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Endocrine treatment
mechanisms in triple-positive
breast cancer: from targeted
therapies to advances in
precision medicine
Xiu Yang, Daxin Yang, Xue Qi, Xiujuan Luo
and Guangmei Zhang*

Department of Medical Oncology, Third Division, Jilin City Second People’s Hospital, Jilin, China
Triple-positive breast cancer (TPBC), defined by the co-expression of estrogen

receptor (ER), progesterone receptor (PR), and human epidermal growth factor

receptor 2 (HER2), poses unique therapeutic challenges due to complex signaling

interactions and resulting treatment resistance. This review summarizes key

findings on the molecular mechanisms and cross-talk among ER, PR, and HER2

pathways, which drive tumor proliferation and resistance to conventional

therapies. Current strategies in TPBC treatment, including endocrine and HER2-

targeted therapies, are explored alongside emerging approaches such as

immunotherapy and CRISPR/Cas9 gene editing. Additionally, we discuss the

tumor microenvironment (TME) and its role in treatment resistance, highlighting

promising avenues for intervention through combination therapies and predictive

biomarkers. By addressing these interdependent pathways and optimizing

therapeutic strategies, precision medicine holds significant potential for

improving TPBC patient outcomes and advancing individualized cancer care.
KEYWORDS

triple-positive breast cancer, molecular mechanisms, endocrine therapy resistance,
precision medicine, gene editing (CRISPR/Cas9)
Introduction

Breast cancer remains a global health challenge, significantly impacting women’s well-

being worldwide. As the most prevalent cancer among women, it accounts for over 2

million new cases and approximately 600,000 deaths annually, highlighting the pressing

need for effective treatment and management strategies (1–3). Although breast cancer

primarily affects women, it also occurs in men, albeit rarely, accounting for about 1% of

cases. This fact underscores the importance of understanding breast cancer across all
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genders (4). Disparities in breast cancer outcomes are particularly

evident between developed and developing regions; developed

regions benefit from early detection, public awareness initiatives,

and advanced treatment options, while developing regions often

experience delayed diagnoses and lower survival rates (5, 6).

Addressing these disparities requires tailored healthcare strategies

that consider socioeconomic factors.

The 2011 St. Gallen Breast Cancer Consensus proposed a

classification of breast cancer into four molecular subtypes based

on estrogen receptor (ER), progesterone receptor (PR), human

epidermal growth factor receptor 2 (HER2), and Ki-67

proliferation index. These subtypes are luminal A (ER and/or PR

positive, HER2 negative, low Ki-67 expression), luminal B (ER and/

or PR positive, HER2 negative with high Ki-67 or HER2-positive),

HER2-overexpressed (ER and PR negative, HER2 positive), and

basal-like (ER and PR negative, HER2 negative) (7). Among these,

the luminal B subtype with HER2 positivity—where ER and PR are

positive, and HER2 is amplified or overexpressed—is known as

triple-positive breast cancer (TPBC), representing approximately

10% to 15% of all breast cancers (8).

Triple-positive breast cancer is characterized by hormone

dependency, where estrogen binding to receptors in tumor cells

activates transcription of target genes, including those responsible

for PR synthesis. Additionally, HER2 signaling plays a crucial role

in driving tumor proliferation and resistance mechanisms, making

TPBC distinctively challenging to treat. This receptor interplay is

critical in regulating breast cell growth and differentiation,

highlighting TPBC as a complex and unique form of breast

cancer. However, managing TPBC is particularly challenging due

to its intrinsic heterogeneity and variability in patient responses.

The complexity of this disease—shaped by tumor biology, genetic

influences, and the tumor microenvironment—complicates

treatment strategies and frequently contributes to resistance

against standard endocrine therapies (9, 10). These challenges

underscore the need for a highly personalized treatment approach

that integrates the latest advances in precision medicine and

combination molecular targeting to enhance therapeutic efficacy

and improve patient outcomes (11).

This review provides a foundational overview of the molecular

mechanisms, signaling pathways, and clinical implications of

endocrine therapy in TPBC. By synthesizing current research and

recent discoveries, this article aims to clarify primary challenges and

highlight innovative strategies that hold promise for transforming

treatment approaches and enhancing patient care in this complex

clinical context.
Molecular mechanisms and signaling
pathways in triple-positive
breast cancer

Triple-positive breast cancer is uniquely defined by the

concurrent expression of estrogen receptor (ER), progesterone
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receptor (PR), and human epidermal growth factor receptor 2

(HER2), each playing a distinct role in tumor growth and

survival. ER and PR are key drivers of hormone-dependent

growth, while HER2 amplifies proliferative and survival signals,

often leading to aggressive tumor behavior. Understanding the

molecular interactions between ER, PR, and HER2 is essential, as

these signaling pathways collectively inform therapeutic strategies

and contribute significantly to treatment resistance. This review first

examines ER signaling, explores the interplay between PR and

HER2, and concludes with a discussion on cross-regulation

among these pathways, highlighting their role in fostering

therapeutic resistance. This approach offers a comprehensive view

of how these signaling networks shape TPBC’s distinct biological

and clinical behavior, emphasizing the need for a precise,

molecularly informed approach to treatment (12, 13).
Structural and functional aspects of
estrogen receptors

