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Identifying subtle differences :
a radiomics model assessment
for gastric schwannomas and
gastrointestinal stromal tumors
across risk grades
Zimei Yang1, Chongfei Ma1, Jialiang Ren2, Min Li1,
Xiaosheng Xv1, Xin Fu1 and Li Yang1*

1Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical
University, Shijiazhuang, Hebei, China, 2Department of Pharmaceuticals Diagnostics, GE HealthCare,
Beijing, China
Objective: This study aims to develop and validate an enhanced computed

tomography (CT)-based radiomics model to differentiate gastric schwannomas

(GS) from gastrointestinal stromal tumors (GIST) across various risk categories.

Methods: This retrospective analysis was conducted on 26 GS and 82 GIST cases,

all confirmed by postoperative pathology. Data was divided into training and

validation cohorts at a 7:3 ratio. We collected patient demographics, clinical

presentations, and detailed CT imaging characteristics. Through univariable and

multivariable logistic regression analyses, we identified independent predictors

for discriminating between GS and GIST, facilitating the construction of a

conventional model. Radiomic features were extracted and refined through

manual 3D segmentation of venous phase thin-slice images to develop a

radiomics model. Subsequently, we constructed a comprehensive combined

model by integrating selected clinical and radiomics indicators. The diagnostic

performances of all models in differentiating GS from GIST and stratifying GISTs

according to malignancy risk were evaluated.

Results: We identified several key independent variables distinguishing GS from

GIST, including tumor location, cystic changes, degree of enhancement in

arterial phase, and enhancement uniformity. The conventional model achieved

AUCs of 0.939 and 0.869 in the training and validation cohort, respectively.

Conversely, the radiomics model, predicated on eight pivotal radiomics features,

demonstrated AUCs of 0.949 and 0.839. The combined model, incorporating

tumor location, degree of enhancement in arterial phase, enhancement

uniformity, and a radiomics model derived rad-score, significantly

outperformed the traditional approach, achieving AUCs of 0.989 and 0.964 in

the respective cohorts. The combined model showed superior diagnostic

accuracy in distinguishing GS from GIST, as well as GS from high or low

malignancy potential GISTs, as evidenced by IDI values of 0.2538, 0.2418, and

0.2749 (P<0.05 for all).
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Conclusion: The combined model based on CT imaging features and radiomics

features presents a promising non-invasive approach for accurate preoperative

differentiation between gastric schwannomas and gastrointestinal

stromal tumors.
KEYWORDS

gastrointestinal stromal tumor, risk stratification, computed tomography imaging,
gastric schwannoma, radiomics
1 Introduction

Gastric schwannomas (GS), arising from Schwann cells in the

submucosal nerve plexus of the stomach, are exceedingly rare

tumors that typically present as benign lesions with favorable

prognoses. Options for management include surgical resection or

observational follow-up (1). In contrast, gastrointestinal stromal

tumors (GIST), constitute the most prevalent mesenchymal

neoplasms of the gastrointestinal tract. GISTs exhibit varying

degrees of malignant potential, with higher risk classifications

correlating with worse outcomes. While surgical resection

remains the primary treatment approach, targeted therapy is

indicated when complete (R0) resection is unfeasible, surgical

risks are excessive, or extensive multi-organ resections would be

required (2, 3).

