its fusion with echinodermal

microtubule-associated protein-like 4, are common in NSCLC, with

ALK mutations present in approximately 5% of cases, mostly

patients with LUAD (71–74). Despite this, the large NSCLC

patient population keeps ALK as a significant therapeutic target.

Targeted therapy with TKIs, including crizotinib (first-generation),

alectinib, ceritinib, ansatinib, brigatinib (second-generation), and

loratinib (third-generation), has been developed for ALK-

rearranged NSCLC (75–77). However, challenges including drug

resistance and toxicity require further research and the

development of new treatments (78).
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2.5 RAS

When the RAS proteins are activated, they initiate several

downstream signaling pathways, such as the PI3K/AKT/mTOR

network, RAF/MEK/ERK pathway, and RalEGF/Ral route (79,

80). The dysregulation of the RAF/MEK/ERK signaling pathway

is linked to tumor growth (81). The PI3K/AKT/mTOR pathway is

associated with tumor pathologies (82). Despite initial challenges of

“undruggable”, targeted allele-specific inhibitors of RAS, such as

Kirsten rat sarcoma virus (KRAS)-G12C targeting drugs, have been

developed, potentially changing the treatment landscape for RAS-

driven tumors (83).

KRAS mutations are a frequent genetic cause of NSCLC,

especially LUAD, but are rare in LSCC, with KRAS mutation

rates reported between 1 and 7% in LSCC (84). Controversies

exist regarding the presence of KRAS mutations in LSCC; some

data suggest that KRASmutations may be misclassified as LUAD or

adenosquamous carcinoma. However, the persistence of KRAS

mutations suggests that KRAS mutant LSCC is likely to exist, and

future evidence may provide further clarification (85).
2.6 MEK

MEK is an important downstream component of the RAS with

two main isoforms: MEK1 and MEK2 (86). It functions by

specifically phosphorylating tyrosine and threonine residues in

the activation loops of ERK1/2, playing a role in the RAS/RAF/

MEK/ERK pathway (87). The MEK mutations are less common in

patients (88). However, due to the importance of the RAF/MEK/

ERK pathway, MEK is considered a potential target for new cancer

therapies. For LSCC patients with V-raf murine sarcoma viral

oncogene homolog B (BRAF) or KRAS mutations, monotherapy or

combination therapy with MEK inhibitors, including trametinib,

binimetinib, selumetinib, and cobimetinib, approved by the United

States Food and Drug Administration (FDA), may be a promising

treatment strategy. Compared with MEK inhibitor monotherapy,

MEK inhibitor combination therapy demonstrates better

therapeutic efficacy and less toxic side effects. The clinical efficacy

requires further validation (89–91).
2.7 CDK4/6

CDK4/6 are key mediators for cell cycle transition from the G1

to the S phase (92). They contribute to the CDK-activated kinase

complex phosphorylation of a CDK4/6 complex and activate cyclin

D (93). Then, it phosphorylates the retinoblastoma, preventing it

from repressing the E2F family of transcription factors, thus

controlling the cell cycle (94). In LSCC, the cell cycle is disrupted

owing to a high rate of gene inactivation that regulates CDK4/6

expression, making them potential targets for cancer therapy (95).

CDK4/6 inhibitors have shown promise in treating certain

cancers, and their efficacy in treating LSCC is being investigated

(96). Regretfully, monotherapy with CDK4/6 inhibitors such as
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palbociclib and abemaciclib has not been very successful (97, 98).

Ongoing research and clinical trials are exploring the potential

benefits of CDK4/6 inhibitors, both as monotherapy and in

combination with other treatments (99).
2.8 DDR2

Discoidin domain receptor 2 (DDR2) is a member of the RTK

family that plays a key role in cell proliferation and survival through

EMT (100, 101). Evidence shows that DDR2 signals are closely

related to the activation of PI3K/AKT and RAS/MEK/ERK

pathways (102). The mutation rate of DDR2 varies among

patients with LSCC, ranging from 0 to 4.6%, possibly because of

ethnic differences (103–106). A study by Miao et al. demonstrated

that DDR2 mRNA levels in LSCC tissue were significantly reduced

compared with normal lung tissue (105).

Dasatinib is one of the most effective drugs for inhibiting the

proliferation of DDR2-mutated cancer cells and has been approved

for leukemia treatment (107). However, its clinical application is

limited because of its significant toxicity and complexity of DDR2

signal transduction in lung cancer (102, 108). In addition, the

gatekeeper T654I mutation acquired on DDR2 and the deletion

of neurofibromin 1 expression through a splice site mutation can

result in dasatinib resistance (109). Therefore, it is necessary to fully

understand the signal transduction mechanism of DDR2 and

develop the second generation of DDR2 inhibitors as soon as

possible (110).
3 Other potential treatment targets

In addition to the conventional objectives discussed before,

recent novel clinical trials have introduced innovative approaches,

generating a treasure trove of valuable data for researchers. The

pioneering potential targets might offer a renewed sense of

optimism for LSCC treatment. This section delves into a selection

of these targets.
3.1 NSD3

The NSD family are selective methyltransferases for histone H3

lysine 36 (H3K36) on nucleosome core particles (111, 112). This

family, which operates in an auto-inhibitory state, allows H3K36

dimethylation to be catalyzed by nucleosome-based recognition and

modification pathways which is crucial for maintaining chromatin

stability and regulating gene expression (113).

Adjacent to FGFR1 is NSD3, which regulates the histone H3

lysine 36 methyltransferase (114). The amplification of NSD3,

strongly linked with NSD3 mRNA expression (115), is among the

more common genetic alterations in LSCC. Gene set enrichment

analysis revealed that MYC targets, E2F targets, G2-M checkpoints,

and unfolded protein response (UPR) are highly enriched in NSD3-

amplified tumors. Additionally, the non-inflammatory TME

condition of NSD3-amplified LSCCs leads to a less-than-optimal
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carcinogenic function of NSD3 in LSCC and suggest that NSD3

may influence the ability of the immune system to combat tumors.

Considering their substantial role in tumor progression (117),

the NSD family is under investigation as a potential therapeutic

target for various cancers. However, the development of NSD

inhibitors has been slow, largely owing to limitations in

bioanalysis methodologies and the unique self-inhibition ring

within the SET domain of NSD, making obtaining access to its

substrate binding sites challenging (118). Despite these challenges,

there has been notable progress in creating small-molecule

inhibitors that target specific domains of NSD3 (119, 120), largely

attributed to the refinement of the molecular mechanism of histone

methylation catalyzed by NSD family proteins. Several inhibitors

that target the NSD3 domain or its upstream and downstream

signaling targets have been reported, such as BI-9321, a selective

antagonist that specifically targets the PWWP1 domain of NSD3,

and BRD4, an inhibitor that targets the bromodomain and

extraterminal proteins (BET) (120, 121). We look forward to

further potential applications of various NSD3 inhibitors.
3.2 KMT2D

The KMT2 family proteins play a pivotal role in chromatin

structure regulation through methylation of lysine 3 on histone H4,

thereby influencing epigenetic transcriptional activation (75, 122).