Estrogen receptors (ERs), particularly ERa and ERb, are

integral members of the steroid hormone nuclear receptor family

and act as ligand-dependent transcriptional regulators. Each

receptor contains five domains (A through F) with distinct

functions. The N-terminal A/B domain houses the ligand-

independent transcription activation function AF-1 (14). The

central C domain features a DNA-binding region with zinc finger

motifs that enable binding to estrogen response elements (ERE) and

promote receptor dimerization (15). The D domain serves as a

flexible hinge, and the C-terminal E domain functions as the ligand-

binding region, which distinguishes estrogen activators from

antagonists (16). Finally, the F domain contains AF-2, essential

for ligand-dependent transcriptional activation (17).

Activation of ER generally involves ligand binding, which

facilitates ERE interaction on target genes, driving essential

transcription for cellular proliferation. Beyond these genomic effects,

ER also engages in non-genomic actions through interactions with

transcription factors and kinases, thus broadening its influence on

cellular growth and the tumor microenvironment (18).
Disruption of ER expression

ER expression can be impacted by methylation in regions

upstream of the ESR1 gene itself, particularly at CpG islands, which

can suppress ERa expression and affect its regulatory role in cellular

growth (1). Additionally, loss of function in genes like Cyclin-

dependent kinase 10 (CDK10) has been linked to endocrine

resistance, as CDK10 deficiency may lead to altered cell cycle

regulation and increased activation of mitogenic pathways, which

can contribute to reduced sensitivity to estrogen signaling (19). This

loss of ER function and associated resistance mechanisms highlight

the significant implications of ER dysregulation in cancer progression.
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Classification and mechanism of the
EGFR family

The Epidermal Growth Factor Receptor (EGFR) family belongs

to the type I tyrosine kinase receptor superfamily and includes four

closely related receptors: EGFR, HER2, HER3, and HER4. These

receptors share highly homologous amino acid sequences and

exhibit similar structural characteristics. When specific ligands,

such as TGFa and EGF, bind to these receptors, they can form

homodimers or heterodimers, activating intracellular tyrosine

kinase domains. This activation triggers the autophosphorylation

of tyrosine residues and initiates several critical downstream

pathways, including Ras-Raf-MEK-MAPK, PI3K/AKT/mTOR,

and Erk/MAPK. These pathways are essential for cell

proliferation and are associated with adverse outcomes in breast

cancer, such as tumor recurrence, chemotherapy resistance, and

reduced sensitivity to endocrine therapies (20–22).
HER2/neu and its role in breast cancer

HER2/neu, often referred to as HER2 or neu, is a proto-

oncogene located on chromosome 17 that encodes the P185

phosphoprotein. When estrogen binds to its receptor (ER) on the

nuclear membrane, it typically upregulates HER2 ligands and

downregulates the receptor itself, activating the ER and

subsequently phosphorylating multiple protein kinases involved

in downstream signaling pathways. Once activated, ER can

interact with nuclear coactivators like AIB1, significantly boosting

HER2’s transcriptional activity. This ER-HER2 interaction

enhances the tumor cells’ proliferative capacity, providing a

distinct growth advantage that is crucial in the progression of

breast cancer. This mechanism underscores the complex interplay

between hormone signaling and receptor tyrosine kinase pathways,

which has substantial implications for therapeutic strategies in

breast cancer treatment (8, 20, 21).
HER2 and ER interactions: genomic and
non-genomic actions

The interaction between HER2 and ER signaling pathways is

key to understanding the progression of triple-positive breast

cancer. While each pathway has its role, their interactions result

in a highly coordinated system that influences tumor growth and

therapeutic resistance. Once ER is activated on the nuclear

membrane, it regulates gene expression to drive breast cancer cell

proliferation. HER2 signaling, however, can enhance ER-mediated

effects, highlighting the intricate cross-talk between these pathways.

ER activity is modulated by co-regulatory proteins—classified

into co-activators and co-inhibitors—that influence ER’s

transcriptional effectiveness on estrogen response elements (ERE)

in target genes. Co-activators increase ER’s transcriptional impact,

while co-inhibitors decrease it. The balance between these co-

regulators can shift, and excessive co-activator expression or
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suppressed co-inhibitors may diminish the efficacy of endocrine

therapies such as SERMs (23).
Amplified in breast cancer 1 and its role
in resistance

Amplified In Breast Cancer 1 (AIB1), an ER co-activator, exists

in both normal and some breast cancer tissues, activating essential

signaling pathways like PI3K/Akt and ERK/MAPK that promote

tumor growth. Research indicates that HER2 overexpression in ER-

positive cell lines, such as MCF-7, amplifies proliferation signals

significantly. When HER2 signaling upregulates AIB1, tamoxifen

(TAM) transitions from acting as an antagonist to functioning as an

agonist, thereby promoting tumor growth and contributing to

resistance (12).

