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Development and validation of a
nomogram prediction model for
clinically significant prostate
cancer combined with PI-RADS
V2.1, MRI quantitative
parameters and clinical
indicators: a two-center study
Yunhui Chen1, Long Yan2, Jiang Xianmei1, Gu Heyi1, Xie Wei1,
Peng Chao1, Dong Yanwen1, Dong Shicun1, Gao Chao1,
Yu Cui1, Gu Peng1, Liu Xiaodong1, Tuo xiaoyu1, Ling Bingbing1,
Ji Wenqing1, Gao Kexian1, Li Qingqing1, Zheng Linglin1,
Zhu Yun1, Zhao Lei1, Hu Jihong1, Zhao Wei1*,
Yang Yaying1* and Hu Juan1*

1Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming,
Yunnan, China, 2Medical Imaging Department, Gejiu People’s Hospital, Gejiu, Yunnan, China
Objective: To develop and validate a multi-index nomogram prediction model for

clinically significant prostate cancer(CSPCa) by combining the PI-RADS V2.1,

quantitative magnetic resonance imaging (MRI) parameters and clinical indicators.

Methods: A total of 1740 patients (75% in the derivation cohort and 25% in the

internal validation cohort) and 342 patients (the external validation cohort) were

retrospectively included in the MRI follow-up database of the First Affiliated

Hospital of Kunming Medical University between January 2015 and April 2021,

and Gejiu People ’s Hospital between January 2020 and December

2022.Important predictors of CSPCa in MRI-related quantitative parameters,

PSA-derived indicators, and clinical indicators, such as age, were screened.

The Net Reclassification Improvement Index(NRI),Integrated Discrimination

Improvement Index(IDI), and clinical decision curve analysis (DCA) were

calculated to compare the performances of the different models. Receiver

operating characteristic(ROC) curves and clinical calibration curves were used

to analyze and compare diagnostic effects.

Results: The AUC value, best cut-off value, specificity, sensitivity and accuracy of

model 1(PI-RADS + PSAD) derivation cohort were 0.935, 0.304, 0.861, 0.895 and

0.872, respectively. The AUC values of the internal and external validation cohorts

for model 1 were 0.956 and 0.955, respectively. The AUC value, best cut-off

value, specificity, sensitivity and accuracy of model 2(PI-RADS +PSAD +

ADCmean) derivation cohort were 0.939, 0.401, 0.895, 0.853 and 0.882,

respectively. The AUC values of the internal and external validation cohorts for
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model 2 were 0.940 and 0.960,respectively. After adding the ADCmean to the

model, the NRI(categorical), NRI(continuous) and IDI values were 0.0154, 0.3498

and 0.0222, respectively. There was no significant difference between the

predicted probability and actual probability (p> 0.05).

Conclusion: Models 1 and 2 had reliable, efficient and visual predictive value for

CSPCa. The ADCmean is an important predictive indicator.
KEYWORDS

clinically significant prostate cancer, PI-RADS V2.1, apparent diffusion coefficient,
prediction models, nomogram
1 Introduction

Prostate cancer(PCa) is a common malignant tumor in men,

and studies have shown that the incidence and mortality rates of

this disease will continue to rise in China over the next 10 years (1).

Prostate biopsy remains the gold standard for the diagnosis of PCa.

However, because of its invasive nature and false-negative results,

multiparametric magnetic resonance imaging (mpMRI) plays an

increasingly important role in PCa detection (2),mpMRI

examination before biopsy shows great value in the localization of

lesion puncture, increasing the detection rate of cancer and

reducing the number of puncture (3). To standardize and

improve the detection of CSPCa, the Prostate Imaging Reporting

and Data System V2.1 (PI-RADS V2. 1) was proposed in 2019 (4),

which has better specificity, accuracy, and inter-reader consistency

than PI-RADS V2.0 (5). However, there is room for further

optimization in terms of diagnostic specificity and biopsy

recommendations for lesions with a PI-RADS score of 3 (6), an

original research revealed that among patients with negative MRI

results and a meta-analysis revealed that among patients with

negative MRI results and PI-RADS 3 lesions, incorporating PSAD

into prostate biopsy decisions may aid in improving risk assessment

and adjusting care (7, 8). Huang H et al. showed that in PI-RADS

category 3 lesions, increasing the ADC value can enhance the

predictive ability of CSPCa (9). The aforementioned research

indicates that clinical indicators, such as prostate-specific antigen

(PSA) and its derived indicators, as well as quantitative information,

such as apparent diffusion coefficient(ADC) values from MRI, has

the potential to enhance the application value of PI-RADS.
lly significant prostate
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Currently, most multi-index prediction models are based on PI-

RADS V2.0, the joint application of quantitative information such

as PSA and its derived indicators and ADC values is insufficient.