The distinct therapeutic approaches and prognostic

implications of GS versus GIST underscore the importance of

accurate preoperative diagnosis. Current approaches for

differentiating GS from GIST include conventional imaging

techniques (CT, MRI), endoscopic ultrasound (EUS), fine-needle

aspiration (FNA) biopsy, and immunohistochemistry. However,

each method has significant limitations. Both tumor types present

as submucosal gastric masses with overlapping endoscopic and

radiographic appearances features, making differentiation

challenging. Conventional techniques demonstrate limited

specificity due to overlapping features, with accuracy rates of 60-

80% (1). While EUS provides detailed visualization, its accuracy

reaches only 70-75% (4). Although immunohistochemistry offers

definitive diagnosis, it requires invasive tissue sampling. Moreover,

the low success rate of biopsy via endoscopy further challenges

preoperative discrimination, frequently leading to misdiagnosis

of GS as GIST (5). These approaches are further constrained by

their invasiveness nature, operator dependency, and limited

accessibility in some healthcare settings. Given these constraints,

there is a compelling need for diagnostic tools that are non-

invasive, accurate, and widely applicable. Our proposed

radiomics-based approach aims to address these limitations by

leveraging advanced image analysis techniques to extract and

analyze subtle imaging features beyond human visual

perception, potentially improving preoperative differentiation

between GS and GIST.
02
Radiomics, which involves the high-throughput extraction of

quantitative features from medical images, has demonstrated

promising results in the diagnosis and differentiation of

gastrointestinal tumors (6, 7). This study aims to construct and

evaluate a conventional model based on clinical and enhanced CT

features, a radiomics model derived from venous phase imaging

characteristics, and a combined model combining both. We assess

their diagnostic performance in distinguishing GS from GIST and in

stratifying GISTs by risk level, with the ultimate goal of establishing a

reliable, non-invasive method for preoperative differentiation.
2 Materials and methods

2.1 Demographic of patients

We conducted a retrospective analysis of patient records from

August 2015 to November 2021, including cases of gastric

schwannomas (GS) and gastrointestinal stromal tumors (GIST)

confirmed by surgical pathology at our institution. Inclusion criteria

were as follows (1): patients with no history of other tumors and

who had not received antitumor treatments prior to surgery; (2)

cases where the tumor was completely excised, with comprehensive

postoperative pathological data available, and where the risk

stratification for GIST patients was clearly determined; (3)

patients who underwent preoperative abdominal enhanced CT

scans with complete imaging data available. Cases were excluded

if the tumor was inadequately visualized due to small size or

insufficient gastric distension.
2.2 Image acquisition

CT examinations was performed using multiple imaging

systems including: Revolution CT(GE HealthCare), Somatom

Definition Flash CT(Siemens Healthcare) and Somatom Sensation

Open CT(Siemens Healthcare). Patient preparation included a 4-6

hours fasting period. Ten minutes before the procedure, an

intramuscular injection of 10 mg raceanisodamine was

administered to reduce motion artifacts, followed by the oral

intake of 800-1000 ml of warm water or two sachets of
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effervescent granules to distend the stomach. All scans were

performed with patients in the supine position, covering the

region from the diaphragmatic dome to the symphysis pubis,

with breath-holding during image acquisition.

Following a standard unenhanced scan, a high-pressure injector

was used to administer an intravenous bolus of nonionic contrast

medium (Iohexol, Omnipaque, 350mgI/ml, GE HealthCare) at a

dose of 1.5 ml/kg and a flow rate of 3.0 ml/s through the antecubital

vein. The arterial and venous phase images were acquired at 35 and

70 seconds post-injection, respectively. The scanning parameters

were standardized across platforms: tube voltage of 120 kV with

automatic tube current modulation, a rotation time of 0.5 seconds

per rotation, pitch values of 0.9 (Siemens Healthcare) and 0.992 (GE

HealthCare), and a scan slice thickness of 5.0 mm with an interval

of 5.0 mm. Images were reconstructed with a slice thickness of 1.0

mm (Siemens Healthcare) and 1.25 mm (GE HealthCare).
2.3 Development of the
conventional model

We systematically collected patient demographics and clinical

data, including age, gender, and the symptoms of gastrointestinal

hemorrhage. CT imaging features were comprehensively evaluated

for each case, encompassing tumor location, the longest diameter

on axial images, morphology (shape and growth pattern), tumor

borders, homogeneity of density, and the presence of ulcers, cystic

changes, liquefactive necrosis, hemorrhage, and calcification.

Enhancement patterns were quantitatively assessed through CT

attenuation measurements in unenhanced, arterial, and venous

phases, including the degree of enhancement in arterial and

venous phases and enhancement uniformity.

