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1Department of Radiology, Baoding First Central Hospital, Baoding, China, 2Department of
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Medical University, Shijiazhuang, China
Objective: To explore the effectiveness of a machine learning-based

multiparametric MRI radiomics nomogram for predicting the WHO/ISUP

nuclear grading of clear cell renal cell carcinoma (ccRCC) before surgery.

Methods: Data from 86 patients who underwent preoperative renal MRI scans

(both plain and enhanced) and were confirmed to have ccRCC were

retrospectively collected. Based on the 2016 WHO/ISUP grading standards,

patients were divided into a low-grade group (Grade I and II) and a high-grade

group (Grade III and IV), and randomly split into training and testing sets at a 7:3

ratio. Radiomics features were extracted from FS-T2WI, DWI, and CE-T1WI

sequences. Optimal features were selected using the Mann-Whitney U test,

Spearman correlation analysis, and the least absolute shrinkage and selection

operator (LASSO). Fivemachine learning classifiers—logistic regression (LR), naive

bayes (NB), k-nearest neighbors (KNN), adaptive boosting (AdaBoost), and

multilayer perceptron (MLP)—were used to build models to predict ccRCC

WHO/ISUP nuclear grading. The model with the highest area under the curve

(AUC) in the testing set was chosen as the best radiomics model. Independent

clinical risk factors were identified using univariate and multivariate logistic

regression to create a clinical model, which was combined with radiomics

score (rad-score) to develop a nomogram. The model’s effectiveness was

assessed using the receiver operating characteristic (ROC) curve, its calibration

was evaluated using a calibration curve, and its clinical utility was analyzed using

decision curve analysis.

Results: Six radiomics features were ultimately selected. The MLP classifier

showed the highest diagnostic performance in the testing set (AUC=0.933).

Corticomedullary enhancement level (P=0.020) and renal vein invasion (P=0.011)

were identified as independent risk factors for predicting the WHO/ISUP nuclear

classification and were included in the nomogram with the rad-score. The ROC

curves indicated that the nomogram model had strong diagnostic performance,

with AUC values of 0.964 in the training set and 0.933 in the testing set.
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Conclusion: The machine learning-based multiparametric MRI radiomics

nomogram provides a highly predictive, non-invasive tool for preoperative

prediction of WHO/ISUP nuclear grading in patients with ccRCC.
KEYWORDS

clear cell renal cell carcinoma, radiomics nomogram, machine learning, magnetic
resonance imaging, WHO/ISUP nuclear grading
1 Introduction

Renal cell carcinoma (RCC) originates from the epithelial cells of

the renal tubules and accounts for approximately 90% of all

malignant kidney tumors and 2%-3% of all body malignancies (1,

2). Clear cell renal cell carcinoma (ccRCC), as the most common

subtype of RCC (comprising 70%-80% of RCC cases), is associated

with poor prognosis and high mortality rates (3, 4). Previous studies

have shown that the prognosis of ccRCC patients is closely related to

the tumor’s nuclear grade; generally, the higher the nuclear grade, the

shorter the survival period (5). The grading system introduced by the

World Health Organization/International Society of Urological

Pathology (WHO/ISUP) in 2016 classifies grade I and II tumors as

low-grade and grade III and IV tumors as high-grade. This system is

widely adopted due to its practicality and clinical relevance (6).

Current research indicates that the choice of surgical method is

related to the pathological nuclear grading of ccRCC (7). Clinically,

patients with low-grade ccRCC may undergo relatively conservative

treatments, such as radiofrequency ablation, nephron-sparing

surgery, or active surveillance; whereas patients with high-grade

ccRCC require radical surgical resection (8). Additionally, the

higher the pathological grade, the higher the recurrence rate after

surgery (9). Thus, identifying the nuclear differentiation of ccRCC is

crucial for formulating clinical treatment strategies.

Currently, the histological typing and grading of renal cancer

primarily rely on percutaneous renal biopsy. However, biopsy is an

invasive procedure that may lead to various complications such as

metastasis and bleeding (10, 11). MRI is widely used in preoperative

examinations of renal cancer due to its non-invasiveness, high soft

tissue resolution, and the ability to provide multi-sequence, multi-

parameter, and multi-directional imaging (12). However,

traditional radiological diagnoses often depend on the subjective

experience of radiologists, affecting the accuracy of these indicators.