Few studies have explored whether quantitative ADC value can

improve PI-RADS and there is no research that simultaneously

evaluates the predictive value of CSPCa by integrating PI -RADS,

PSAD, and ADC values. Some models containing PSAD lack

external data validation (10, 11). The aim of this study was to

develop a visualized CSPCa prediction model based on PI-RADS

V2.1, PSA and its derived indicators, ADC values, other

quantitative parameters, and clinical indicators to perform

internal and external data validation to improve the reliability of

the prediction model and optimize detection efficiency to better

guide clinical work.
2 Materials and methods

2.1 Study population

We retrospectively screened consecutive cases of prostate

mpMRI examination for qualitative diagnosis from the prostate

MRI follow-up database of the First Affiliated Hospital of Kunming

Medical University (January 2015 to April 2021) and Gejiu People’s

Hospital (January 2020 to December 2022) with the approval of the

Ethics Committee. The interval between the MRI examination and

biopsy or surgery should not exceed 3 months, and follow-up

should be conducted for > 1 year. Based on the inclusion and

exclusion criteria, 800 patients from the First Affiliated Hospital of

Kunming Medical University and 124 patients from the Gejiu

People’s Hospital were enrolled for model development and

validation (Figure 1). All patients underwent MRI-perceived

fusion hotspot biopsy combined with a systematic 12-needle

transrectal ultrasound-guided prostate biopsy. According to the

pathological nature, Gleason score, and 2014 International Society

of Urological Pathology (ISUP) grading system, CSPCa was defined

as an ISUP ≥ 2, a Gleason score ≥7, and/or prostate

extracapsular invasion.
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2.2 MRI scanning program

Cases in both centers’ databases were examined using 3.0T MRI

equipment, with identical scanning parameters and consistent pre-

examination preparation. Prostate mpMRI was performed at First

Affiliated Hospital of Kunming Medical University using a 3.0T MR

scanner (Achieva, Philips; Discovery MR W750, GE). The scanning

instrument used for patients at Gejiu People’s Hospital was a 3.0T

MRI combined with imaging UMR770. The patient was administered

a low-residue diet and oral laxatives 24 hours before examination. On

the day of examination, a glycerin enema was used for bowel

preparation, and the bladder was moderately filled. The MRI

scanning sequence included multi-planar T2 weighted imaging

(T2WI), including a non-fat suppression sequence, T1 weighted

imaging (T1WI), diffusion-weighted imaging (DWI), and dynamic

contrast-enhanced (DCE) sequence. An abdominal phased-array coil

is used as the receiving coil.T2WI: High-resolution T2WI in the axial,

sagittal and coronal planes using at least the axial plane without a fat

suppression. The scanning parameters for axial T2WI were as follows:

repetition time TR 2900 ms; echo time TE 90 ms; thickness was 4

mm; interlayer spacing=0 mm; The field-of-view(FOV) was 26×26

cm(320×280 matrix); and excitation time=4. DWI: In the axial plane,

a single-shot EPI sequence with b=0, 1000 and 1400 s/mm2; scanning

parameters: TR 4000 ms, TE 70 ms, thickness=4 mm, interlayer

spacing=0 mm, FOV was 26×26 cm(184×184 matrix), and excitation

time=4. After fitting the DWI images at each b-value, we

reconstructed and generated an apparent diffusion coefficient

(ADC) map (3). dynamic contrast-enhanced(DCE): Utilize spatial
Frontiers in Oncology 03
sensitivity encoding technology, with scanning parameters: TR 3.15