Further studies utilizing RNA interference to decrease

endogenous AIB1 levels in lung and breast cancer cells reveal that

reducing AIB1 expression diminishes the response to growth signals

(24). This AIB1 reduction results in decreased phosphorylation of

multiple HER2 tyrosine residues and lowers the activity of the co-

regulatory protein Src. When HER2 is transfected into MCF-7 cells

and transplanted into nude mice, estrogen presence significantly

accelerates tumor growth. Removing estrogen causes tumor

regression, suggesting that HER2 overexpression increases ER

sensitivity to proliferation signals and reduces TAM effectiveness.

High AIB1 levels can substantially reduce TAM’s antagonistic effects

in HER2-overexpressing tumors, highlighting the intricate

relationship between genomic and non-genomic pathways in breast

cancer resistance.

Moreover, the activation of tyrosine kinase receptors, such as

EGFR, can increase ER phosphorylation at serine 118, reducing

estrogen receptor expression and elevating kinase levels in

downstream signaling pathways like ERK/MAPK, which further

contributes to endocrine therapy resistance. SERMs can stimulate

several signaling pathways through membrane-initiated steroid

signaling that occurs outside the nucleus and independently of

gene transcription. These signals, partly mediated by ER fragments

near or on the endoplasmic reticulum, can reduce SERM efficacy

and cause therapeutic failure (21). Long-term estrogen deprivation

(LTED) can enhance non-genomic signaling pathways in breast

cancer cells, potentially increasing ERa interactions at the cell

membrane. This adaptation may involve phosphorylation of Shc

protein upon estrogen binding, which can activate the HER2/Ras/

Raf/MAPK signaling cascade, facilitating cell proliferation and

transcriptional activity of nuclear factors (12).
Interactions and therapeutic implications
of ER, HER2, and PR in triple-positive
breast cancer

Interactions among ER, PR, and HER2 in triple-positive breast

cancer highlight the limitations of monotherapy approaches that

target a single receptor. Reciprocal signaling between these receptors
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contributes to tumor aggressiveness and fosters resistance to targeted

treatments. This interconnected signaling dynamic underscores the

need for therapeutic strategies that simultaneously inhibit multiple

pathways, which may help overcome resistance mechanisms and

improve patient outcomes (8, 25). Furthermore, this complex

interplay among ER, PR, and HER2 reinforces the importance of

precision medicine in TPBC management. A thorough molecular

characterization—including receptor status, signaling pathway

activations, and relevant mutations—can inform tailored treatment

strategies that address the tumor’s unique biological features (26, 27).
Complexity of signal cross-regulation in
triple-positive breast cancer

The aggressive phenotype of triple-positive breast cancer is

heavily influenced by the intricate cross-regulation among ER,

PR, and HER2. These inter-receptor dynamics not only drive

tumor aggressiveness but also significantly impact response to

targeted therapies. One example of this complexity is the

synergistic effect between HER2 activation and estrogen-driven

tumor growth: HER2 amplification can enhance estrogen’s

proliferative effects, which may undermine traditional anti-

estrogen therapies, as these treatments can inadvertently intensify

HER2-mediated signaling. Conversely, ER activation can

upregulate HER2 expression, establishing a positive feedback loop

that accelerates tumor progression. Together, ER, PR, and HER2

regulate key cellular processes, such as cell cycle progression, DNA

repair, adhesion, and migration, contributing to a highly invasive

and metastatic tumor phenotype. This complexity presents

substantial treatment challenges, highlighting the need for

therapeutic strategies that concurrently target multiple pathways

to effectively manage TPBC (9, 12).
Therapeutic considerations for interactions
among ER, PR, and HER2

A comprehensive understanding of the interactions between

estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2) is crucial for

developing effective treatment strategies for triple-positive breast

cancer. Studies have shown that combining endocrine therapy with

HER2-targeted agents, such as lapatinib and trastuzumab, improves

treatment outcomes in triple-positive breast cancer patients

compared to endocrine therapy alone (28). This underscores the

importance of multi-targeted therapeutic strategies in overcoming

resistance and improving patient outcomes. Furthermore, the

molecular interactions among ER, PR, and HER2—especially

involving coactivators like AIB1 and decreased expression of

corepressors—present potential intervention points. Targeting these

critical nodes within the signaling network may suppress tumor
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growth and counteract resistance mechanisms, introducing

innovative treatment strategies (9, 12).