Using the training cohort data, both univariable andmultivariable

logistic regression analyses were employed to identify independent

predictors capable of differentiating GS from GIST. Variables were

selected based on both statistical significance and clinical relevance to

develop a robust conventional diagnostic model. This model was

specifically designed to facilitate accurate preoperative differentiation

between these tumor types in clinical practice.
2.4 Radiomics feature analysis and
model development

Tumor segmentation was performed on venous phase thin-slice

CT images using ITK-SNAP software (version 3.8.0). A radiologist

with five years of experience in abdominal imaging diagnostics

(ZMY), manually delineated the entire tumor volume (exclude

gastric contents, perigastric fat, and adjacent vascular structures)

on a slice-by-slice basis, while blinded to clinical information. The

segmentation accuracy was subsequently verified by a senior

radiologist with twenty years of experience in imaging diagnostics

(LY) to ensure precision of the tumor delineation.

Image preprocessing was conducted using PHIgo-AK software

(version 1.4.0, GE HealthCare), which incorporates PyRadiomics

(version 3.0.0, available at https://github.com/AIM-Harvard/
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pyradiomics/tree/master). The preprocessing pipeline included

image resampling to a uniform voxel size of 1×1×1 mm³ and

discretization of image intensity into 25 gray levels. This

standardized approach enable the extraction of comprehensive

radiomic features, including three-dimensional morphological

characteristics, first-order intensity histogram parameters, and

textural features. Additional image filtering was applied to

enhance feature extraction, allowing for the capture of higher-

order features.

The analytic phase involved univariable and correlation

analyses to identify features significantly associated with the

differentiation between GS and GIST. We then employed the

Least Absolute Shrinkage and Selection Operator (LASSO)

regression followed by stepwise multivariable regression to select

independent predictive features for the radiomics model.

A comprehensive combined model was developed by integrating

the previously identified independent clinical predictors with the

radiomics-derived score (rad-score) through multivariable analysis.

Additionally, anomogramwasdeveloped tovisualize theprobability of

tumor classification, enhancing the practical utility of the model in

clinical decision-making.
2.5 Statistical methods

Statistical analysis were performed using R software (version

4.1.0, available at https://www.rproject.org). The normality of

continuous variables were assessed using the Shapiro-Wilks test.

Normally distributed variables were compared using independent

samples t-test, while non-normally distributed variables were

analyzed using the Mann-Whitney U test. Categorical variables

were examined via the Chi-square test or Fisher’s exact test,

depending on the appropriateness for the data structure and

distribution. Receiver Operating Characteristic (ROC) curve

analysis was used to assess the diagnostic accuracy of each model

in differentiating between GS and GIST. To compare the diagnostic

effectiveness of the models, the Integrated Discrimination

Improvement (IDI) index was employed, offering a quantitative

assessment of improvement in model prediction. Furthermore,

Decision Curve Analysis (DCA) was utilized to ascertain the

clinical utility of the models by quantifying the net benefits at

various threshold probabilities. Additionally, we validated each

model’s effectiveness in distinguishing GS from GISTs across

different risk stratifications to ensure comprehensive assessment

of diagnostic capability and clinical applicability.
3 Result

3.1 Demographic of patients

Following inclusion and exclusion criteria, the final cohort

comprised 26 cases of gastric schwannomas (GS), with 10 males

and 16 females, averaging 61.12 ± 9.14 years in age; and 82 cases of

gastrointestinal stromal tumors (GIST), including 34 males and 48

females, with an average age of 61.28 ± 9.35 years. All CT
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examinations demonstrated adequate gastric distention and

optimal contrast enhancement with clear visualization of the

tumors. All included cases exhibited diagnostic image quality

without significant motion artifacts or beam-hardening artifacts

that could affect tumor evaluation. To facilitate a comprehensive

evaluation of the models developed, the patient cohort was stratified

into a training cohort and a validation cohort at a ratio of 7:3.