Radiomics enables the high-throughput extraction of features from

imaging data that are not visible to the human eye. Machine

learning builds upon this by using algorithmic models to learn,

analyze, and predict these extensive, high-dimensional radiomics

features, thereby establishing models that can improve disease

diagnosis, prognosis, and prediction accuracy (13–15). This study

selects different machine learning methods to develop and validate

radiomics models and establishes a nomogram model based on

multi-parametric MRI radiomics and clinico-radiological features
02
for the preoperative prediction of the WHO/ISUP grading of

ccRCC, aiming to provide new methods for non-invasive clinical

diagnosis, treatment selection, and prognosis assessment.
2 Materials and methods

2.1 General information

This retrospective study received approval from the Medical

Ethics Committee of Baoding’s First Central Hospital, with patient

informed consent being waived. The clinical and imaging data of

patients with ccRCC confirmed by postoperative pathology who

underwent renal MRI plain scan and enhanced scan in Baoding’s

First Central Hospital from June 2019 to June 2024 were

retrospectively collected. Inclusion criteria were: (1) patients who

underwent partial or radical nephrectomy and were pathologically

diagnosed with ccRCC; (2) MRI scans of the kidney performed

within two weeks before surgery; (3) complete clinical, pathological,

and imaging data available for the patients. Exclusion criteria

included: (1) poor MRI image quality affected by artifacts from

breathing, motion, etc.; (2) patients who had undergone

intervention treatments or had ccRCC recurrence postoperatively;

(3) patients with other malignant tumors. Ultimately, 86 patients

met the inclusion criteria, consisting of 57 males and 29 females,

aged between 36 and 85 years (average age: 59.29 ± 11.43).

According to the 2016 WHO/ISUP grading standards, patients

were classified into low-grade (grades I and II, 66 cases) and

high-grade (grades III and IV, 20 cases) groups. Cases were

randomly divided into training (n=60) and testing (n=26) sets in

a 7:3 ratio. A flowchart of the study subjects is shown in Figure 1.
2.2 Examination methods

All MRI examinations were performed using a Philips Achieva

TX 3.0 T system. Patients were positioned supine and instructed to

breathe calmly. A 16-channel phased-array body coil was used to

cover the kidneys and lesions thoroughly. MRI parameters were as

follows: (1) axial fat-suppressed T2WI sequence, TR 1089ms, TE

80ms, interslice gap 1mm, slice thickness 5mm, matrix 332×332,

FOV 350mm×400mm; (2) axial DWI, TR 1145ms, TE 62ms, b-
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value 1000s/mm2; slice thickness, interslice gap, and FOV as above;

(3) DCE-MRI, scanning parameters: TR 5.8ms, TE 1.7ms, slice

thickness 5mm, interslice gap 0.78 mm, FOV 220mm × 189mm.

The contrast agent used for the enhanced scans was gadopentetate

dimeglumine (Gd-DTPA, Bayer Healthcare Pharmaceuticals,

Germany) at a dose of 0.1mmol/kg, administered intravenously at

2ml/s using a high-pressure injector, immediately followed by a 20

ml saline flush at the same rate.
2.3 Clinical and radiological
feature analysis

Clinical data such as age, gender, tumor location (left, right),

maximum tumor diameter, presence of hematuria, smoking history,

hypertension history, and diabetes history were obtained from

medical records.

MRI radiological feature analysis was conducted by two

radiologists specializing in abdominal imaging in a double-blind

manner, including Physician A with 3 years of experience and

Physician B with 20 years of experience. Any discrepancies were

resolved through consultation. Evaluation criteria included:

boundaries (clear, unclear), pseudocapsule (present, absent),

cystic necrosis (present, absent), renal vein invasion (present,

absent), involvement of the renal sinus (present, absent), distant

metastasis (present, absent), intratumoral vessels (present, absent),

lesion DWI signal intensity (compared to renal parenchyma:

isointense, hyperintense), and corticomedullary enhancement

level (solid part of the tumor having lower, higher, or similar

enhancement compared to renal parenchyma). The ADC values

of the tumor parenchyma were manually measured three times for

each lesion to minimize error.
Frontiers in Oncology 03
2.4 Tumor segmentation and
feature extraction