KMT2D is known for its role as an H3K4 mono-methyltransferase

that activates enhancers (123). The KMT2D gene, frequently

mutated in LSCC and ranking third in the mutation rate among

all cancer-related genes in The Cancer Genome Atlas Pan-Cancer

Atlas, is a significant factor in lymphoma and breast cancer (124–

127). KMT2D functions as a tumor suppressor in ovarian

malignancies and lymphoma; however, it paradoxically promotes

tumor growth in gastric and breast cancers (125, 126, 128–130).

This dual role highlights the complexity of KMT2D’s function in

cancer biology. The role of KMT2D in LSCC remains elusive, but a

recent study has shed light on its tumor suppressor function. The

study discovered that KMT2D absence leads to the underexpression

of receptor-like protein tyrosine phosphatases, resulting in

unchecked receptor tyrosine kinases-RAS signaling. The research

reveals that inhibiting Src homology-2 protein tyrosine phosphatase

and pan-ERBB can mitigate receptor tyrosine kinases-RAS

signaling, slow LSCC progression, and extend survival, suggesting

that targeting downstream components of KMT2D may be crucial

for effective LSCC therapy (131). Furthermore, KMT2D deficiency

has been linked to reduced expression of the tumor suppressor gene

period circadian regulator 2 in lung cancer, leading to increased

glycolysis and tumors proliferating (132).
3.3 KEAP/NRF2

Nuclear factor erythroid 2 related factor 2 (NRF2), a basic

leucine zipper (bZIP) transcription factor, is a key regulator related

to cell homeostasis (133, 134). Under normal conditions, NRF2 is
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bound by its repressor, KEAP1, which facilitates the degradation of

NRF2 by proteases, maintaining the redox equilibrium (135). The

homodimerization of KEAP1 and disruption of the KEAP1-Cullin3

complex under oxidative stress diminishes KEAP1’s ability to target

NRF2, allowing NRF2 to enter the nucleus and bind to the

regulatory regions of antioxidant genes (136). LUAD frequently

exhibits gain-of-function mutations in the NRF2 encoding gene,

whereas LSCC is characterized by loss-of-function mutations in

KEAP1, affecting ≤21% of cases (137). Furthermore, experimental

data indicates that the KEAP1/NRF2 pathway influences cell

motility by inhibiting the RAS homolog family member A-Rho-

associated protein kinase 1 pathway, affecting tumor cell adhesion

and migration (138).

While there is currently no established cure for mutation in this

pathway, many innovative and natural electrophilic compounds

may serve as potential selective NRF2 activators, exhibiting anti-

inflammatory properties (133). This is particularly relevant as NRF2

overactivation in cancer has been linked to chemotherapy and

radiation therapy resistance, often resulting in less favorable

patient outcomes, such as activating pathways that activate NRF2-

mediated cisplatin resistance (137). Additionally, as reported by

Sanchez-Ortega et al., reactive oxygen species (ROS) induction in

wild-type NRF2/KEAP1 LSCC cells triggers iron death, and local

ROS induced generation may be a novel therapeutic strategy for

wild-type KEAP1/NRF2 LSCC (139). Surprisingly, Cui et al. found

that NRF2 inhibition enhanced cell death and inhibited tumor

growth in EGFR-mutated TKI-resistant non-small cell lung cancer,

which may provide a new strategy to overcome resistance to EGFR-

TKIs (29). Furthermore, the physiological mechanism of the

KEAP1/NRF2 pathways is intricate, owing to the dual role of

NRF2 as both a proto-oncogene and tumor suppressor in cancer

(140). There is an urgent need for pharmaceuticals that specifically

target the KEAP1/NRF2 signaling pathway and the adoption of

advanced therapeutic approaches such as genetic stratification

(141). These approaches could potentially provide more effective

treatment options for patients.
3.4 USP28

USP28, a member of the deubiquitinase family, plays a crucial

role in ubiquitination by removing ubiquitin tags, thereby regulating

protein stability and function (142). Studies have highlighted the

importance of USP28 in controlling various cancers, including

gliomas, bowel cancer, and breast cancer, suggesting its potential as

a novel therapeutic target for LSCC (143–145).

F-box and WD repeat domain containing 7 (FBXW7), a crucial

component of the ubiquitin ligase complex, targets several well-

known oncoproteins for degradation, including c-MYC, neurogenic

locus Notch homolog protein, and c-JUN (145). USP28 disrupts

this process by preventing FBXW7-mediated ubiquitination (146).

Experimental evidence has demonstrated that inhibiting USP28

significantly curtails tumor growth in LSCC. This therapeutic

response to USP28 inhibition occurs regardless of FBXW7 and

USP28 mutations, underscoring USP28's promise as a therapeutic

target in LSCC treatment (147).
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Furthermore, studies have delved into the synergistic effects of

targeting both USP28 and mevalonate pathways. Abnormalities in

the mevalonate pathway are closely linked to tumor growth (148).

Within this context, sterol regulatory element-binding protein 2

(SREBP2), a member of the sterol regulatory element-binding

proteins, is crucial for cholesterol biosynthesis and uptake (149).

Studies have discovered an interaction between SREBP2 and

USP28, with both co-localizing in the nucleus of LSCC cells.

USP28 can modulate SREBP2 expression, thereby stabilizing it

and exerting control over the mevalonate pathway, suppressing

tumor growth (150). This insight paves the way for innovative

LSCC therapies that target both USP28 and mevalonate pathways,

offering promising avenues for treatment.
3.5 p38 MAPK

The p38 MAPK family plays a crucial role in the cellular stress

response (151). This kinase group contributes to a stress-response

pathway involving three kinase cascades that regulate cell

differentiation, survival, and cycle checkpoints (152). Additionally,

the dual nature of p38 MAPK has been observed in various cancers,

including intestinal, liver, and breast cancer, where it influences

both tumor growth and metastasis, making it a potential therapeutic

target (153, 154). Despite its promise as a treatment, the clinical

application of p38 MAPK inhibitors has been limited owing to

systemic adverse effects. Current research is exploring combination

therapy and targeting its downstream effectors to enhance its

therapeutic efficacy (155). In LSCC context, the role of the p38

pathway in treatment resistance is becoming increasingly clear.

Studies have shown that p38 MAPK inhibitors aid in overcoming

resistance to gefitinib in NSCLC with EGFR mutations (156).

Furthermore, the dual inhibition of FGFR and p38 MAPK has

undergone a significant reduction in tumor development and

proliferation (157).
3.6 TNFR1

Tumor necrosis factor receptor 1 (TNFR1) is a key mediator of

the physiological effects of TNF (158). It activates the nuclear

factor-kB (NF-kB) and MAPK pathway, causing necrotic

apoptosis (159). The NF-kB pathway, connected to TNFR1, is an

important molecular mechanism involved in various cellular

processes such as innate immunity, inflammation, cell

development, survival, and proliferation (160, 161).