Specifically, the training cohort included 77 patients (19 GS cases

and 58 GIST cases), while the validation cohort included 31 patients

(7 GS cases and 24 GIST cases).
3.2 Development of the
conventional model

In the training cohort, statistically significant differences were

observed between GS andGIST in terms of tumor location, the longest

diameter on axial images, homogeneity of density, cystic changes,

liquefactive necrosis, unenhanced CT values, venous phase CT values,

and enhancement uniformity (P < 0.05), while no significant

differences were noted for other characteristics (P > 0.05), as

detailed in Table 1. Based on clinical experience and previous

literature (1, 8–10), degree of enhancement in arterial phase was

also identified as a potential discriminative feature and included in the

analysis. Multivariable analysis revealed four independent predictors

for GS-GIST differentiation. The outcomes highlighted tumor location

[OR (95%CI) = 83.010 (9.328-2249.559), P < 0.001], cystic changes

[OR (95%CI) = 8.117 (0.872-181.855), P = 0.092], degree of

enhancement in arterial phase [OR (95%CI) = 1.107 (1.005-1.249),

P = 0.061], and enhancement uniformity [OR (95%CI) = 41.603

(6.407-494.992), P < 0.001] as independent predictors for

differentiating GS from GIST. Based on these predictors, the

conventional model was constructed, demonstrating robust

diagnostic performance with AUCs of 0.939 in the training cohort

and 0.869 in the validation cohort. The model also achieved accuracy,

sensitivity, and specificity rates of 0.818, 0.776, 0.947, and 0.774, 0.750,

0.857 for training and validation cohorts, respectively.
3.3 Development of the radiomics model

The radiomics features encompassed three primary categories of

quantitative descriptors, including: (1) three-dimensional (3D)

morphological features, capturing the geometric properties of the

tumors; (2) first-order statistical features, reflecting the distribution

of pixel intensities; and (3) higher-order textural features, which

provided insights into the complexity of tumor texture through

various matrices such as the Gray Level Cooccurrence Matrix

(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size

ZoneMatrix (GLSZM), Gray Level DependenceMatrix (GLDM), and

Neighbouring Gray Tone Difference Matrix (NGTDM).

The initial feature extraction process yielded 1,595 features. After

feature selection process, eight key radiomic features with optimal

discriminative power were identified. These included six first-order

statistical features and two derived from the GLCM, specifically: 1)

log.1-firstorder-90Percentile; 2) log.1-firstorder-Median; 3) log.3-
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firstorder-Maximum; 4) log.3-glcm-Idn; 5) log.3-glcm-JointEnergy;

6) log.5-firstorder-Skewness; 7) wavelet.LHL-firstorder-Mean; 8)

wavelet.LLL-firstorder-10Percentile. This selection underscored the

critical role of intensity distribution and textural heterogeneity in

distinguishing GS from GIST (Figure 1).

Based on the selected radiomic features, we constructed a

diagnostic model that generated a radiomics rad-score for each

case (Figure 2). The radiomics model demonstrated exceptional

diagnostic performance, with Area Under the Curve (AUC) values

of 0.949 in the training cohort and 0.839 in the validation cohort.

Moreover, the model achieved accuracy, sensitivity, and specificity

rates of 0.922, 0.948, 0.842, and 0.774, 0.875, 0.429, respectively,

highlighting its significant potential in clinical applications for the

precise differentiation between GS and GIST.
3.4 Development of the combined model

Throughmultivariable analysis, we developed a combinedmodel

integrating the independent predictors from the conventional model

and the rad-score derived from the radiomicsmodel. The finalmodel

incorporated tumor location, degree of enhancement in arterial

phase, enhancement uniformity, and the rad-score as key

predictive factors. This comprehensive model demonstrated

exceptional diagnostic performance, achieving AUC, accuracy,

sensitivity, and specificity metrics of 0.989, 0.961, 0.966, 0.947 in

the training cohort, and 0.964, 0.871, 0.917, 0.714 in the validation

cohort, respectively.