All MRI images were exported from the Picture Archiving and

Communication System (PACS) in DICOM format. Physician A

used 3D Slicer software version 5.4.0 (www.slicer.org) to manually

delineate the lesions layer by layer along the edges, drawing regions

of interest (ROI) as shown in Figure 1, which included axial fat-

suppressed T2-weighted imaging (FS-T2WI), diffusion-weighted

imaging (DWI), and corticomedullary phase contrast-enhanced

T1-weighted imaging (CE-T1WI). Before feature extraction,

grayscale values were normalized. Subsequently, a total of 2553

radiomics features were automatically extracted using the

Pyradiomics module within the 3D Slicer software.
2.5 Feature selection and machine learning

All radiomics features underwent Mann-Whitney U testing for

feature selection, retaining only those features with a p-value <0.05.

For features with high redundancy, Spearman correlation analysis

was used to assess inter-feature correlations, retaining one feature

from any pair with a correlation coefficient greater than 0.9. The

optimal subset of features was then identified using least absolute

shrinkage and selection operator (LASSO) regression. These

selected features were incorporated into five machine learning

classifiers: logistic regression (LR), naive bayes (NB), k-nearest

neighbors (KNN), adaptive boosting (AdaBoost), and multilayer

perceptron (MLP). The classifier with the highest area under curve

(AUC) in the test set was selected for radiomics modeling, which

was then converted into a corresponding radiomics score

(Rad-score).
FIGURE 1

Flowchart of the study subjects based on exclusion criteria.
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2.6 Construction of the nomogram model

In the training set, both univariate and multivariate logistic

regression analyses were performed on the clinical and radiological

features to identify statistically significant features (P < 0.05) for

constructing the clinical model. Finally, a nomogrammodel was built

based on the clinically independent risk factors and the rad-score.
2.7 Statistical analysis

Statistical analyses were conducted using SPSS version 26.0 and R

version 4.3.2, with a p-value <0.05 considered statistically significant.

Continuous variables were analyzed using independent samples t-

tests or Mann-Whitney U tests. Categorical variables were analyzed

using the chi-square test. 5-fold cross validation was used in model

training. The effectiveness of the models was assessed by calculating

the AUC of the receiver operating characteristic (ROC) curve.

Differences between models were compared using the DeLong test.

Model calibration performance was evaluated using calibration

curves. The clinical utility of the models was assessed using

decision curve analysis (DCA). Figure 2 shows the workflow of

radiomics analysis of this study.
3 Results

3.1 General data comparison

This study included a total of 86 ccRCC patients, comprising 66

low-grade (WHO grades I and II) and 22 high-grade (WHO grades
Frontiers in Oncology 04
III and IV) patients. Significant statistical differences were observed

in the training and testing groups regarding maximum tumor

diameter, tumor boundaries, renal sinus involvement, and venous

thrombus (P < 0.05). Refer to Table 1.
3.2 Performance evaluation of machine
learning classifiers

A total of 2553 radiomics features were extracted from the axial

FS-T2WI, DWI, and CE-T1WI images. After performing Mann-

Whitney U testing, 1189 features with a P < 0.05 were retained.

Following Spearman correlation analysis, 316 features remained.

Ultimately, 6 features were selected through LASSO regression.

Based on these features, five machine learning classifiers were

constructed and further analyzed (Figures 3A–C). ROC curve

analysis showed that the AUC values for the five machine

learning classifiers (LR, NB, KNN, AdaBoost, MLP) ranged from

0.943 to 1.000 in the training set, and from 0.771 to 0.933 in the

testing set (see Figures 4A, B). In the training set, the best classifier

was AdaBoost, with an AUC of 1.000; however, in the testing set,

the best classifier was the MLP. The MLP’s performance metrics,

including AUC, sensitivity, specificity, and accuracy were 0.933,

0.667, 0.950, and 0.800, respectively (see Table 2). Although

AdaBoost performed well in the training set, it showed signs of

overfitting in the testing set. To ensure model stability and

consistency, MLP was chosen as the best radiomics model.
3.3 Model construction and validation

After univariate and multivariate logistic regression analyses of

traditional clinical and radiological indicators, two independent risk
FIGURE 2

Workflow of radiomics analysis of this study.
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TABLE 1 Comparison of general patient data (S).