ms, TE 1.6 ms, thickness=2 mm, number of layers=40, FOV was

40×40 cm(256×256 matrix). The contrast agent was gadolinium-

doped diatrizoate injection or imported gadolinium-doped diatrizoate

injection, injected through the elbow vein at a rate of 0.1mmol/kg and

a speed of2.5-3.0 ml/s. Before injecting the contrast agent, a plain scan

was performed as a mask image, and scanning was started at the same

time as the injection of the contrast agent with 20 consecutive

scanning cycles, with a time resolution of 15 s. Dynamic contrast-

enhanced scanning was performed using a T1 high-resolution

isotropic volume acquisition sequence.
2.3 Statistical analysis

The same readers were used in both centers, and training and

quality control were carried out prior to the scoring. Two experienced

radiologists (with more than 5 years of experience in prostate MRI

diagnosis) were responsible for performing PI-RADS V2.1 scoring.

Patients with divergent scores were identified by an experienced deputy

chief physician (with > 10 years’ experience in prostate MRI diagnosis)

to determine the final score. Quantitative measurements were

performed by an experienced radiologist (with more than five years

of experience in prostate MRI diagnosis). Three-dimensional

measurements of the prostate were performed on axial and sagittal

T2WI according to the method recommended by PI-RADS V2.1.

Prostate volume (PV) = (left-right diameter) × (anterior-posterior

diameter) × (upper-lower diameter) × 0.52. PSA density (PSAD) = t-
Nomograms

2016-2021 First Affiliated Hospital of

Kunming Medical University (n=1740)

Ge Jiu People's Hospital from 2020 to

2022(n=342)

Exclusion criteria:

1. Without punctures, surgical biopsy results,

or with only urethral electroresection

specimens. n=801 n=197

2. The image quality does not meet the

standard. n=8 n=1

3. Patients after interventions such as

medication and surgery. n=61 n=6

4. The puncture result is significantly

different from the expected outcome and

the follow-up is lost. n=29 n=6

5. tPSA missing n=41 n=8

n=800 Derivation cohort =600

Internal validation cohort n=200
Logistics

Correlation

Random Forest
Significant independent predictors

External validation cohort

n=124

Model1 PSAD+ADCmean+PI-RADS

Model2 PSAD+PI-RADS

NRI

IDI

Logistics

Regression

DCA curve

ROC curve

Calibration curve

rms R

FIGURE 1

This diagram show the pathway of patient inclusion and exclusion, and the construction of CSPCa prediction model.
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PSA/PV and f-PSA density = f- PSA/PV. ADC values were selected on

the post-processing workstation to outline the lesion contour region of

interest (ROI) on axial images, avoiding necrosis, hemorrhage and

calcification areas.

All statistical analyses were conducted using R software version

4.2.2 for data analysis. Statistical significance was set at P<0.05. The

differences between the three datasets and the comparison between

CSPCa and non-CSPCa groups were analyzed using the Kruskal-

Wallis test and Mann-Whitney U test for ADCmean, ADCmax and

ADCmean, and ANOVA and t-test for the remaining variables. The

“mice package” was used for multiple imputations to fill in missing

values. Correlations between variables were analyzed using a heat-

matrix plot. Univariate and multivariate logistic regression analyses

were used to screen for the independent influencing factors. Random

forest analysis (randomForest package) was used to further analyze the

importance of each variable in CSPCa. Among the four most

important variables in the random forest analysis, three categories of

variables with significant or strong correlations with CSPCa were

selected for model construction. To avoid collinearity and overfitting

problems, indicators in the same category, such as PSA-derived or

ADC-related parameters, were included as the most important

parameters for modeling. Clinical decision curve analysis (DCA) was

used to evaluate the net clinical benefits of the multiple modeling

schemes. The net reclassification index (NRI) and integrated

discrimination improvement (IDI) were used to evaluate ADC values

to improve the model. The “rms package” was used to construct a

nomogram and the training set was resampled using bootstrapping

1000 to construct a calibration curve. The “val.prob” function was used

for calibration curve evaluation of the internal and external validation

cohorts. The area under the receiver operating characteristic (ROC)