The diagnostic capabilities of the conventional model, the

radiomics model, and the integrated (combined) model in

distinguishing GS from GIST were visually represented through

ROC curves (Figure 3). The combined model significantly

outperformed the conventional model in diagnostic efficacy, as

evidenced by an IDI of 0.2538 (P < 0.05). DCA revealed that while

all three models provided clinical benefits above the baseline, the

combined model consistently yielded the highest net clinical benefit

across both training and validation cohorts, substantiating its

superior clinical utility (Figure 4).

To facilitate clinical implementation, we transformed it into a

nomogram, enabling individualized risk prediction and visual

interpretation of results. The nomogram incorporated all significant

predictive factors and provided a straightforward approach for

calculating patient-specific probabilities. The nomogram’s critical

threshold was established at 0.596: scores above this threshold

suggest a diagnosis of GIST, while lower scores indicate GS. The

detailed construction and application of the nomogram are illustrated

in Figures 5 and 6, providing clinicians with a practical tool for

quantitative risk assessment through the cumulative effect of

individual predictive factors.
3.5 Diagnostic efficacy for identifying GS
with GIST of different risk grades

Further analysis evaluated the models’ diagnostic performance

in distinguishing gastric GS from GIST across different risk grades.
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TABLE 1 Comparison of clinical and CT features between GS and GIST patients.

Characteristic GS(n=19) GIST(n=58) p-value

Gender 1.000

Female 11 (57.895%) 33 (56.897%)

Male 8 (42.105%) 25 (43.103%)

Age 60.000 [52.000;67.000] 63.000 [57.000;69.000] 0.315

Presence of gastrointestinal hemorrhage symptoms 0.747

No 16 (84.211%) 45 (77.586%)

Yes 3 (15.789%) 13 (22.414%)

Tumor Location 0.010

Fundus 1 (5.263%) 22 (37.931%)

Body 13 (68.421%) 29 (50.000%)

Antrum 5 (26.316%) 7 (12.069%)

Longest diameter on axial images 3.300 [2.300;4.100] 4.700 [3.050;5.800] 0.037

Shape 0.372

Regular 16 (84.211%) 42 (72.414%)

Irregular 3 (15.789%) 16 (27.586%)

Growth pattern: 0.425

Intracavity 3 (15.789%) 18 (31.034%)

Extraluminal 6 (31.579%) 16 (27.586%)

Intracavity+ extraluminal 10 (52.632%) 24 (41.379%)

Tumor border 1.000

Clear 12 (63.158%) 37 (63.793%)

Blurred 7 (36.842%) 21 (36.207%)

Homogeneity of density 0.001

Uniformity 14 (73.684%) 16 (27.586%)

Nonuniformity 5 (26.316%) 42 (72.414%)

Presence of ulcers 1.000

No 12 (63.158%) 38 (65.517%)

Yes 7 (36.842%) 20 (34.483%)

Presence of cystic changes 0.006

No 18 (94.737%) 33 (56.897%)

Yes 1 (5.263%) 25 (43.103%)

Presence of liquefactive necrosis 0.003

No 16 (84.211%) 24 (41.379%)

Yes 3 (15.789%) 34 (58.621%)

Presence of hemorrhage 1.000

No 19 (100.000%) 56 (96.552%)

Yes 0 (0.000%) 2 (3.448%)

Presence of calcification 1.000

No 16 (84.211%) 48 (82.759%)

Yes 3 (15.789%) 10 (17.241%)

(Continued)
F
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TABLE 1 Continued