Parameter
Training Set Test Set

Low Grade High Grade P-value Low Grade High Grade P-value

Age (years) 57.60 ± 11.88 65.38 ± 8.64 0.032 59.25 ± 12.64 59.50 ± 3.78 0.963

Gender 0.784 0.971

Female 15 (31.91) 3 (23.08) 9 (45.00) 2 (33.33)

Male 32 (68.09) 10 (76.92) 11 (55.00) 4 (66.67)

Maximum Tumor Diameter (cm) 3.57 ± 2.20 7.06 ± 2.78 <0.001 3.76 ± 1.33 7.70 ± 2.55 <0.001

Tumor location 0.682

Left 20 (42.55) 7 (53.85) 9 (45.00) 1 (16.67) 0.440

Right 27 (57.45) 6 (46.15) 11 (55.00) 5 (83.33)

Boundaries <0.001

Clear 38 (80.85) 2 (15.38) 17 (85.00) 1 (16.67) 0.007

Unclear 9 (19.15) 11 (84.62) 3 (15.00) 5 (83.33)

Smoking history 16 (34.04) 5 (38.46) 1.000 4 (20.00) 1 (16.67)

History of hypertension 23 (48.94) 8 (61.54) 0.623 5 (25.00) 2 (33.33) 1.000

History of diabetes 10 (21.28) 4 (30.77) 0.73 5 (25.00) 1 (16.67) 1.000

Hematuria 4 (8.51) 2 (15.38) 0.835 3 (15.00) 1 (16.67) 1.000

Pseudocapsule 18 (38.30) 8 (61.54) 0.238 8 (40.00) 5 (83.33) 1.000

Renal sinus involvement 8 (17.02) 10 (76.92) <0.001 4 (20.00) 5(83.33) 0.163

DWI signal intensity 0.036 0.018

isosignal 16 (34.04) 0 5 (25.00) 0 0.440

high signal 31 (65.96) 13 (100.00) 15 (75.00) 6 (100.00)

Intratumoral vessels 12 (25.53) 9 (69.23) 0.009 6 (30.00) 4 (66.67)

ADC value (mm2/s) 1.87 ± 0.41 1.48 ± 0.63 0.011 1.73 ± 0.52 1.45 ± 0.62 0.254

Renal vein invasion 1 (2.13) 7 (53.85) <0.001 0 4 (66.67) 0.279

Cystic necrosis 32 (68.09) 11 (84.62) 0.411 15 (75.00) 5 (83.33) <0.001

Corticomedullary
Enhancement Level 0.021 1.000

Lower than renal parenchyma 17 (36.17) 10 (76.92) 6 (30.00) 2 (33.33) 1.000

Higher than or equal to
renal parenchyma 30 (63.83) 3 (23.08) 14 (70.00) 4 (66.67)
F
rontiers in Oncology
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FIGURE 3

(A–C) Radiomics features selection and establishment of rad-score based on LASSO algorithm.10-fold cross-validation coefficients and MSE (A, B).
Rad-score histogram based on the selected features (C).
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factors were identified for the construction of the clinical model:

corticomedullary enhancement level and renal vein invasion (see

Table 3). A nomogram model was constructed by combining the

clinical model and the Rad-score from the best radiomics model (see

Figure 5). Comparisons of the AUC values, specificity, sensitivity, and

accuracy among the three models showed that the nomogram model

outperformed the other models in both the training group (AUC:

0.964) and the testing group (AUC: 0.933), as detailed in Table 4.

Delong test results indicated that the AUC values of the three

models in both the training and testing set were statistically

significant (P < 0.05). Figures 6A, B show the calibration curves

in the training and testing set. DCA results demonstrated that the

nomogram model provided a higher net benefit within certain

thresholds (Figures 7A, B), suggesting that the nomogram model

has higher clinical utility in the preoperative prediction of ccRCC

WHO/ISUP grading.
4 Discussion

As the most common subtype of RCC, ccRCC is known for its

aggressiveness and high malignancy grade (16). Previous studies
Frontiers in Oncology 06
have demonstrated that nuclear grading of tumor cells is the most

effective independent prognostic factor for survival in ccRCC

patients; higher nuclear grades are associated with poorer

prognoses (17, 18). Additionally, the nuclear grade of ccRCC

correlates with the tumor’s biological behavior and metastatic

potential. Patients with high-grade ccRCC are prone to systemic

bone metastases and renal vein invasion, and the rate of local tumor

recurrence is also higher, severely affecting patient outcomes (19,

20). Therefore, preoperative prediction of nuclear grading in ccRCC

patients is crucial for clinical decision-making.