TNFR1, through the NF-kB signaling pathway, stimulates the

production of ubiquitin-conjugating Enzyme H10 (UBCH10), an

E2 ubiquitin-conjugating enzyme. Activated UBCH10 reduces

twist-related protein 1, c-MYC, and SRY-box transcription

factor 2 (SOX2) levels, leading to the transformation of

differentiated LSCC into dedifferentiated spindle cell carcinoma,

contributing to the last stage of LSCC (162). The TNFR1–

UBCH10 axis plays a crucial role in LSCC development and

metastasis, positioning TNFR1 inhibitors as potential novel

treatments for LSCC (Table 1).
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4 Targeted therapy combined
with immunotherapy

At present, immunotherapy stands as an important treatment

option for patients with LSCC. Each of these treatments,

immunotherapy, chemotherapy, and targeted therapy, faces

challenges owing to the diversity of tumor phenotypes and

suboptimal clinical response when used independently. Therefore,

exploring the potential for combined targeted therapy and

immunotherapy could significantly improve patient outcomes.
4.1 Classical pathway with immunotherapy

TMB is a crucial parameter for assessing immunotherapy

effectiveness (163). Patients with a high TMB are more likely to

benefit from ICI medications (164). High TMB (≥10/Mb) tumors in

LSCC demonstrate enhanced immune cell lysis activity and

enrichment of CD8+ T cells compared with low TMB cancers.
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Furthermore, research indicates that seven pathways, including the

traditional PI3K/AKT and MAPK, are significantly inversely

associated with TMB in LSCC (165).

Recent research suggests that PI3K inhibitors exert specific effects

on TME by regulating tumor vasculature, fibroblast activity, and

associated protein secretion (166). PI3K-d and PI3K-g signaling

pathways alter the intrinsic processes of cell populations and

influence tumor immune microenvironment (TIME), thereby

supporting T-cell inhibition (167). Furthermore, alterations in the

PI3K pathway in head and neck squamous cell carcinoma (HNSCC)

have been associated with a high density of cytotoxic cells, including

central memory CD8+ T andmemory CD4+ T cells, which are crucial

for immunotherapy and anti-tumor immunity (168).

KRAS mutations, prevalent in NSCLC, have been associated

with increased PD-L1 expression, proliferation of tumor-infiltrating

lymphocytes (TILs) proliferation, and high TMB (84, 169). Clinical

trials suggest that ICIs are effective for patients with specific KRAS

mutations, especially the G12C subtype (170). However, not all

KRAS mutations are equally responsive to immunotherapy. For

instance, the G12D variant is linked to lower TMB and, when co-
TABLE 1 Existing drugs that might be used in targeting LSCC.

Drugs Target Drug type Cancer type

Piqray (alpelisib) PI3K Small molecular inhibitor Breast cancer

Ukoniq (umbralisib) PI3K Small molecular inhibitor Lymphoma

Gedatolisib PI3K/mTOR Small molecular inhibitor Colorectal cancer

Truqap (capivasertib)
with fulvestrant

HR-positive and HER2-negative with PIK3CA/
AKT1/PTEN-alterations

Small molecular inhibitor Breast cancer

Anti-EGFR/VEGFR2 BsAb EGFR and VEGFR2 Antibody Triple-negative breast cancer

Erbitux (cetuximab) EGFR and KRAS Antibody
Colorectal cancer or squamous cell carcinoma
of the head and neck

Futibatinib FGFR Small molecular inhibitor Head and neck cancer

CYY292 FGFR1 Small molecular inhibitor Locally advanced and metastatic cancer

Sulfatinib FGFR1 Small molecular inhibitor Osteosarcoma

Naporafenib RAS Small molecular inhibitor Melanoma

PLX8394 RAF Small molecular inhibitor Solid tumor

NFX-179 MEK Small molecular inhibitor Cutaneous squamous cell carcinoma

Tepmetko (tepotinib) MET Small molecular inhibitor Non-small-cell lung cancer

Palbociclib CDK4/6 and STAT3 Small molecular inhibitor Breast cancer

Thapsigargin NSD3 (UPR) Small molecular inhibitor Lung squamous cell carcinoma

SHP099 KMT2D Small molecular inhibitor Lung squamous cell carcinoma

ML385 NRF2 and AKT Small molecular inhibitor Lung squamous cell carcinoma

Otilonium bromide USP28 Small molecular inhibitor Colorectal cancer

Vismodegib derivatives USP28 Small molecular inhibitor
Colorectal cancer and lung squamous
cell carcinoma

Resveratrol (RES) HMMR (CD168) Polyphenol Lung squamous cell carcinoma

Felodipine NFAT1 Small molecular inhibitor Lung squamous cell carcinoma
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mutated with TP53, shows reduced PD-L1 expression and immune

infiltration (171). Given the prevalence of the G12C subtype in

KRAS mutations and the FDA-approval of targeted drugs for this

subtype, the synergistic approach of immunotherapy and KRAS

targeted therapy holds considerable promise (83).

Additionally, the cell cycle pathway shows a significant positive

correlation with TMB in both LUAD and LSCC. Inhibition of

CDK4/6 is known to enhance T cell activation, bolster tumor

immunological infiltration, reinforce immunological memory, and

amplify the anti-tumor immunity elicited by anti-PD-1 antibodies

(172, 173). Evidence from ovarian cancer treatment indicates that

the synergistic effects of anti-PD-1 and CDK4/6 targeted therapy

surpass the benefits of either treatment alone (174). Innovative

combinations, such as the CDK4/6 inhibitor palbociclib and the

CD73 selective inhibitor AB680, have shown efficacy in colorectal

cancer (175). These findings provide hope for the potential of these

combinations to increase their efficacy.
4.2 KEAP/NRF2 with immunotherapy

The mutation of the KEAP/NRF2 pathway is associated with a

poor prognosis in patients with advanced cancer (176). In addition

to being a significant targeted therapeutic option, this pathway

mutation influences TIME and the selection of immunotherapy for

patients with NSCLC (177). Recent clinical research has highlighted

certain tumor metabolic characteristics, such as NRF2-mediated

glutamine metabolism, that regulate tumor TIME (178). Glutamate

and glutamine metabolism is significantly upregulated in LSCC

tissues and plays a significant role in immune and stromal

environmental inhibition (179). Immunotherapy for lung cancer

benefits from inhibiting the glutamine metabolic pathway in several

manners, including the upregulation of PD-L1 expression and

reactivation of CD8+ T cells (177, 180). Furthermore, elevated

NRF2 levels induce cell senescence. These senescent cells can be

eliminated by immune effector cells recruited by NRF2-induced

secretory phenotype, establishing the NRF2- NRF2-induced

secretory phenotype immune surveillance axis (176).

Considering the multifaceted roles of the KEAP1/NRF2 pathway

in both immunotherapy and targeted therapy, combining these two

approaches may enhance clinical outcomes for patients with LSCC.
4.3 NSD3 with immunotherapy

Considering the significant variability of tumor immunogenicity

and clinical response in patients with LSCC, precise stratification of

immunotherapies is crucial. The TME of NSD3-amplified LSCC

exhibits a non-inflammatory state with diminished activity in

immune-related pathways. High UPR signaling activity may be a

major modulator of the non-inflammatory TME phenotype in

NSD3-amplified LSCC, as suggested by further molecular

characterization (116). This suggests that NSD3 influences TIME

and is linked to poorer outcomes in LSCC immunotherapy.