Recent studies have also examined inhibiting kinases involved

in the cross-talk between ER and HER2 signaling or targeting

regulators of receptor activity as methods to overcome resistance

(29, 30). These approaches highlight the potential of combining

hormone therapy with inhibitors targeting HER2 and other key

signaling elements. Such strategies aim to disrupt pathways that

support tumor growth and adaptability, enhancing therapeutic

effectiveness and improving patient outcomes (13, 27).
Overview of therapeutic challenges
and approaches in triple-positive
breast cancer

Triple-positive breast cancer, characterized by the co-expression

of estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2), presents unique

treatment challenges. The intricate cross-talk among these receptors

frequently drives therapeutic resistance, complicating treatment

outcomes. Addressing this interplay requires comprehensive

strategies that effectively target these pathways.
Endocrine therapy and
resistance mechanisms

Endocrine therapy (ET) is fundamental for managing hormone-

dependent, ER-positive triple-positive breast cancer by targeting

estrogen signaling. Common treatments include selective estrogen

receptor modulators (SERMs), like tamoxifen, and aromatase

inhibitors (AIs), like letrozole, particularly for postmenopausal

patients (31, 32). However, approximately 30% of patients treated

with AIs experience disease progression due to alternative pathway

activation, notably the PI3K/Akt/mTOR pathway (33). Resistance

often emerges within the first five years of treatment and is associated

with HER2-driven bypass mechanisms that circumvent ER-blocking

therapies, such as tamoxifen, allowing tumor progression (9, 10, 31).

Combining ET with HER2-targeted therapies has shown

improved outcomes. For instance, patients receiving a combination

of endocrine and HER2-targeted therapy achieved a median overall

survival (OS) of 56.5 months, compared to 38.9 months with

endocrine therapy alone (34). This finding underscores the

importance of combination therapies to effectively disrupt estrogen

signaling and inhibit tumor growth and spread. In the MONARCH 2

trial, abemaciclib combined with fulvestrant yielded a PFS increase to

16.4 months compared to 9.3 months with fulvestrant alone,

supporting CDK4/6 inhibitors’ use in managing hormone receptor-

positive breast cancers. For TPBC, this indicates a potential strategy

to mitigate resistance (27).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1467033
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2024.1467033
Selective estrogen receptor modulators
and downregulators

SERMs, such as tamoxifen and raloxifene, block ERs in breast

tissue, thereby inhibiting tumor growth, while also acting as

agonists in bone and cardiovascular tissues. However, long-term

SERM use can lead to resistance and side effects like increased blood

clot risks (31, 35). In contrast, selective estrogen receptor

downregulators (SERDs), such as fulvestrant, provide a more

comprehensive approach by degrading ER entirely, effectively

blocking its cancer-promoting effects.

SERDs are particularly useful for patients who develop

resistance to AIs or tamoxifen, and studies like the FALCON and

FIRST trials have shown that fulvestrant extends progression-free

survival (PFS), especially in patients without visceral metastasis (36,

37). Ongoing research is exploring the combined use of fulvestrant

with CDK4/6 inhibitors, which could extend PFS further, though

with potential risks like myelosuppression (38).
LHRH antagonists in
premenopausal women

For premenopausal women, luteinizing hormone-releasing

hormone (LHRH) antagonists offer additional therapeutic benefits

by lowering estrogen levels through ovarian suppression, thus

reducing cancer proliferation. Studies indicate that combining

LHRH agonists with tamoxifen yields superior results, improving

both OS and PFS compared to LHRH agonist monotherapy (39).

This combination is therefore recommended for premenopausal

women eligible for endocrine therapy.
HER2-targeted therapy: dual inhibition and
combination approaches

HER2-targeted therapies, including trastuzumab and

pertuzumab, have transformed the treatment landscape for

HER2-positive and triple-positive breast cancers. When combined

with chemotherapy or endocrine therapy, these therapies have

significantly improved progression-free survival (PFS) and overall

survival (OS) (26). However, resistance may develop due to

mutations in downstream pathways or HER2 expression loss, and

potential cardiotoxicity poses risks, particularly for patients with

pre-existing cardiovascular conditions (22) (Moasser, 2007).

Dual HER2 Inhibition: Dual inhibition, combining trastuzumab

with lapatinib, has demonstrated synergistic effects that surpass

single-agent therapy. For instance, the NeoALTTO trial compared

trastuzumab with lapatinib and found a higher pathological

complete response (pCR) rate (51.3%) for dual therapy compared

to trastuzumab alone (29.5%) (26). Although a follow-up study did

not show a statistically significant improvement in 3-year event-free

survival (EFS) over trastuzumab alone, pCR patients showed better

survival outcomes. This underscores dual HER2 inhibition’s

potential in improving neoadjuvant therapy results. Side effects,
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however, include elevated liver enzymes and diarrhea, highlighting

the need for careful patient management (40). In advanced HER2-

positive breast cancer, recent data from the KATE2 trial showed

that adding atezolizumab to trastuzumab emtansine (T-DM1)

extended progression-free survival (PFS) to 8.2 months compared

to 6.8 months for T-DM1 alone, suggesting that immune

modulation may benefit specific patient subsets (41).
Immunotherapy: emerging role
and challenges

Immune checkpoint inhibitors (ICIs) represent an emerging

avenue in breast cancer treatment, showing promise particularly in

triple-negative breast cancer (TNBC). Early trials are now exploring

the potential of ICIs for triple-positive breast cancer, especially in

combination with HER2-targeted therapies (42). While

immunotherapy engages the immune system to target cancer

cells, it also introduces immune-related adverse events (irAEs)

such as autoimmune reactions. The long-term effectiveness and

safety of ICIs in triple-positive breast cancer remain areas of active

investigation (41). In the KEYNOTE-355 trial, 847 patients with

advanced TNBC were randomized to receive either pembrolizumab

plus chemotherapy or a placebo plus chemotherapy. Among

patients with a PD-L1 CPS score ≥10, the pembrolizumab-

chemotherapy group showed a median progression-free survival

(PFS) of 9.7 months, compared to 5.6 months with placebo-

chemotherapy (hazard ratio [HR], 0.65; 95% CI 0.49–0.86; one-

sided p=0.0012), indicating a significant improvement in PFS.