Characteristic GS(n=19) GIST(n=58) p-value

Unenhanced CT values 36.000 [32.050;40.500] 32.150 [28.200;36.675] 0.026

Arterial phase CT values 52.800 [48.200;58.550] 50.350 [40.850;61.050] 0.603

Venous phase CT values 70.000 [60.000;79.800] 61.800 [53.225;69.875] 0.031

Degree of enhancement
in arterial phase

16.500 [13.000;19.350] 17.650 [9.400;26.725] 0.531

Degree of enhancement
in venous phase

31.700 [24.950;42.800] 27.650 [21.050;34.125] 0.091

Enhancement uniformity <0.001

Uniformity 16 (84.211%) 16 (27.586%)

Nonuniformity 3 (15.789%) 42 (72.414%)
F
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FIGURE 1

violin plots of radiomics features to demonstrate the distribution of values.
FIGURE 2

Distribution of rad-score in radiomics model in the training cohort (A) and validation cohort (B).
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FIGURE 5

(A) A 63-year-old man with GIST. The axial CT image demonstrated a 3.8-cm-sized tumor in the fundus of the stomach. Axial CT image showed
mucosal ulceration at the margin of the mass. (B) Total points of the tumor were 144, risk value was 1.6 and it was classified as GIST by the
nomogram. (C) Pathological HE (×200) of the tumor.
FIGURE 4

DCA curves of conventional model, radiomics model and combined model in the training cohort (A) and validation cohort (B).
FIGURE 3

ROC curves of conventional model, radiomics model and combined model in the training cohort (A) and validation cohort (B).
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Postoperative pathological assessment classified the 82 GIST cases

were stratified into four risk categories: very low risk (7 cases), low

risk (22 cases), intermediate risk (26 cases), and high risk (27 cases).

For analytical purposes, very low-risk and low-risk cases were

grouped into a low malignancy potential category (n=29),

whereas intermediate-risk and high-risk cases were classified into

a high malignancy potential category (n=53).

In both the training and validation cohorts, the conventional

model, radiomics model, and combined model demonstrated good

diagnostic performance in differentiating GS from high malignancy

potential GIST and low malignancy potential GIST. The AUC

values in the training cohort were notably higher for

distinguishing GS from high malignancy potential GIST than

from low malignancy potential GIST (0.960 vs. 0.902; 0.960 vs.

0.930; 0.996 vs. 0.977, respectively). This pattern persisted in the

validation cohort (0.920 vs. 0.768; 0.839 vs. 0.839; and 0.982 vs.

0.929, respectively) as shown in Figures 7 and 8. Notably, the

combined model demonstrated superior diagnostic performance

compared to the conventional model for both high and low

malignancy potential GIST, with significant IDI values of 0.2418

and 0.2749, respectively (both P < 0.05).
Frontiers in Oncology 08
4 Discussion

Accurate preoperative differentiation between GS and GIST is

crucial for optimizing clinical management and treatment

strategies. In this study, we developed and evaluated three distinct

models based on contrast-enhanced CT imaging: a conventional

model, a radiomics model, and a combined model integrating both

approaches. Our findings reveal that the combined model, which

incorporates both traditional CT imaging characteristics and

radiomics features, achieves superior diagnostic performance

compared to conventional methods, suggesting its potential as a

non-invasive and precise method for accurately distinguishing

between GS and GIST preoperatively.

Our study identified four traditional imaging features—tumor

location, cystic changes, degree of enhancement in arterial phase,

and enhancement uniformity—as independent predictors for

differentiating GS from GIST. Among the GS cases in our cohort,

a significant majority (20 out of 26, 76.92%) were located in the

gastric body, with only one instance (1 out of 26, 3.85%) found in

the gastric fundus. Conversely, of the GIST cases, 44 were identified

in the gastric body (44 out of 82, 53.66%), and 27 in the gastric
FIGURE 6

(A) A 70-year-old woman with GS. The axial CT image demonstrated a 3.4-cm-sized tumor in the antrum of the stomach. (B) Total points of the
tumor was 44, risk value was far less than 0.1 and it was classified as GS by the nomogram. (C) Pathological HE (×200) of the tumor.
FIGURE 7

ROC curves for identification of GS with low malignant potential GIST by conventional model, radiomics model, and combined model in the training
cohort (A) and validation cohort (B).
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fundus (27 out of 82, 32.93%). These observations align with

existing literature, which suggests that GS are predominantly

located along the greater curvature of the gastric body, whereas

GISTs are more commonly found in the gastric fundus or

body (11).