curve was used to evaluate the degree of discrimination.
3 Results

3.1 Clinical characteristics of patients

A total of 800 patients from First Affiliated Hospital of Kunming

Medical University were randomly divided into derivation and

internal validation cohorts in a ratio of 3:1. The derivation cohort

included 258 patients with CSPCa and 542 patients with non-CSPCa,

whereas the internal validation cohort included 66 patients with

CSPCa and 124 patients with non-CSPCa. A total of 124 patients rom

Gejiu People’s Hospital were included in the external validation

cohort, comprising 34 patients with CSPCa and 90 patients with

non-CSPCa. Comparing CSPCa and non-CSPCa, all indicators were

significantly different (p < 0.05), except for ADCmax in the internal

validation set (p = 0.242).There was no significant difference in the

three groups of data comparison, except for f-PSA/PV, age, and PI-

RADS scores, and the rest of the variables were not significantly

different, and the details are shown in Table 1 and Figure 2.
3.2 Variable selection

The four most important parameters for random forest analysis

(Figure 3) were ranked as follows: PI-RADS,PSAD, tPSA, and
Frontiers in Oncology 04
ADCmean. Table 2 of the logistic regression analysis showed that

all variables included in the univariate analysis had a P-value of less

than 0.05. In multivariate analysis, the three parameters PI-RADS

score, ADCmean, and PV had a P-value of less than 0.05. In the

correlation heatmap (Figure 3), the top four variables with the

highest correlation with CSPCa were PI-RADS (r=0.7), PSAD

(r=0.55), tPSA (r=0.53), ADCmean, and ADCmin (r=0.46).

Owing to the correlation between tPSA and PSAD, the

importance of PSAD in the random forest analysis was higher

than that of tPSA, ADCmin performed worse than ADCmean in the

regression and random forest analyses. Finally, PI-RADS, PSAD

and ADCmean were included to develop a nomogram.
3.3 Constructing nomograms and verifying
internal and external data

Among the various modeling schemes, the clinical decision

curve (Figure 4) showed that models 1(PSAD + PI-RADS) and 2

(PSAD + PI-RADS + ADCmean) had the highest clinical benefits.

The constructed nomogram was shown in Figure 5. Comparing

Models 1 and 2, NRI(categorical)=0.0154,P-value=0.16252, NRI

(continuous)=0.3498, P-value=0.00005, IDI=0.0222, and P-

value=0.00029 are detailed in Table 3. The AUC value, best cutoff

value, specificity, sensitivity, and accuracy of the model 1 derivation

cohort were 0.935, 0.304, 0.861, 0.895, and 0.872, respectively. The

AUC values of the internal and external validation cohorts for

model 1 were 0.956 and 0.955, respectively. The AUC value, best

cutoff value, specificity, sensitivity, and accuracy of the model 2

derivation cohort were 0.939, 0.401, 0.895, 0.853, and 0.882,

respectively. The AUC values of the internal and external

validation cohorts for model 2 were 0.940 and 0.960, respectively.

The internal and external validation of the calibration curve are

shown in Figure 6. The clinical calibration curve showed no

significant difference between the predicted and actual

probabilities of the two models (p > 0.05) (Figure 6).
4 Discussion

In this study, we conducted rigorous variable screening, model

development, and validation of clinical indicators, such as PI-RADS

V2.1, MRI quantitative parameters, PSA and its derived indicators

and clinical indicators using multiple methods. The results showed

that modeling with PI- RADS, PSAD and ADCmean had the best

clinical benefits, with a correlation coefficient of 0.53 for tPSA and

0.55 for PSAD, which are the two most important PSA-derived

indicators. Some prospective cohort studies that received PSA

testing suggested that the combined AUC values of tPSA and f/

tPSA were significantly lower than those of PSAD, and using PSAD

could help avoid unnecessary biopsies (12, 13). PSAD appears to be

a useful marker that can stratify the risk of CSPCa in a

complementary manner to prostate mp-MRI (14). DENIFFEL D

et al. showed that the number of unnecessary prostate biopsies in

men with positive MRI may be safely reduced by using a prostate-

specific antigen density-based strategy (15), which is consistent with
frontiersin.org
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TABLE 1 Patients’ characteristics of the Derivation cohort and Internal validation cohort and External validation cohort.