However, in the broader CPS ≥1 group, the PFS improvement

was less pronounced (7.6 vs. 5.6 months; HR 0.74; one-sided

p=0.0014, not statistically significant), and OS results did not

show statistical significance (43).
Gene therapy: CRISPR/Cas9 in triple-
positive breast cancer treatment

CRISPR/Cas9 technology has become increasingly relevant in

breast cancer research, offering potential solutions to drug resistance

and potentially enhancing the efficacy of immunotherapy in CRISPR-

targeted cancer therapies in the near future (44). This gene-editing

approach allows precise targeting and modification of genes

associated with treatment resistance and tumor growth, making it

particularly valuable for difficult-to-treat subtypes like triple-positive

breast cancer. One promising application of CRISPR/Cas9 is the

modulation of protein degradation pathways within cancer cells to

control tumor proliferation. The 26S proteasome, a multi-catalytic

enzyme responsible for degrading polyubiquitinated proteins,

regulates proteins involved in the cell cycle and apoptosis, such as

caspases (44). Inhibiting proteasome function in cancer cells exhibits

antitumor and pro-apoptotic effects by sensitizing cells to intrinsic

and extrinsic apoptotic signals, making the proteasome an important

target for cancer therapies. Moreover, site-specific phosphorylation of

the proteasome has been linked to breast cancer proliferation,
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suggesting that disrupting this activity could aid in disease control

(45). CRISPR/Cas9 has also been applied to knock out dual-

specificity tyrosine-regulated kinase 2 (DYRK2), a kinase involved

in proteasome regulation. This approach has been shown to inhibit

tumor growth in proteasome-addicted human breast carcinoma

models in mice (46). In HER2-positive breast cancers, CRISPR/

Cas9 has been used to disrupt HER2 signaling pathways, which

enhances the effectiveness of PARP inhibitors. Additionally, CRISPR/

Cas9 targets metabolic genes like FASN—essential for fatty acid

synthesis in cancer cells—as well as transcription factors such as

FOXA1 and CDK7, providing new strategies to control aggressive

breast cancer subtypes (47). This precision in gene editing supports

the development of personalized treatment strategies, which can

reduce the likelihood of resistance by addressing specific genetic

alterations. In estrogen receptor (ER)-positive breast cancer,

resistance to therapies like tamoxifen and aromatase inhibitors

often arises from mutations in ERa, such as ERaY537S and

ERaD538G, which contribute to more aggressive metastatic disease

that is less responsive to standard treatments (48). To explore the

impact of these mutations, CRISPR/Cas9 has been utilized to create

ERa-positive breast cancer models where the wild-type ERa gene is

replaced with the mutated forms ERaY537S or ERaD538G, allowing
researchers to study resistance mechanisms and develop new

therapeutic strategies. Additionally, CRISPR/Cas9 can be applied to

downregulate MYC, a gene highly expressed in high-grade breast

cancers, by editing its regulatory elements, which curbs cancer cell

proliferation (49). Another notable target in breast cancer

progression is migration and invasion enhancer 1 (MIEN1), a

protein associated with tumor metastasis. Overexpression of

MIEN1 promotes cancer cell migration and invasion, making it a

critical target for limiting metastatic spread (48). CRISPR/Cas9 has

been used to delete the MIEN1 gene in breast cancer models,

delivered via cloning vectors such as [pSpCas9(BB)-2A-GFP

(PX458)], which successfully silenced MIEN1 expression and

inhibited disease progression (50). In summary, CRISPR/Cas9 gene

editing holds significant potential for breast cancer treatment by

allowing precise disruption of oncogenes and enhancement of tumor

suppressor functions. This technology provides new avenues to tackle

drug resistance, control tumor growth, and improve therapeutic

outcomes in various breast cancer subtypes.
Precision medicine in triple-positive
breast cancer

Precision medicine has become essential in managing triple-

positive breast cancer by tailoring treatment to individual

characteristics to optimize outcomes. Key clinical factors—such as

age, menopausal status, hormone receptor status, HER2 expression,

and markers like Ki-67—guide the most suitable treatment strategy

(26, 51). For example, younger premenopausal women with high Ki-

67 levels may benefit from aggressive HER2-targeted therapy in

combination with chemotherapy. Conversely, older postmenopausal

women with low Ki-67 levels may respond well to endocrine therapy

with a lower toxicity profile (25, 52). Patients with cardiovascular risks
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should be closely monitored when receiving HER2-targeted therapy

due to cardiotoxicity. In such cases, less cardiotoxic agents or

endocrine-only therapies may be preferable (52, 53). Additionally,

patients with autoimmune histories may face higher risks from

immunotherapy due to potential irAEs, underscoring the need for

careful patient selection and monitoring (42).
Clinical use and strategic considerations

For effective management of triple-positive breast cancer (TPBC),

endocrine therapy must be carefully tailored to the unique biological

characteristics of each tumor. Key decision factors include hormone

receptor status, HER2 expression, and proliferation markers like Ki-67.