Furthermore, NSD3 mutations impact clinical outcomes as they are
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related to immune cell infiltration and growth signaling in pancreatic

cancer (112). While there are currently no therapeutically available

NSD3 inhibitors, NSD3 could potentially serve as a biomarker for

immunotherapy in combination with targeted therapy.
4.4 KMT2D with immunotherapy

Evidence suggests that patients with mutant KMT2D are likely

to respond favorably to immunotherapy, as indicated by the

protein's high attachment to major histocompatibility class I

(181). Tumors with KMT2D mutations have been observed to

exhibit a significantly higher TMB and improved immune

infiltration in TIME (125, 182, 183). Furthermore, KMT2D

mutations have been found to enhance immunotherapy responses

in certain cancers (184). DNA damage, increased mutation burden,

intron retention, and activated TE expression contribute to elevated

neoantigen synthesis (185). Additionally, KMT2D has been linked

to mismatch repair deficiency in prostate cancer (186). KMT2D

mutations have been identified as potential predictive markers for

melanoma and effective predictors of immune response in

colorectal cancer (187, 188). The combination of immunotherapy

and targeted therapy for KMT2D holds promising potential for

improving treatment outcomes.
4.5 P38 MAPK with immunotherapy

Research indicates that 3-hydroxy-3-methylglutaryl-CoA

reductase, an essential enzyme in the mevalonate pathway,

regulates the production of PD-1 via p38 MAPK (189).

Observations suggest that inhibiting the p38 MAPK pathway

stimulates CD8+/CD4+ T cells and fosters the growth of CD8+

T cells (190, 191). A potential treatment approach could involve a

temporary boost in immunity by co-blocking PD-1 and p38 MAPK

(191). However, p38 MAPK activation in CD8+ T cells compromises

the anti-tumor efficacy of some anti-PD-L1 therapies, indicating that

a combination of anti-PD-L1 and p38 MAPK-targeted therapies may

hold potential (192). Furthermore, a combination of anti-PD-1

therapy and metformin, a drug known to boost the anticancer

activity of natural killer cells in a p38 MAPK-dependent manner,

may be effective against metastatic melanoma (193).
4.6 TNFR1 with immunotherapy

TNFR1 is crucial for anti-tumor immunity, potentially

predicting the immune response (194). In addition, TNFR1 is

required for the TNF signaling pathway in melanoma, affecting

the efficacy of anti-PD-1 therapy. After anti-PD-1 therapy, TNF

insufficiency reduces TIL mortality and increases CD8+ TIL

numbers, with similar effects observed in lung cancer (195).

Studies suggest that TNFR1 modulates immune cell expression

and enhances anti-tumor activity through NF-kB and p38 MAPK

signaling cascade, regulating anti-tumor immunity, which is crucial
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for NSCLC development (196, 197). Furthermore, TNFR1 and

interferon-g signaling cooperate to prevent multistage

carcinogenesis as a compromise in either pathway may cause T

lymphocytes to promote tumor formation (198).
5 Multi-target combination therapy

5.1 FGFR1 and MAPK

Although several FGFR1 inhibitors have been tested, their

clinical effectiveness is limited owing to resistance in various

cancers, including lung, breast, colorectal, and melanoma (199,

200). A clinical study suggests that the TAM family of tyrosine

kinases, MET, neurotrophic factor receptor pathway, and MAPK

pathway are major contributors to FGFR resistance. Specific genes

such as KRAS G13D, HRAS,MAP3K8, and BRAF V600E within the

MAPK pathway are linked to resistance against the FGFR inhibitor

BGJ398 (201). The latter three gene mutations are responsible for

PI3K inhibition in breast cancer and RAF/MEK inhibition in

BRAF-mutated melanoma (202, 203). BGJ398 inhibits FGFR by

deactivating AKT phosphorylation and temporarily suppressing

ERK phosphorylation in the NCI-H2077 cell line. However,

overexpression of neurotrophic factor receptor pathway 1, MET,

and HRAS leads to the resurgence of ERK and AKT activity,

indicating an up-regulation trend in ERK activity (201). Increased

MAPK signal ing gene express ion s ignal ing and p38

phosphorylation are common in FGFR inhibitor-sensitive cell

lines. Moreover, p38 MAPK overexpression can diminish the

effectiveness of FGFR inhibition, inducing resistance (157).

Specifically, in lung cancer cell lines with amplified FGFR1,

MET overexpression induces resistance to FGFR inhibitors,

indicating a possible inverse correlation between these

pathways (204).
5.2 FGFR and EGFR

Commonly used EGFR-TKIs in clinical practice include

gefitinib, erlotinib, and afatinib. However, drug resistance remains

a challenge (205). KRAS G13D and BRAF V600E, two MAPK

family members, increase resistance to erlotinib, gefitinib, and

crizotinib in NSCLC and contribute to resistance against FGFR

inhibitors (201). Activation of the FGF2/FGFR1 autocrine pathway

in EGFR-dependent NSCLC leads to resistance to gefitinib and

osimertinib, indicating a potential connection between the FGFR

and EGFR pathways (206, 207). In lung cancer cell lines with the

FGF2/FGFR1 pathway, targeting this resistance mechanism with

EGFR-specific TKI does not significantly increase apoptosis,

indicating that FGFR inhibitors may stabilize tumor progression

rather than cause tumor regression (208). Therefore, combining

FGFR-specific TKIs with EGFR-specific TKIs may serve as an

effective targeted therapy for LSCC, potentially delaying the

development of acquired resistance in EGFR-driven NSCLC.
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5.3 PI3K and KMT2D

Studies have demonstrated that KMT2D modulates SOX2

expression in NSCLC through a PI3K-dependent manner,

significantly impacting tumor growth. A KMT2D deficiency leads

to reduced phosphoinositide-3-kinase-interacting protein 1

expression and increased phosphorylated AKT, accelerating

tumor growth in NSCLC by activating the PI3K/AKT pathway

and upregulating SOX2 expression (209). Inhibiting PI3K affects

tumor growth in estrogen receptor (ER)-positive breast cancer and

activates glucocorticoid-regulated kinase 1 through KMT2D,

regulating ER-dependent transcription via a negative feedback

loop (126, 210). Patients with ER-positive breast cancer may gain

clinical benefit from the combined targeted therapy of KMT2D and

PI3K, potentially increasing efficacy and preventing resistance to

PI3K inhibition (211, 212). Although promising, these results are

preliminary and more research is required to determine the

effectiveness of KMT2D and PI3K targeted therapy in LSCC

treatment. Considering KMT2D’s role in the PI3K/AKT/SOX2

axis in NSCLC, which affects tumor growth, combined targeted

therapy of KMT2D and PI3K may offer new treatment possibilities

for LSCC.
6 Discussion

This review explores the current landscape of targeted therapy

for LSCC, highlighting both established and emerging targets.

Targeted therapies have proven beneficial in LUAD treatment

(213, 214). Patients with LSCC exhibit distinct genetic alterations

from LUAD; thus, their therapeutic options remain limited (215).

The scarcity of therapeutic targets, coupled with modest efficacy and

prevalent adverse effects, underscores the need to expand or

discover new targets. The NSD family, especially NSD3, is

strongly linked to the development of several malignant cancers.

The pathogenic mechanism and structure of NSD3 have been

largely established. The link between LSCC pathogenesis and

KMT2D deficiency has been established, paving the way for the

increased development of targeted drugs. NSD3 and KMT2D are

promising therapeutic targets, offering hope for the enhancement of

treatment strategies for LSCC. The advent of immunotherapy has

significantly improved the treatment of patients with LSCC.