hort(200) External validation cohort(124)

p
-CSPCa
=133) P2 Total3

CSPCa
(n=34)

non-CSPCa
(n=90) P3

6 ± 0.98 <0.001 3.01
± 1.33

4.53 ± 0.71 2.43 ± 1.02 <0.001 0.01

11/11 11 0/11 32/11

54/56 48 0/48 48/48

43/46 21 4/21 17/21

19/28 17 8/17 9/17

6/59 27 22/27 5/27

4 ± 0.26 <0.001 0.74
± 0.28

0.48 ± 0.17 0.83 ± 0.25 <0.001 0.285

1 ± 0.24 0.242 1.25
± 0.39

0.90 ± 0.25 1.38 ± 0.35 <0.001 0.194

0 ± 0.22 <0.001 0.97
± 0.3

0.66± 0.17 1.09 ± 0.25 <0.001 0.227

6 ± 8.43 <0.001 71.4
± 6.9

73.71 ± 7.26 70.57 ± 6.71 0.025 0.009

8 ± 14.9 <0.001 31.9
± 33.8

135.57 ± 114.5 17.75 ± 16.3 <0.001 0.315

8 ± 4.84 <0.001 6.22
± 6.93

11.85 ± 9.76 2.64 ± 2.60 <0.001 0.178

8 ± 0.11 0.017 0.17
± 0.09

0.10 ± 0.06 0.17 ± 0.09 <0.001 0.493

3 ± 0.09 <0.001 0.08
± 0.13

0.20 ± 0.19 0.04 ± 0.04 <0.001 0.001

1 ± 40.3 0.025 72.3
± 35.7

69.21 ± 36.59 73.50 ± 35.5 0.553 0.069

4 ± 0.15 <0.001 0.53
± 0.65

2.38 ± 2.26 0.25 ± 0.21 <0.001 0.695
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Variable

Derivation cohort (600) Internal validation co

Total1
CSPCa
(n=191)

non-CSPCa
(n=409) P1 Total2

CSPCa
(n=67)

non
(n

PI-RADS score(Mean ± SD) 3.36
± 1.28

4.68 ± 0.69 2.74 ± 1.00 <0.001 3.3
± 1.31

4.69 ± 0.70 2.6

PI-RADS 1 19 0/19 19/19 11 0/11

PI-RADS 2 181 4/181 177/181 56 2/56

PI-RADS 3 151 15/151 136/151 46 3/46

PI-RADS 4 64 23/64 41/64 28 9/28

PI-RADS 5 185 150/185 35/185 59 53/59

ADCmin×10^-3(Mean ± SD,
s/mm2)

0.61
± 0.24

0.40 ± 0.19 0.70 ± 0.24 <0.001 0.64
± 0.27

0.45 ± 0.23 0.6

ADCmax×10^-3(Mean ± SD,
s/mm2)

1.44
± 0.23

1.37 ± 0.27 1.46 ± 0.25 <0.001 1.43
± 0.25

1.37 ± 0.30 1.4

ADCmean×10^-3 (Mean ± SD
s/mm2)

0.96
± 0.20

0.79 ± 0.14 1.04 ± 0.20 <0.001 1.00
± 0.22

0.82 ± 0.16 1.0

Age(Mean ± SD,years) 69.1
± 7.63

70.06 ± 7.67 68.72 ± 7.58 0.044 69.9
± 8.54

71.93 ± 8.08 67.6

t-PSA(Mean ± SD,ng/ml) 29.3
± 33.1

57.14 ± 40.2 16.83 ± 21.89 <0.001 27.9
± 31.2

55.00 ± 37.12 14.2

f-PSA (Mean ± SD, ng/ml) 6.3
± 11.2

14.11 ± 16.3 2.70 ± 5.15 <0.001 7.33
± 13.6

17.31 ± 19.71 2.5

f/t PSA 0.18
± 0.11

0.20 ± 0.14 0.16 ± 0.09 <0.001 0.2
± 0.14

0.22 ± 0.16 0.1

f-PSA/PV(Mean ± SD, ng/ml2) 0.08
± 0.10

0.20 ± 0.29 0.02 ± 0.05 <0.001 0.14
± 0.34

0.18 ± 0.30 0.0

PV (Mean ± SD, cm^3) 73.2
± 41.9

62.16 ± 77.1 78.47 ± 41.27 <0.001 62.3
± 39.8

58.28.1 ± 68.7 71.6

PSAD (Mean ± SD,ng/ml2)
(IQR)