High levels of ER and PR often indicate a strong reliance on hormonal

signaling, suggesting that selective estrogen receptor modulators

(SERMs) or aromatase inhibitors (AIs) could be particularly effective.

In contrast, tumors with HER2 amplification require a comprehensive

approach that includes HER2-targeted therapies to optimize patient

outcomes (25, 51).
Comprehensive approach to
evaluating therapy effectiveness

To fully assess hormone therapy (HT) effectiveness in TPBC, an

integrative approach encompassing imaging, biomarker analysis,

and quality-of-life evaluation is essential. This multidimensional

strategy provides a holistic view of treatment outcomes, enabling

more informed and adaptive therapeutic decisions.
Imaging evaluation

Imaging techniques—such as mammography, ultrasound, and

MRI—are invaluable for monitoring TPBC treatment response. By

providing precise measurements of tumor size and morphology,

these techniques support timely treatment adjustments. Imaging

allows healthcare providers to visualize tumor dynamics directly,

enabling evidence-based decisions in breast cancer management.
Biomarker analysis

Circulating biomarkers, such as cancer antigen 15-3 (CA 15-

3), circulating tumor DNA (ctDNA), and circulating tumor cells

(CTCs), offer valuable insights into the effectiveness of therapy.

Tracking changes in CTCs and ctDNA provides a window into

tumor burden and genomic shifts, helping predict response,

identify potential resistance mechanisms, and tailor treatments

accordingly (54–56). For example, ctDNA levels can indicate early

signs of treatment response or resistance, while fluctuations in

CTC counts can reflect changes in disease progression or

remission status.
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Quality of life evaluation

Evaluating quality of life through patient-reported outcome

measures (PROMs) offers a comprehensive view of treatment

impact, addressing physical, emotional, and social well-being.

PROMs ensure that treatment strategies extend beyond survival

to focus on maintaining or improving quality of life. Patient

feedback helps guide treatment adjustments, reducing side effects

and enhancing adherence (57).
Addressing disease progression or
treatment failure

When treatment fails or disease progresses, reassessment with a

focus on molecular profiling is essential. This involves analyzing

biological changes to guide subsequent therapies. Proteomic analyses

may detect specific molecular alterations, enabling the development of

advanced SERMs, SERDs, and AIs to more effectively disrupt estrogen

signaling and counteract resistance (58, 59). For example, mass

spectrometry-based proteomics can identify signaling pathways that

drive resistance, providing new targets for intervention in endocrine-

responsive breast cancer. By understanding these molecular changes,

personalized therapies can be designed to improve treatment

outcomes and reduce the likelihood of further resistance (60–62).
Understanding the
tumor microenvironment

The tumor microenvironment (TME) plays a critical role in

TPBC progression, as it includes not only tumor cells but also stromal

cells (like adipocytes and immune cells) that can support or inhibit

growth. Hormonal signals within the TME, particularly estrogen

production and metabolism, contribute to cancer cell proliferation.

Targeting these signals offers a novel approach, disrupting the TME

to inhibit tumor growth and open new intervention pathways (63).
Cross-pathway signal integration

Integrating hormone receptor signaling with survival pathways

like PI3K/Akt/mTOR presents promising therapeutic opportunities.

TPBC progression often activates these pathways, supporting cell

survival and proliferation. Targeting convergence points across these

pathways can disrupt tumor growth mechanisms and address the

complexity of TPBC. By focusing on interwoven signaling networks,

these therapies offer a sustainable path to managing cancer

progression and overcoming resistance (64, 65).
Strategies for combining therapies

Combining endocrine therapy, chemotherapy, targeted therapies

(such as HER2 and CDK4/6 inhibitors), and immunotherapy

enhances treatment efficacy in TPBC. A promising approach
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involves pairing immune checkpoint inhibitors (ICIs) with HER2-

targeted therapies. Clinical studies have investigated combinations

such as Atezolizumab (a PD-L1 inhibitor) with Trastuzumab

Emtansine (T-DM1), showing that this combination may improve

progression-free survival in advanced HER2-positive breast cancer by

enhancing immune-mediated tumor destruction (41). Additionally,

although primarily focused on triple-negative breast cancer (TNBC),

studies with Pembrolizumab (a PD-1 inhibitor) and Atezolizumab in

combination with chemotherapy have demonstrated the potential of

ICIs to boost treatment efficacy and provide a rationale for using

similar strategies in HER2-positive cancers (42, 43).