Previous studies have identified statistically significant

differences in radiological features such as tumor morphology,

borders, intensity of cortical-medullary enhancement, and distant

metastasis between high and low-grade ccRCC groups (21–23). In

the research conducted by Li et al. (21), shape, margins, and

necrosis were identified as independent predictors of high-grade

ccRCC. Lesions in low-grade ccRCC typically exhibit regular

margins and are generally round, while high-grade ccRCC lesions

often display aggressive characteristics, with irregular shapes,

indistinct borders, accompanied by necrosis, perirenal fat

infiltration, or distant metastasis. Wei et al. (22) found that low-

grade ccRCC features relatively mature arteries, rapid blood flow,
FIGURE 4

(A, B) ROC curves of five different machine learning algorithms predicting the grading of ccRCC in the training set (A) and the testing set (B).
TABLE 2 Comparison of diagnostic performance of five machine learning classifiers in training and test sets.

Machine Learning
Classifier

Training Set Test Set

AUC
(95%CI)

Sensitivity Specificity Accuracy
AUC

(95%CI)
Sensitivity Specificity Accuracy

LR
0.954
(0.904-1.000) 0.846 0.894 0.883

0.833
(0.542-1.000) 0.667 0.950 0.885

KNN
0.948
(0.896-0.999) 0.846 0.894 0.883

0.771
(0.530-1.000) 0.500 0.950 0.846

MLP
0.943
(0.882-1.000) 0.846 0.915 0.900

0.933
(0.832-1.000) 0.667 0.950 0.885

NaiveBayes
0.951
(0.898-1.000) 0.769 0.957 0.917

0.817
(0.528-1.000) 0.667 0.900 0.846

AdaBoost
1.000
(1.000-1.000) 0.923 1.000 0.983

0.867
(0.705-1.000) 0.833 0.650 0.692
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and enhanced vascular permeability, whereas high-grade ccRCC is

characterized by pronounced malignancy, accelerated tumor

growth, and uneven distribution of blood supply, findings that

align with those reported by Coy et al. (23).

However, univariate and multivariate logistic regression

analyses in this study indicate that only renal vein invasion and

corticomedullary enhancement level are independent risk factors

for predicting the nuclear grading of ccRCC. This discrepancy may

be due to the small sample size of this study and potential selection

bias in the data. High-grade ccRCC tumors often show less

corticomedullary phase enhancement compared to normal renal

parenchyma, consistent with findings by Halefoglu et al. (24). This

may be due to the rapid growth rate of high-grade ccRCC tumors,

which likely suffer from relative ischemia, leading to more frequent

micro-necrosis that affects enhancement patterns. Furthermore,

high-grade ccRCC is more likely to cause renal vein invasion

because these tumors are highly differentiated, aggressive, and

thus more prone to venous and lymphatic metastasis, leading to

poorer prognoses (25).

In recent years, studies have confirmed the significant value of

radiomics in the pathological grading of ccRCC (26–31). Sun et al.

(30) extracted radiomics features from enhanced CT images of

ccRCC patients and constructed a Support Vector Machine (SVM)
Frontiers in Oncology 07
model, which achieved good results in distinguishing between low-

grade and high-grade ccRCC, with an AUC of 0.910. Yet, they only

used a single machine learning algorithm and did not compare the

predictive efficacy between different machine learning classifiers.

Gao et al. (31) analyzed radiological signs in ccRCC patients and

extracted radiomics features from CT images to calculate rad-score

and build a nomogram model. Their results indicated that the

nomogram model had the best predictive performance in the

pathological grading of ccRCC, with an AUC of 0.941. While

most previous studies have relied on a single radiomics model for

prediction, this study integrates multiple machine learning

algorithms to construct a more comprehensive predictive model,

significantly enhancing its accuracy. Moreover, compared with

most previous CT studies, MRI offers superior soft tissue contrast

and enables multi-parametric imaging, allowing for a more

thorough assessment of the radiological characteristics of ccRCC.

This study employed five machine learning classifiers (LR,

KNN, MLP, NB, and AdaBoost) to develop and validate a

machine learning-based multi-parametric MRI radiomics

nomogram model for the preoperative non-invasive and

personalized prediction of ccRCC patients’ WHO/ISUP nuclear

grading. The results indicated that MLP had the best predictive

performance in the testing set (AUC=0.933, 95%CI=0.832-1.000),
TABLE 3 Univariate and multivariate logistic regression analysis of clinical and radiological features.