0.49
± 0.63

1.0 ± 0.8 0.25 ± 0.42 <0.001 0.54
± 0.76

1.15 ± 0.52 0.2
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our findings. In our study, ADCmean and ADCmin had the same

correlation coefficient (0.46), indicating moderate correlation. The

DCA curve showed that the clinical decision-making benefit of

ADCmean was higher than that of ADCmin, making ADCmean the

most valuable reference indicator among the ADC-related values
Frontiers in Oncology 06
measured by contouring. Overall, the importance of each index was

in the following order: PI-RADS>PSAD>ADCmean. Tezcan et al.

also showed that PI-RADS V2.1 was a stronger predictor of CSPCa

than PSAD (16). In this study, when the most important PI-RADS

was used to predict CSPCa, 10%, 7%, and 19% of CSPCa cases were
A CB

Derivation cohort Internal validation cohort 

D E
F

Derivation cohort internal validation cohort External validation cohort 

External validation cohort 

FIGURE 2

Result 0 is non-CSPCa, Result 1 is CSPCa, PIRADS=PI-RADS V2.1,fPSA=free prostate specific antigen, tPSA=total prostate specific antigen,
ftPSA=fPSA/tPSA, PV=the volume of the prostate depend on MRI, fPSAPV=fPSA/PV, PSAD=tPSA/PV. (A-C) The boxplot of continuous variables in
three datasets, Panels (D-F) CSPCa distribution of PI-RADS1-5 scores.
TABLE 2 Logistic regression.

Variable

Single factor logistic regression Multivariate logistic regression

OR 95%CI P OR 95%CI P

PI-RADS 6.350 4.834~8.342 <0.001 3.494 2.600~4.694 <0.001

ADCmin 0.001 0.001~0.004 <0.001 0.205 0.037~1.121 0.067

ADCmax 0.259 0.121~0.553 <0.001 1.888 0.479~7.446 0.364

ADCmean 0.000 0.001~0.001 <0.001 0.073 0.007~0.787 0.031

Age 1.024 1.001~1.047 0.045 1.011 0.973~1.049 0.580

t-PSA 1.041 1.034~1.049 <0.001 1.023 0.952~1.019 0.088

f-PSA 1.141 1.101~1.183 <0.001 1.059 0.966~1.106 0.222

f/t PSA 21.311 4.112~110.43 <0.001 6.071 0.015~140.55 0.279

f-PSA/PV 8278.3 3806.9~18010.0 <0.001 0.212 0.002~6.941 0.308

PSAD 305.65 102.06~915.36 <0.001 0.702 0.212~2.327 0.563

PV 0.994 0.991~0.997 <0.001 0.977 0.965~0.989 0.001
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detected in the training, internal validation, and external validation

sets, respectively, when the PI-RADS score was 3. Two other studies

showed that the CSPCa detection rates were 16% and 12% when the

PI-RADS score was 3. A systematic review showed that the

detection rates of prostate cancer using PI-RADS 1-5 were 6%,

9%, 16%, 59%, and 85%, respectively (17, 18). Compared with the

above studies, our score detected fewer positive patients in scores 1

and 2, and the other categories had similar accuracy (Figure 2). The

PI-RADS alone predicted an AUC value of 0.910, and the specificity
Frontiers in Oncology 07
under the optimal cutoff value was 0.814, which was lower than that

of the joint model (0.895). The AUC values of joint modeling

models 1 and 2 reached 0.935 and 0.939, respectively, indicating

that multiple factors can jointly improve the accuracy of disease

diagnosis. The AUC values in both internal and external validations

of the two joint schemes were all greater than 0.930, indicating a

good generalization ability.

Nomograms are increasingly being applied to clinical multi-

index joint decision-making for various diseases, owing to their

simplicity and strong visualization. Our study demonstrated that

the performance of the nomogram prediction model for CSPCa was

high (Figure 7). RODRIGUEZ et al. (19) and WANG L et al. (9)