Furthermore, combining ICIs with adoptive T-cell therapies,

like CAR-T cells engineered to target HER2, represents an

innovative approach that may further improve outcomes by

directly targeting tumor cells while also modulating the immune

response. By leveraging the strengths of each treatment modality,

these combinations create a synergistic effect: targeted therapies

address cancer cell-specific mechanisms, while immunotherapy

mobilizes the immune system. Ongoing research will clarify the

most effective combinations and sequences, allowing responses to

be optimized and side effects managed. This personalized strategy

aligns with precision medicine by focusing on specific disease

characteristics for each patient (66).
Combining targeted therapy with
endocrine treatments

Combining PARP inhibitors and CDK4/6 inhibitors with

endocrine therapy is a leading-edge approach for managing

TPBC, particularly for patients with BRCA mutations or other

genetic predispositions. PARP inhibitors enhance endocrine

therapy’s impact, especially effective in BRCA-mutant cancers,

while CDK4/6 inhibitors prevent tumor cell proliferation by

impeding cell division (67). Together, these therapies reduce

tumor growth and mitigate resistance encountered with endocrine

therapy alone. This personalized approach tailors treatment to the

tumor’s molecular profile, maximizing efficacy and minimizing

adverse effects. Such customized interventions improve outcomes

and support quality of life, aligning with the goals of precision

medicine by adapting to each tumor’s unique characteristics (38). In

the MONARCH 2 trial, abemaciclib combined with fulvestrant

yielded a PFS increase to 16.4 months compared to 9.3 months with

fulvestrant alone, supporting CDK4/6 inhibitors’ use in managing

hormone receptor-positive breast cancers. For TPBC, this indicates

a potential strategy to mitigate resistance.
Application of molecular markers

Molecular markers are essential for precise treatment decisions in

breast cancer management. These markers predict endocrine therapy

response and identify potential resistance, enabling proactive

treatment adjustments. Monitoring changes in ER, PR, HER2

expression, and genetic variations like ESR1 mutations provides

insights into treatment response and resistance mechanisms (8, 68).
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Personalization of treatment choices

Personalized treatment utilizes advanced sequencing

technology and bioinformatics to identify molecular markers in

tumors, predicting response to specific therapies. By tailoring

treatments based on gene mutations, expression patterns, and

protein functions, this approach ensures each patient receives the

most effective and targeted therapy, embodying the core principles

of personalized oncology (69–71).
Comprehensive consideration of
patient characteristics

Personalized treatment for TPBC (Triple Positive Breast

Cancer) goes beyond molecular profiling. It includes patient-

specific factors such as genetic predisposition, unique tumor

characteristics, lifestyle, and personal values. Integrating this

information ensures that treatment plans are clinically effective

and aligned with individual needs. This holistic approach tailors

interventions to the patient’s biological and personal context,

supporting the development of successful and sustainable

strategies (72–74).
Establishing an interdisciplinary care team

An interdisciplinary care team is vital for comprehensive TPBC

management. This team, including oncologists, surgeons,

radiologists, geneticists, bioinformaticians, genetic counselors,

psychologists, and nutritionists, brings together diverse expertise

to address multiple aspects of TPBC. Genetic counselors, in

particular, help address hereditary cancer concerns, forming a

solid support foundation for holistic care. This collaborative

model integrates the latest advancements in cancer treatment,

ensuring that patient care plans include promising new therapies.

It not only enhances treatment effectiveness but also improves

satisfaction and adherence, leading to better outcomes and quality

of life (75–77).
Patient participation in treatment decisions

Patient engagement in treatment decisions is essential for

patient-centered care. Open communication and educational

resources empower patients to make informed choices aligned

with their health goals and lifestyle. This empowerment ensures

that decisions are both medically sound and reflect the patient’s

values and quality-of-life goals (78, 79). Patient advocacy groups

and support networks play a crucial role by offering platforms for

information sharing, helping patients navigate complex treatment

options. Involving patients in decision-making improves

adherence, as patients who understand the rationale behind

their choices are more likely to commit to recommended

therapies. This collaboration not only empowers patients but
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also fosters trust with healthcare providers, enhancing treatment

effectiveness (80, 81).
Conclusion

In conclusion, triple-positive breast cancer (TPBC) requires a highly

personalized and multifaceted approach due to the complex interplay

among estrogen, progesterone, and HER2 receptors. Tailored treatment

strategies that integrate endocrine therapies, HER2-targeted agents, and

novel immunotherapeutic approaches offer promising outcomes by

addressing specific tumor characteristics and resistance mechanisms.

Molecular profiling, including the analysis of signaling pathways and

tumor microenvironment factors, has emerged as a crucial tool for

optimizing therapy selection, as it allows clinicians to target multiple

pathways simultaneously and enhance treatment efficacy.