Nonetheless, limitations such as low immune response rates and

drug resistance persist. This study delves into the potential

advantages of integrating immunotherapy with targeted therapy

and benefits of multi-target combination therapy are discussed.

It is vital to identify appropriate biomarkers to optimize the

clinical effectiveness of targeted therapies. KEAP1 has been

identified as one of the significantly mutated genes in LSCC (51).

In a Japanese retrospective cohort study, approximately 13.4% of

patients with LSCC carried the KEAP1 mutation (216). Blocking

glutamine metabolism targeting the KEAP/NRF2 pathway is a

promising therapeutic strategy. The broad-acting glutamine

antagonist sirpiglenastat has been shown to induce anti-tumor
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efficacy (217), and has therapeutic potential in HNSCC (218). In a

recent Lung-MAP next-generation sequencing analysis, David

Kozono’s team found that NFE2L2, KEAP1 and PARP4 are a

mutually exclusive set of gene mutations (219), indicating KEAP1

as a potential biomarker in LSCC. In addition, recent research

suggests that two members of the sequence similarity family,

FAM20A and FAM83A, have potential clinical applications in

lung squamous cell carcinoma. A recent study based on genomic

databases and analysis of clinical samples showed that FAM20A

was significantly reduced in LSCC and positively correlated with

immune checkpoints such as CTLA-4, leading to reduced survival

(220). Moreover, Lu et al. found that FAM83A, which is

overexpressed in LSCC, can promote LSCC cell growth by

activating the Wnt/b-catenin signaling pathway, and is a potential

biomarker (221).

Epigenetic targeted drugs have promise in treating

hematological malignancies and solid tumors, with tazemetostat

potentially improving outcomes in solid tumors (222, 223).

Furthermore, the epigenetic landscape of LSCC has become clear;

for example, the demethylation of cancer/testicular antigen is highly

associated with lung cancer, with its expression correlating with the

immune microenvironment of NSCLC, offering diagnostic and

prognostic insights (224, 225). Promoter hypermethylation

promotes the transcriptional silencing of tumor suppressor genes,

facilitating LSCC diagnosis and prognosis prediction. Studies have

proposed various molecular drugs targeting the epigenetic network

of LSCC to revert cancer cells to normalcy, including repaglinide,

procainamide, and clomipramine (226). DNA methyltransferases,

histone methyltransferase enhancer of zeste homolog 2, and so on

are potential targets for targeted therapies, indirectly increasing

targeted therapies’ efficacy (227). Additionally, NSD3 and KMT2D,

as potential new targets, are vital substances in epigenetic

regulation, linking targeted and epigenetic therapy. Their roles in

histone methyl transfer may pave the way for LSCC innovative

treatment through the synergy of epigenetics and targeted therapies.

Epigenetic therapy can reverse the resistance mechanisms of gene

changes and transcriptional reprogramming (228–231). The

potential of combined targeted therapy of DNA methyltransferase

inhibitors and venetoclax (antiapoptotic B-cell lymphoma 2 protein

inhibitor) in treating hematological malignancies was investigated,

and this combination therapy was recognized as a “breakthrough

therapy” by the FDA for patients with specific acute myeloid

leukemia (228, 232–234). Therefore, epigenetic therapy can also

complement targeted therapies by combining, significantly

improving efficacy.

Furthermore, emerging antibody-drug conjugates (ADCs) offer

a fresh perspective. ADCs comprise a monoclonal antibody that

selectively targets specific tumor cell proteins and is linked to a

cytotoxic drug known as the payload (235). As of August 2023,

fifteen ADCs have been globally approved, targeting molecules such

as human epidermal growth factor receptor 2, trophoblast antigen

2, nectin-4, CD22, and CD33. Among these, the ADC cetuximab

saratolacan, targeting EGFR, has been approved for HNSCC (236).
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Early trials in NSCLC suggest potential benefits from ADCs such as

trastuzumab emtansine, patritumab deruxtecan, and sacituzumab

govitecan (237–239). Moreover, the bispecific delta-like canonical

Notch ligand 3/CD3 IgG-like T-cell engager, which binds to both

delta-like canonical Notch ligand 3 and immune cells, has inspired

therapeutic drugs and antibodies to enhance treatment efficacy

(240). The potential of combining targeted therapeutic drugs with

antibodies to form conjugates akin to the ADCs is an area of interest

for researchers. Furthermore, EGFR inhibition enhances the

therapeutic effect of ADC HER3-DXd, suggesting the potential of

combining targeted therapy with ADCs for more effective

treatment (241).

Considering the landscape of targeted therapy for LSCC, we

recommend the following clinical patient selection strategies. Age,

smoking status, and overall health can inform eligibility for specific

treatment options. Using genomic tests to detect mutated genes and

immunohistochemical tests to detect PD-L1 levels facilitates the

identification of potential therapeutic targets and development of

combination treatment strategies. Finally, with patient knowledge

and committee approval, patients may be encouraged to participate

in clinically targeted drug trials to improve treatment effectiveness.

The integration of various therapeutic options, and updating of

clinical practice and research are of great significance to the

improvement of therapeutic benefits.
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155. Martıńez-Limón A, Joaquin M, Caballero M, Posas F, de Nadal E. The p38
pathway: from biology to cancer therapy. Int J Mol Sci. (2020) 21. doi: 10.3390/
IJMS21061913

156. Yeung YT, Yin S, Lu B, Fan S, Yang R, Bai R, et al. Losmapimod overcomes
gefitinib resistance in non-small cell lung cancer by preventing tetraploidization.
EBioMedicine. (2018) 28:51–61. doi: 10.1016/J.EBIOM.2018.01.017

157. Zarczynska I, Gorska-Arcisz M, Cortez AJ, Kujawa KA, Wilk AM,
Skladanowski AC, et al. p38 mediates resistance to FGFR inhibition in non-small cell
lung cancer. Cells. (2021) 10. doi: 10.3390/CELLS10123363

158. Li R, Zeng L, Zhao H, Deng J, Pan L, Zhang S, et al. ATXN2-mediated
translation of TNFR1 promotes esophageal squamous cell carcinoma via m6A-
dependent manner.Mol Ther. (2022) 30:1089–103. doi: 10.1016/J.YMTHE.2022.01.006

159. Dondelinger Y, Darding M, Bertrand MJM, Walczak H. Poly-ubiquitination in
TNFR1-mediated necroptosis. Cell Mol Life Sci. (2016) 73:2165–76. doi: 10.1007/
S00018-016-2191-4

160. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kB signaling.
Cell Res. (2011) 21:103–15. doi: 10.1038/CR.2010.178

161. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. (2008)
132:344–62. doi: 10.1016/J.CELL.2008.01.020

162. Xiao Z, Shi G, Xi S, Singh AK, Willette-Brown J, Li X, et al. A TNFR1-UBCH10
axis drives lung squamous cell carcinoma dedifferentiation and metastasis through a
cell-autonomous signaling loop. Cell Death Dis. (2022) 13. doi: 10.1038/S41419-022-
05308-4

163. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al.
Development of tumor mutation burden as an immunotherapy biomarker: utility for
the oncology clinic. Ann Oncol. (2019) 30:44–56. doi: 10.1093/annonc/mdy495

164. Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY,
et al. Tumor mutational load predicts survival after immunotherapy across multiple
cancer types. Nat Genet. (2019) 51:202–6. doi: 10.1038/s41588-018-0312-8