used PI-RADS V2 and PSAD nomograms for PCa diagnosis, with

AUC values of 0.803 and 0.95, respectively. Ma Z et al. (20) studied

the prediction of CSPCa based on PI- RADS V2.1 + PSAD + Age

nomograms, with a combined model AUC of 0.938 (95% CI, 0.922-

0.955) and a validation set AUC value of 0.914 (95% CI, 0.873-

0.955). The above studies included PSAD and PI-RADS scores in

variable screening for modeling. The performance of the PI-RADS

V2 prediction model varies greatly, and MA Z et al. and our study

were based on PI-RADS V2.1, with CSPCa as the predictive

outcome. The results show high AUC values and external

validation performance, which may indicate that the Version 2.1

has a more stable prediction performance. As age was not a

significant predictor of CSPCa in our study, it was not included

in the modeling process. Meanwhile, although this study did not

limit the use of the model to specific patients with a PI-RADS score

of 3 or a negative first puncture (3, 8, 9), in the external validation

set, for example, 20 out of 124 patients had a PI-RADS score of 3, of

which 4 cases were diagnosed with CSPCa, and a total of 4 cases of

CSPCa were missed by the PI-RADS score on a scale of 1-3 as

negative and 4-5 as positive; both models were able to avoid the

missed diagnosis of 2 of these cases. A total of 3 patients with
FIGURE 4

Clinical decision curve analysis, the Y axis represents the net benefit
and the X axis represents the risk threshold.Within the threshold
probability range of decision curve analysis, the PI-RADS + PSAD +
ADCmean model provided best clinical.benefit. Compared with
ADCmin and, ADCmean is more suitable for clinical decision. Of all
PSA-derived parameters, PSAD had the best clinical benefit, but less
than the PI-RADS score.
A B

FIGURE 3

(A) Random Forest filter variables, Y-axis for variable names, X-axis for variable importance. (B) The correlation thermodynamic matrix graph was
used to screen the variables. PIRADS, PI-RADS V2.1; fPSA, free prostate specific antigen; tPSA, total prostate specific antigen; ftPSA, f/tPSA; PV, the
volume of the prostate depend on MRI; fPSAPV, fPSA/PV; PSAD, tPSA/PV.
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negative first puncture in 124 patients underwent a second

puncture, which confirmed the diagnosis of 1 case of CSPCa, and

both models accurately diagnosed 1 case of positivity and 2 cases of

negativity. This suggests that both models in this study, can cover

the diagnosis of a specific patient well and be more widely used for

the generalized diagnosis of PCa.

In this study, two indices, IDI and NRI, were used to evaluate

model differences after the addition of ADCmean: NRI(categorical)

=0.0154, NRI(continuous)=0.3498, and IDI=0.0222, this showed

that the ADCmean value had a positive effect on the model. Liu

et al. (21) showed that the combination of ADC values with PI-

RADS V2.1, was not significantly better than PI-RADS V2.1 alone

for all patients with PI-RADS 1-5, but in PI-RADS 3-4 lesions, the

combined AUC value of ADC and PI- RADS V2.1 scores was 0.756

(95% confidence interval, 0.646-0.846), which was significantly

higher than 0.631 (95% confidence interval, 0.514-0.738) for PI-

RADS V2.1 alone (P=0.047). Figure 4 showed that within a risk

threshold of greater than 0.6, the clinical benefit of PI-RADS

+ADCmean was greater than that of PI-RADS alone. TAVAKOLI

A A study found that ADC values less than or equal to 0.90 × 10−3

mm2/sec supported upgrading of ADC PI-RADS 3 and ADC PI-

RADS 4 lesions (22). Quantitative ADC measurement may be more
Frontiers in Oncology 08
important for risk stratification than current methods in future

versions of PI-RADS (23). We believe that the ADCmean value is an

important CSPCa prediction parameter and that the internal and

external validation of the model containing this parameter has high

AUC values. The calibration curve showed that the model

prediction probability was roughly similar to the actual

probability, indicating that the measurement of ADC values in

different regions and devices to identify CSPCa still had a high

application value and was an important parameter that was not

ignored, providing more prediction accuracy. In view of the

increased workload of ADC value measurement, which may

hinder the application of the model, we constructed two columns

of Model 1 and Model 2 for different clinical application scenarios,

considering the different emphases on the need for accuracy and

convenience (Figure 5).

This study had several advantages in terms of variable selection.