The development of advanced proteomic and genomic biomarkers

has further enabled the refinement of therapeutic interventions,

improving the management of resistance and offering new targets for

intervention. Future research should focus on enhancing combination

therapy protocols, identifying predictive biomarkers, and refining patient

selection criteria for immunotherapy to maximize therapeutic benefits.

As precision medicine continues to evolve, these strategies will play an

essential role in improving both survival and quality of life for TPBC

patients, paving the way for more effective, individualized cancer care.
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81. Stacey D, Légaré F, Lewis K, Barry MJ, Bennett CL, Eden KB, et al. Decision aids
for people facing health treatment or screening decisions. Cochrane Database
systematic Rev. (2017) 4. doi: 10.1002/14651858.CD001431.pub5
frontiersin.org

https://doi.org/10.1056/NEJMoa1809615
https://doi.org/10.1016/S0140-6736(20)32531-9
https://doi.org/10.1016/j.coisb.2016.12.016
https://doi.org/10.1126/science.1225829
https://doi.org/10.1038/ncb3289
https://doi.org/10.1016/j.cell.2015.08.063
https://doi.org/10.4238/gmr16019380
https://doi.org/10.1016/j.celrep.2018.03.056
https://doi.org/10.1371/journal.pone.0204976
https://doi.org/10.1093/annonc/mdx308
https://doi.org/10.1056/NEJMoa0910383
https://doi.org/10.1038/nrcardio.2010.121
https://doi.org/10.1038/nrcardio.2010.121
https://doi.org/10.1038/s41467-018-03215-x
https://doi.org/10.1056/NEJMoa1213261
https://doi.org/10.1158/0008-5472.CAN-13-2030
https://doi.org/10.1200/JCO.2015.63.0830
https://doi.org/10.1200/JCO.2015.63.0830
https://doi.org/10.1038/nrc721
https://doi.org/10.1038/nrd1902
https://doi.org/10.1038/nature13438
https://doi.org/10.1074/mcp.M113.036392
https://doi.org/10.1016/j.celrep.2015.03.050
https://doi.org/10.1373/clinchem.2012.185363
https://doi.org/10.1146/annurev-med-062913-051343
https://doi.org/10.1007/s10549-018-4697-y
https://doi.org/10.1200/JCO.21.01392
https://doi.org/10.1056/NEJMoa1607303
https://doi.org/10.1056/NEJMoa1607303
https://doi.org/10.1038/ng.2823
https://doi.org/10.1016/j.metabol.2012.08.016
https://doi.org/10.1016/j.cell.2013.03.002
https://doi.org/10.1038/nbt.2696
https://doi.org/10.1200/JCO.2005.02.0198
https://doi.org/10.1200/JCO.2005.02.0198
https://doi.org/10.1200/JCO.2006.08.6819
https://doi.org/10.1200/JCO.2006.08.6819
https://doi.org/10.1200/JCO.2010.28.8043
https://doi.org/10.3322/caac.21385
https://doi.org/10.3322/caac.21385
https://doi.org/10.1200/JOP.2014.003350
https://doi.org/10.1200/JOP.2014.003350
https://doi.org/10.3322/caac.21342
https://doi.org/10.1056/NEJMp1109283
https://doi.org/10.1007/s11606-012-2077-6
https://doi.org/10.1016/j.pec.2008.11.015
https://doi.org/10.1002/14651858.CD001431.pub5
https://doi.org/10.3389/fonc.2024.1467033
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Endocrine treatment mechanisms in triple-positive breast cancer: from targeted therapies to advances in precision medicine
	Introduction
	Molecular mechanisms and signaling pathways in triple-positive breast cancer
	Structural and functional aspects of estrogen receptors
	Disruption of ER expression
	Classification and mechanism of the EGFR family
	HER2/neu and its role in breast cancer
	HER2 and ER interactions: genomic and non-genomic actions
	Amplified in breast cancer 1 and its role in resistance
	Interactions and therapeutic implications of ER, HER2, and PR in triple-positive breast cancer
	Complexity of signal cross-regulation in triple-positive breast cancer
	Therapeutic considerations for interactions among ER, PR, and HER2

	Overview of therapeutic challenges and approaches in triple-positive breast cancer
	Endocrine therapy and resistance mechanisms
	Selective estrogen receptor modulators and downregulators
	LHRH antagonists in premenopausal women
	HER2-targeted therapy: dual inhibition and combination approaches
	Immunotherapy: emerging role and challenges
	Gene therapy: CRISPR/Cas9 in triple-positive breast cancer treatment
	Precision medicine in triple-positive breast cancer
	Clinical use and strategic considerations

	Comprehensive approach to evaluating therapy effectiveness
	Imaging evaluation
	Biomarker analysis
	Quality of life evaluation
	Addressing disease progression or treatment failure
	Understanding the tumor microenvironment
	Cross-pathway signal integration
	Strategies for combining therapies
	Combining targeted therapy with endocrine treatments
	Application of molecular markers
	Personalization of treatment choices
	Comprehensive consideration of patient characteristics
	Establishing an interdisciplinary care team
	Patient participation in treatment decisions

	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