165. Li M, Gao X, Wang X. Identification of tumor mutation burden-associated
molecular and clinical features in cancer by analyzing multi-omics data. Front
Immunol. (2023) 14:1090838. doi: 10.3389/fimmu.2023.1090838

166. Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer:
impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy.
Cancer Discovery. (2016) 6:1090–105. doi: 10.1158/2159-8290.CD-16-0716

167. Chandrasekaran S, Funk CR, Kleber T, Paulos CM, ShanmugamM, Waller EK.
Strategies to overcome failures in T-cell immunotherapies by targeting PI3K-d and -g.
Front Immunol. (2021) 12:718621. doi: 10.3389/fimmu.2021.718621

168. Wang L, Chen K, Weng S, Xu H, Ren Y, Cheng Q, et al. PI3K pathway mutation
predicts an activated immune microenvironment and better immunotherapeutic
efficacy in head and neck squamous cell carcinoma. World J Surg Oncol. (2023)
21:72. doi: 10.1186/s12957-023-02938-6

169. Liu C, Zheng S, Jin R, Wang X, Wang F, Zang R, et al. The superior efficacy of
anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that
correlates with an inflammatory phenotype and increased immunogenicity. Cancer
Lett. (2020) 470:95–105. doi: 10.1016/J.CANLET.2019.10.027

170. Seegobin K, Majeed U, Wiest N, Manochakian R, Lou Y, Zhao Y.
Immunotherapy in non-small cell lung cancer with actionable mutations other than
EGFR. Front Oncol. (2021) 11:750657. doi: 10.3389/FONC.2021.750657

171. Sun L, Hsu M, Cohen RB, Langer CJ, Mamtani R, Aggarwal C. Association
between KRAS variant status and outcomes with first-line immune checkpoint
inhibitor-based therapy in patients with advanced non-small-cell lung cancer. JAMA
Oncol. (2021) 7:937–9. doi: 10.1001/JAMAONCOL.2021.0546

172. Heckler M, Ali LR, Clancy-Thompson E, Qiang L, Ventre KS, Lenehan P, et al.
Inhibition of CDK4/6 promotes CD8 T-cell memory formation. Cancer Discovery.
(2021) 11:2564–81. doi: 10.1158/2159-8290.CD-20-1540

173. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, et al. CDK4/6 inhibition
augments antitumor immunity by enhancing T-cell activation. Cancer Discovery.
(2018) 8:216–33. doi: 10.1158/2159-8290.CD-17-0915

174. Zhang QF, Li J, Jiang K, Wang R, Ge JL, Yang H, et al. CDK4/6 inhibition
promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in
a B cell-dependent manner. Theranostics. (2020) 10:10619–33. doi: 10.7150/
THNO.44871
Frontiers in Oncology 14
175. Noh JY, Lee IP, Han NR, KimM, Min YK, Lee SY, et al. Additive effect of CD73
inhibitor in colorectal cancer treatment with CDK4/6 inhibitor through regulation of
PD-L1. Cell Mol Gastroenterol Hepatol. (2022) 14:769–88. doi: 10.1016/
J.JCMGH.2022.07.005

176. Baird L, Taguchi K, Zhang A, Takahashi Y, Suzuki T, Kensler TW, et al. A
NRF2-induced secretory phenotype activates immune surveillance to remove
irreparably damaged cells. Redox Biol . (2023) 66:102845. doi: 10.1016/
j.redox.2023.102845

177. Xu K, Ma J, Hall SRR, Peng R-W, Yang H, Yao F. Battles against aberrant
KEAP1-NRF2 signaling in lung cancer: intertwined metabolic and immune networks.
Theranostics. (2023) 13:704–23. doi: 10.7150/thno.80184

178. Leone RD, Zhao L, Englert JM, Sun I-M, Oh M-H, Sun I-H, et al. Glutamine
blockade induces divergent metabolic programs to overcome tumor immune evasion.
Science. (2019) 366:1013–21. doi: 10.1126/science.aav2588

179. Xue W, Wu K, Guo X, Chen C, Huang T, Li L, et al. The pan-cancer landscape
of glutamate and glutamine metabolism: A comprehensive bioinformatic analysis
across 32 solid cancer types. Biochim Biophys Acta Mol Basis Dis. (2024) 1870.
doi: 10.1016/J.BBADIS.2023.166982

180. Byun J-K, Park M, Lee S, Yun JW, Lee J, Kim JS, et al. Inhibition of glutamine
utilization synergizes with immune checkpoint inhibitor to promote antitumor
immunity. Mol Cell. (2020) 80:592–606.e8. doi: 10.1016/j.molcel.2020.10.015

181. Li X. Emerging role of mutations in epigenetic regulators including MLL2
derived from The Cancer Genome Atlas for cervical cancer. BMC Cancer. (2017) 17:1–
11. doi: 10.1186/S12885-017-3257-X

182. Shi Y, Lei Y, Liu L, Zhang S, Wang W, Zhao J, et al. Integration of
comprehensive genomic profiling, tumor mutational burden, and PD-L1 expression
to identify novel biomarkers of immunotherapy in non-small cell lung cancer. Cancer
Med. (2021) 10:2216–31. doi: 10.1002/CAM4.3649

183. Amin R, Braza MS. The follicular lymphoma epigenome regulates its
microenvironment. J Exp Clin Cancer Res. (2022) 41. doi: 10.1186/S13046-021-
02234-9

184. Bao X, Li Q, Chen J, Chen D, Ye C, Dai X, et al. Molecular subgroups of
intrahepatic cholangiocarcinoma discovered by single-cell RNA sequencing-assisted
multiomics analysis. Cancer Immunol Res. (2022) 10:811–28. doi: 10.1158/2326-
6066.CIR-21-1101

185. Wang G, Chow RD, Zhu L, Bai Z, Ye L, Zhang F, et al. CRISPR-GEMM pooled
mutagenic screening identifies KMT2D as a major modulator of immune checkpoint
blockade. Cancer Discovery. (2020) 10:1912–33. doi: 10.1158/2159-8290.CD-19-1448

186. Fang B, Wei Y, Pan J, Zhang T, Ye D, Zhu Y. The somatic mutational landscape
of mismatch repair deficient prostate cancer. J Clin Med. (2023) 12. doi: 10.3390/
JCM12020623

187. Liu R, Niu Y, Liu C, Zhang X, Zhang J, Shi M, et al. Association of KMT2C/D
loss-of-function variants with response to immune checkpoint blockades in colorectal
cancer. Cancer Sci. (2023) 114:1229–39. doi: 10.1111/CAS.15716

188. Zhao L, Luo T, Jiang J, Wu J, Zhang X. Eight gene mutation-based polygenic
hazard score as a potential predictor for immune checkpoint inhibitor therapy outcome
in metastatic melanoma. Front Mol Biosci. (2022) 9:1001792. doi: 10.3389/
FMOLB.2022.1001792

189. Pokhrel RH, Acharya S, Ahn JH, Gu Y, Pandit M, Kim JO, et al. AMPK promotes
antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38
signaling pathway. Mol Cancer. (2021) 20:1–15. doi: 10.1186/S12943-021-01420-9