Parameter
Univariate Logistic Regression Analysis

Multivariate Logistic
Regression Analysis

OR (95%CI) P-value OR (95%CI) P-value

Age 1.010 (1.002-1.017) 0.032 1.005 (0.999-1.011) 0.148

Maximum Tumor Diameter 1.084 (1.054-1.115) 0.000 0.999 (0.958-1.042) 0.976

ADC Value 0.757 (0.634-0.902) 0.010 0.909 (0.776-1.064) 0.312

DWI Signal Intensity 1.344 (1.107-1.631) 0.014 1.195 (1.015-1.408) 0.074

Corticomedullary Enhancement Level 0.756 (0.637-0.898) 0.008 0.810 (0.699-0.938) 0.020

Intratumoral Vessels 1.385 (1.162-1.652) 0.003 0.978 (0.818-1.169) 0.833

Renal Sinus Involvement 1.623 (1.374-1.916) 0.000 1.043 (0.836-1.302) 0.750

Boundaries 1.649 (1.409-1.929) 0.000 1.194 (0.970-1.468) 0.158

Renal vein invasion 2.137 (1.737-2.630) 0.000 1.523 (1.168-1.988) 0.011
FIGURE 5

Nomogram used to predict ccRCC grading: includes radiomics score, corticomedullary enhancement level and renal vein invasion.
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hence it was selected as the optimal radiomics model. As a machine

learning algorithm inspired by the human brain, the Multi-Layer

Perceptron (MLP) learns patterns and builds models from large

datasets via deep learning, optimizing parameters during the

training process. By leveraging the interplay between parameters
Frontiers in Oncology 08
and activation functions, MLP excels in feature extraction,

demonstrating strong learning capabilities and robustness (32).

Furthermore, this study aimed to construct a visual clinical

prediction model by integrating rad-score with corticomedullary

enhancement level and renal vein invasion to establish a nomogram
TABLE 4 Comparison of three models.

Model

Training Set Test Set

AUC
(95%CI) Sensitivity Specificity Accuracy

AUC
(95%CI) Sensitivity Specificity Accuracy

Clinical Model
0.867
(0.757-0.977) 0.538 0.979 0.883

0.866
(0.656-1.000) 0.167 1.000 0.808

Radiomics Model
0.943
(0.882-1.000) 0.846 0.915 0.900

0.933
(0.832-1.000) 0.667 0.950 0.885

Nomogram Model
0.964
(0.923-1.000) 0.923 0.872 0.883

0.942
(0.822-1.000) 0.667 1.000 0.923
FIGURE 6

(A, B) Calibration curves of the nomogram in the training (A) and testing set (B).
FIGURE 7

(A, B) DCA curves for training set (A) and testing set (B).
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model. The results confirmed that this nomogram model exhibited

substantial potential in both the training set (AUC: 0.964) and the

testing set (AUC: 0.942), surpassing both the single clinical model

(AUC values of 0.867 and 0.866 respectively) and the radiomics

model (AUC values of 0.943 and 0.933 respectively), highlighting its

potential in predicting WHO/ISUP nuclear grading of

ccRCC patients.

Limitations of this study include:
Fron
1. This is a single-center retrospective study with a small

sample size, inevitably introducing bias in data selection.

Future studies will require multi-center, large-sample,

prospective research to validate the model’s stability and

enhance clinical predictive capability.

2. Current practices in radiomics, such as image acquisition,

tumor segmentation, and feature extraction, lack consistency,

and manual ROI segmentation introduces certain errors.

Establishing unified standards will be essential to further

improve accuracy.

3. Most cases in this study had lesion diameters greater than 4

cm, while research on small renal cancers (≤4 cm) is

particularly crucial for practical clinical work, necessitating

further studies to expand the sample size and validate

its value.
In conclusion, the machine learning-based multi-parametric

MRI radiomics nomogram has demonstrated significant predictive

value in the preoperative non-invasive prediction of WHO/ISUP

nuclear grading in ccRCC patients. It holds promise for providing

strategies for non-invasive diagnosis and personalized treatment of

ccRCC patients, potentially improving long-term outcomes.
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