Adding the random forest method reduced the impact of

collinearity in the logistic regression and fully evaluated the

clinical benefits of different modeling schemes using decision

curves, ensuring that the best indicators and optimal schemes

were not missed to the greatest extent. Similar to other

retrospective studies, our study had a risk of selection bias. As the
A

B

FIGURE 5

The nomograms of models 1 and 2 was drawn in rms package of R. Model 1 constructs a nomogram for predicting clinically significant prostate
cancer (CSPCa) using PIRADS (PI-RADS 2.1) and PSAD (tPSA density = tPSA/prostate volume PV). Model 2 adds ADCmean on the basis of Model 1.
According to the above variables, the risk of CSPCa can be determined. Model 1 (A) constructs a nomogram for predicting clinically significant
prostate cancer (CSPCa) using PIRADS (PI-RADS 2.1) and PSAD (tPSA density = tPSA/prostate volume PV). Model 2 (B) adds ADCmean on the basis of
Model 1. According to the above variables, the risk of CSPCa can be determined.
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TABLE 3 Reclassification table.

Outcome: absent

Updated Model=ADCmean+PSAD+PIRADS

Initial Model= PSAD+PIRADS [0,0.5] [0.5,1] reclassified

[0,0.5] 372 0 0

[0.5,1] 2 35 5

Outcome: present

Updated Model=ADCmean+PSAD+PIRADS

Initial Model= PSAD+PIRADS [0,0.5] [0.5,1] reclassified

[0,0.5] 33 3 8

[0.5,1] 1 154 1

Combined Data

Updated Model=ADCmean+PSAD+PIRADS

Initial Model= PSAD+PIRADS [0.5,1] [0,0.5] reclassified

[0,0.5] 405 3 1

[0.5,1] 3 189 2
F
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A cutoff of 0.5 was used to calculate IDI, NRI:
NRI(Categorical) [95% CI]: 0.0154 [-0.0062 - 0.0369]; P-value: 0.16252.
NRI(Continuous) [95% CI]: 0.3498 [0.1815 - 0.5182]; P-value: 0.00005.
IDI [95% CI]: 0.0222 [0.0102 - 0.0343]; P-value: 0.00029.
ADCmean+PSAD+PI-RADS internal valida�on cohort 

PSAD+PI-RADS External valida�on cohort PSAD+PI-RADS Internal valida�on cohort 

ADCmean+PSAD+PI-RADS External valida�on cohort 
A B C

D FE

FIGURE 6

(A-C) model 2 Calibration curve in derivation cohort, internal validation cohort, external validation cohort. (D-F) model 1 Calibration curve in
derivation cohort, internal validation cohort, external validation cohort.
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two centers were located in the same region, the proportion of

patients suspected of PCa due to elevated PSA may be relatively

lower, and the proportion of patients suspected of PCa due to

urologic symptoms such as hematuria and urinary tract obstruction

may be relatively higher compared with other more developed

regions, and as both hospitals were regional centers for PCa

treatment, the sample may have had a relatively high proportion

of CSPCa and an higher proportion of advanced cancer, which may

have resulted in a higher accuracy of the PI-RADS score and a

higher AUC value of the model. And there may be differences in the

performance of the PI-RADS scores between different centers and

radiologists with different experience in reading films. Compared

with similar studies, our diagnostic model has a higher AUC value,

which may pose a certain risk of overfitting. In conclusion, although

the present study has been statistically designed to ensure the

objectivity and stability of the model as much as possible, large-

scale applications may require more prospective datasets frommore

centers for validation due to the risks of selection bias and

overfitting. Owing to the differences in different subzones of the

prostate, especially in the peripheral and transverse zones, the value

of prostate ADCmean zoning measurements in improving the

model deserves further exploration. And there is possibility of

further improvements in model performance regarding

application of blood-based protein biomarkers (e.g., PHI), urine-

based gene expression assays (e.g., PCA3), and other biomarkers.
Frontiers in Oncology 10
5 Conclusion

The PI-RADS+PSAD+ADCmean and PI-RADS+PSAD

nomogram models have high predictive value and good

generalization ability, providing valuable evidence for clinical

diagnosis and guiding the development of individualized

diagnostic and treatment plans to avoid unnecessary punctures.

PI- RADS+PSAD nomogram mode l is more convenient and has

better detection efficiency, whereas ADCmean is an important

predictive indicator that can improve the diagnostic performance

of mode l to a certain extent.
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