GS typically display benign biological behavior, characterized by

slow cellular proliferation and minimal degenerative changes,

including cystic degeneration (12). In contrast, GIST demonstrates

potential malignancy behavior with active cell proliferation. Even

small-sized GISTs can develop hypoperfusion, leading to regressive

changes within the tumor. Our study findings reflect these biological

differences: cystic changes were observed in only 7.69% (2/26) of GS

cases compared to 41.46% (34/82) of GIST cases. Furthermore, the

regressive changes in GIST can promote arteriovenous shunt

formation, heterogeneous arterial phase enhancement patterns due

to irregular vascular density distribution and marked tumor

heterogeneity (1, 13, 14). While PET/CT demonstrates excellent

capability in differentiating benign from malignant tumors and

detecting metastases (15, 16). However, due to the high cost and

long time consuming of this examination method, it is still limited in

the rapid and accurate identification of GS and GIST.

The radiomics model, based on high-throughput quantitative

feature extraction, overcomes the inherent subjectivity of traditional

diagnostic approaches (17, 18). This model provides objective

quantification of tumor heterogeneity with unprecedented

precision, enabling the capture of subtle imaging characteristics

that may elude visual assessment. Through feature selection, eight

radiomics features were identified as critical for the model

construction, including six first-order intensity histogram features

and two gray level co-occurrence matrix features. These features

comprehensively characterize tumor heterogeneity by quantifying

both the distribution of pixel intensities and their spatial

interrelationships within the tumor volume.

Our analysis stratified GIST cases into high and low malignancy

potential subgroups to evaluate the diagnostic performance of

conventional, radiomics, and combined models across different
Frontiers in Oncology 09
risk grades. The combined model demonstrated superior

diagnostic efficacy in differentiating GS from both high and low

malignancy potential GIST, significantly outperforming the

conventional model. Notably, the model achieved higher

diagnostic accuracy in identifying high malignancy potential

GIST, likely due to their distinct biological characteristics. These

tumors typically exhibit aggressive growth patterns with more

pronounced cystic changes, liquefactive necrosis, and increased

heterogeneity (19, 20), creating more discernible imaging features

compared to GS. In contrast, low malignancy potential GIST posed

greater diagnostic challenges due to their less aggressive growth

patterns and reduced heterogeneity, which more closely resemble

the imaging characteristics of GS.

Several limitations of this study should be acknowledged. First,

the retrospective, single-center of this study introduces potential

selection bias and may limit result generalizability. Second, the

inherent rarity of gastric schwannomas resulted in a relatively

smaller sample size, which could affect the statistical power of our

findings. We addressed this limitation by carefully selecting

radiomics features and implementing subgroup validation to

minimize model overfitting and enhance analytical robustness.

Third, the utilization of different CT scanners introduced imaging

heterogeneity. Although we employed standardized preprocessing

protocols to mitigate this variation, its potential impact on results

cannot be completely eliminated. Future research should focus on

prospective, multicenter studies with larger cohorts to validate our

findings. Such investigations would not only confirm the combined

model’s efficacy across diverse clinical settings but also provide

deeper insights into its role in treatment strategy optimization for

both GS and GIST patients.
5 Conclusion

Our study presents a novel combined model integrating

conventional CT imaging features with radiomics analysis for
FIGURE 8

ROC curves for identification of GS with high malignant potential GIST by conventional model, radiomics model, and combined model in the
training cohort (A) and validation cohort (B).
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enhanced preoperative differentiation between gastric schwannomas

and gastrointestinal stromal tumors. This comprehensive approach

demonstrates superior diagnostic performance compared to

traditional methods, offering a promising tool for more accurate

preoperative diagnosis and optimized treatment planning.
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