190. Lu Y, Zhang M, Wang S, Hong B, Wang Z, Li H, et al. p38 MAPK-inhibited
dendritic cells induce superior antitumour immune responses and overcome regulatory
T-cell-mediated immunosuppression. Nat Commun. (2014) 5. doi: 10.1038/
NCOMMS5229

191. Henson SM, Macaulay R, Riddell NE, Nunn CJ, Akbar AN. Blockade of PD-1
or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation
by distinct pathways. Eur J Immunol. (2015) 45:1441–51. doi: 10.1002/EJI.201445312

192. Liu X, Wu X, Cao S, Harrington SM, Yin P, Mansfield AS, et al. B7-H1
antibodies lose antitumor activity due to activation of p38 MAPK that leads to
apoptosis of tumor-reactive CD8+ T cells. Sci Rep. (2016) 6. doi: 10.1038/SREP36722

193. Xia W, Qi X, Li M, Wu Y, Sun L, Fan X, et al. Metformin promotes anticancer
activity of NK cells in a p38 MAPK dependent manner. Oncoimmunology. (2021) 10.
doi: 10.1080/2162402X.2021.1995999

194. Zhang C, Zhang G, Sun N, Zhang Z, Zhang Z, Luo Y, et al. Comprehensive
molecular analyses of a TNF family-based signature with regard to prognosis, immune
features, and biomarkers for immunotherapy in lung adenocarcinoma. EBioMedicine.
(2020) 59. doi: 10.1016/J.EBIOM.2020.102959

195. Bertrand F, Montfort A, Marcheteau E, Imbert C, Gilhodes J, Filleron T, et al.
TNFa blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat
Commun. (2017) 8. doi: 10.1038/S41467-017-02358-7

196. Yang Y, Sun M, Yao W, Wang F, Li X, Wang W, et al. Compound kushen
injection relieves tumor-associated macrophage-mediated immunosuppression
through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib. J Immunother
Cancer. (2020) 8. doi: 10.1136/JITC-2019-000317

197. Benoot T, Piccioni E, De Ridder K, Goyvaerts C. TNFa and immune
checkpoint inhibition: friend or foe for lung cancer? Int J Mol Sci. (2021) 22.
doi: 10.3390/IJMS22168691
frontiersin.org

https://doi.org/10.1038/S41418-023-01173-6
https://doi.org/10.1038/S41418-023-01173-6
https://doi.org/10.1016/J.MOLMED.2009.06.005
https://doi.org/10.3390/IJMS21031102
https://doi.org/10.1016/J.CCR.2006.12.013
https://doi.org/10.1158/0008-5472.CAN-15-0173
https://doi.org/10.3390/IJMS21061913
https://doi.org/10.3390/IJMS21061913
https://doi.org/10.1016/J.EBIOM.2018.01.017
https://doi.org/10.3390/CELLS10123363
https://doi.org/10.1016/J.YMTHE.2022.01.006
https://doi.org/10.1007/S00018-016-2191-4
https://doi.org/10.1007/S00018-016-2191-4
https://doi.org/10.1038/CR.2010.178
https://doi.org/10.1016/J.CELL.2008.01.020
https://doi.org/10.1038/S41419-022-05308-4
https://doi.org/10.1038/S41419-022-05308-4
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.3389/fimmu.2023.1090838
https://doi.org/10.1158/2159-8290.CD-16-0716
https://doi.org/10.3389/fimmu.2021.718621
https://doi.org/10.1186/s12957-023-02938-6
https://doi.org/10.1016/J.CANLET.2019.10.027
https://doi.org/10.3389/FONC.2021.750657
https://doi.org/10.1001/JAMAONCOL.2021.0546
https://doi.org/10.1158/2159-8290.CD-20-1540
https://doi.org/10.1158/2159-8290.CD-17-0915
https://doi.org/10.7150/THNO.44871
https://doi.org/10.7150/THNO.44871
https://doi.org/10.1016/J.JCMGH.2022.07.005
https://doi.org/10.1016/J.JCMGH.2022.07.005
https://doi.org/10.1016/j.redox.2023.102845
https://doi.org/10.1016/j.redox.2023.102845
https://doi.org/10.7150/thno.80184
https://doi.org/10.1126/science.aav2588
https://doi.org/10.1016/J.BBADIS.2023.166982
https://doi.org/10.1016/j.molcel.2020.10.015
https://doi.org/10.1186/S12885-017-3257-X
https://doi.org/10.1002/CAM4.3649
https://doi.org/10.1186/S13046-021-02234-9
https://doi.org/10.1186/S13046-021-02234-9
https://doi.org/10.1158/2326-6066.CIR-21-1101
https://doi.org/10.1158/2326-6066.CIR-21-1101
https://doi.org/10.1158/2159-8290.CD-19-1448
https://doi.org/10.3390/JCM12020623
https://doi.org/10.3390/JCM12020623
https://doi.org/10.1111/CAS.15716
https://doi.org/10.3389/FMOLB.2022.1001792
https://doi.org/10.3389/FMOLB.2022.1001792
https://doi.org/10.1186/S12943-021-01420-9
https://doi.org/10.1038/NCOMMS5229
https://doi.org/10.1038/NCOMMS5229
https://doi.org/10.1002/EJI.201445312
https://doi.org/10.1038/SREP36722
https://doi.org/10.1080/2162402X.2021.1995999
https://doi.org/10.1016/J.EBIOM.2020.102959
https://doi.org/10.1038/S41467-017-02358-7
https://doi.org/10.1136/JITC-2019-000317
https://doi.org/10.3390/IJMS22168691
https://doi.org/10.3389/fonc.2024.1467898
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2024.1467898
198. Müller-Hermelink N, Braumüller H, Pichler B, Wieder T, Mailhammer R,
Schaak K, et al. TNFR1 signaling and IFN-gamma signaling determine whether T cells
induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell. (2008)
13:507–18. doi: 10.1016/J.CCR.2008.04.001

199. Yue S, Li Y, Chen X, Wang J, Li M, Chen Y, et al. FGFR-TKI resistance in
cancer: current status and perspectives. J Hematol Oncol. (2021) 14:23. doi: 10.1186/
s13045-021-01040-2

200. Zhou Y, Wu C, Lu G, Hu Z, Chen Q, Du X. FGF/FGFR signaling pathway
involved resistance in various cancer types. J Cancer. (2020) 11:2000–7. doi: 10.7150/
JCA.40531

201. Bockorny B, Rusan M, Chen W, Liao RG, Li Y, Piccioni F, et al. RAS-MAPK
reactivation facilitates acquired resistance in FGFR1-amplified lung cancer and
underlies a rationale for upfront FGFR-MEK blockade. Mol Cancer Ther. (2018)
17:1526–39. doi: 10.1158/1535-7163.MCT-17-0464

202. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA,
et al. COT drives resistance to RAF inhibition through MAP kinase pathway
reactivation. Nature. (2010) 468:968–72. doi: 10.1038/nature09627

203. Le X, Antony R, Razavi P, Treacy DJ, Luo F, Ghandi M, et al. Systematic
functional characterization of resistance to PI3K inhibition in breast cancer. Cancer
Discovery. (2016) 6:1134–47. doi: 10.1158/2159-8290.CD-16-0305

204. Kim S-M, KimH, YunMR, Kang HN, Pyo K-H, Park HJ, et al. Activation of the
Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy.
Oncogenesis. (2016) 5:e241. doi: 10.1038/oncsis.2016.48

205. He J, Huang Z, Han L, Gong Y, Xie C. Mechanisms and management of 3rd-
generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review). Int J
Oncol. (2021) 59:1–20. doi: 10.3892/ijo.2021.5270

206. Terai H, Soejima K, Yasuda H, Nakayama S, Hamamoto J, Arai D, et al.
Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired
resistance to gefitinib in NSCLC.Mol Cancer Res. (2013) 11:759–67. doi: 10.1158/1541-
7786.MCR-12-0652

207. Kim TM, Song A, Kim DW, Kim S, Ahn YO, Keam B, et al. Mechanisms of
acquired resistance to AZD9291: A mutation-selective, irreversible EGFR inhibitor. J
Thorac Oncol. (2015) 10:1736–44. doi: 10.1097/JTO.0000000000000688

208. Ware KE, Hinz TK, Kleczko E, Singleton KR, Marek LA, Helfrich BA, et al. A
mechanism of resistance to gefitinib mediated by cellular reprogramming and the
acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis. (2013) 2:e39.
doi: 10.1038/oncsis.2013.4

209. Yang Y, Qiu R, Weng Q, Xu Z, Song J, Zhao S, et al. MLL4 regulates the
progression of non-small-cell lung cancer by regulating the PI3K/AKT/SOX2 axis.
Cancer Res Treat. (2023) 55:778–803. doi: 10.4143/CRT.2022.1042

210. Toska E, Castel P, Chhangawala S, Arruabarrena-Aristorena A, Chan C,
Hristidis VC, et al. PI3K inhibition activates SGK1 via a feedback loop to promote
chromatin-based regulation of ER-dependent gene expression. Cell Rep. (2019) 27:294–
306.e5. doi: 10.1016/J.CELREP.2019.02.111

211. Jones RB, Farhi J, Adams M, Parwani KK, Cooper GW, Zecevic M, et al.
Targeting MLL methyltransferases enhances the antitumor effects of PI3K inhibition in
hormone receptor-positive breast cancer. Cancer Res Commun. (2022) 2:1569–78.
doi: 10.1158/2767-9764.CRC-22-0158

212. Koren S, Bentires-Alj M. Tackling resistance to PI3K inhibition by targeting the
epigenome. Cancer Cell. (2017) 31:616–8. doi: 10.1016/J.CCELL.2017.04.010

213. Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of
lung adenocarcinoma. Cell Death Dis. (2018) 9. doi: 10.1038/S41419-017-0063-Y

214. Zhang C, Mei W, Zeng C. Oncogenic Neuregulin 1 gene (NRG1) fusions in
cancer: A potential new therapeutic opportunities. Biochim Biophys Acta Rev Cancer.
(2022) 1877. doi: 10.1016/J.BBCAN.2022.188707

215. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al.
Distinct patterns of somatic genome alterations in lung adenocarcinomas and
squamous cell carcinomas. Nat Genet. (2016) 48:607–16. doi: 10.1038/NG.3564

216. Iwasaki T, Shirota H, Sasaki K, Ouchi K, Nakayama Y, Oshikiri H, et al. Specific
cancer types and prognosis in patients with variations in the KEAP1-NRF2 system: A
retrospective cohort study. Cancer Sci. (2024). doi: 10.1111/CAS.16355

217. Yokoyama Y, Estok TM, Wild R. Sirpiglenastat (DRP-104) induces antitumor
efficacy through direct, broad antagonism of glutamine metabolism and stimulation of
the innate and adaptive immune systems. Mol Cancer Ther. (2022) 21:1561–72.
doi: 10.1158/1535-7163.MCT-22-0282

218. Allevato MM, Trinh S, Koshizuka K, Nachmanson D, Nguyen TTC, Yokoyama
Y, et al. A genome-wide CRISPR screen reveals that antagonism of glutamine
metabolism sensitizes head and neck squamous cell carcinoma to ferroptotic cell
death. Cancer Lett. (2024) 598. doi: 10.1016/J.CANLET.2024.217089

219. Kozono D, Hua X, Wu MC, Tolba KA, Waqar SN, Dragnev KH, et al. Lung-
MAP next-generation sequencing analysis of advanced squamous cell lung cancers
(SWOG S1400). J Thorac Oncol. (2024). doi: 10.1016/J.JTHO.2024.07.024
Frontiers in Oncology 15
220. Zhang Y, Sun Q, Liang Y, Yang X, Wang H, Song S, et al. FAM20A: a potential
diagnostic biomarker for lung squamous cell carcinoma. Front Immunol. (2024)
15:1424197. doi: 10.3389/FIMMU.2024.1424197

221. Wang C, Zhang J, Wang H, Chen R, Lu M. Family with sequence similarity 83,
member A (FAM83A) inhibits ferroptosis via the Wnt/b-catenin pathway in lung
squamous cell cancer. Cell Death Discovery. (2024) 10. doi: 10.1038/S41420-024-02101-
4

222. Jin N, George TL, Otterson GA, Verschraegen C, Wen H, Carbone D, et al.
Advances in epigenetic therapeutics with focus on solid tumors. Clin Epigenet. (2021)
13:1–27. doi: 10.1186/S13148-021-01069-7

223. Straining R, Eighmy W. Tazemetostat: EZH2 inhibitor. J Adv Pract Oncol.
(2022) 13:158–63. doi: 10.6004/JADPRO.2022.13.2.7

224. Yang P, Qiao Y, Meng M, Zhou Q. Cancer/testis antigens as biomarker and
target for the diagnosis, prognosis, and therapy of lung cancer. Front Oncol. (2022)
12:864159. doi: 10.3389/FONC.2022.864159
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Glossary
ADCs Antibody-drug conjugates
Frontiers in Oncology
AKT Protein kinase B
ALK Anaplastic lymphoma kinase
BRAF V-raf murine sarcoma viral oncogene homolog B
CDK4/6 Cell cycle protein-dependent kinases 4 and 6
DDR2 Discoidin domain receptor 2
EGFR Epidermal growth factor receptor
ER Estrogen receptor
FGFR Fibroblast growth factor receptor
ICIs Immune checkpoint inhibitors
KEAP1 Kelch-like ECH-associated protein 1
KMT2D Lysine methyltransferase 2 D
KRAS Kirsten rat sarcoma virus
LSCC Lung squamous cell carcinoma
LUAD Lung adenocarcinoma
MEK Mitogen-activated protein kinase kinase
16
NF-kB Nuclear factor-kB
NRF2 Nuclear factor erythroid 2 related factor 2
NSCLC Non-small cell lung cancer
NSD3 Nuclear receptor-binding SET domain protein 3
P38 MAPK P38 mitogen-activated protein kinases
PD-L1 Programmed Cell Death Ligand 1
PD-1 Programmed Cell Death Protein 1
PI3K Phosphoinositide 3-kinase
RAS Rat sarcoma
SOX2 SRY-box transcription factor 2
TILs Tumor-infiltrating lymphocytes
TIME Tumor immune microenvironment
TKI Tyrosine kinase inhibitor
TMB Tumor mutational burden
TME Tumor microenvironment
TNFR1 Tumor necrosis factor receptor 1
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