
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Martin King,
Harvard Medical School, United States

REVIEWED BY

Murat Akand,
University Hospitals Leuven, Belgium
Jianing Xi,
Guangzhou Medical University, China

*CORRESPONDENCE

Sungyong You

Sungyong.You@cshs.org

†These authors have contributed equally to
this work

RECEIVED 15 July 2024

ACCEPTED 08 November 2024
PUBLISHED 29 November 2024

CITATION

Kim H, Kim J, Yeon SY and You S (2024)
Machine learning approaches for spatial
omics data analysis in digital pathology: tools
and applications in genitourinary oncology.
Front. Oncol. 14:1465098.
doi: 10.3389/fonc.2024.1465098

COPYRIGHT

© 2024 Kim, Kim, Yeon and You. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 29 November 2024

DOI 10.3389/fonc.2024.1465098
Machine learning approaches
for spatial omics data analysis
in digital pathology: tools
and applications in
genitourinary oncology
Hojung Kim1,2†, Jina Kim1,3†, Su Yeon Yeon2†

and Sungyong You1,3*

1Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, United States, 2Department
of Pathology, University of Illinois at Chicago, Chicago, IL, United States, 3Department of
Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
Recent advances in spatial omics technologies have enabled new approaches for

analyzing tissue morphology, cell composition, and biomolecule expression

patterns in situ. These advances are promoting the development of new

computational tools and quantitative techniques in the emerging field of digital

pathology. In this review, we survey current trends in the development of

computational methods for spatially mapped omics data analysis using

digitized histopathology slides and supplementary materials, with an emphasis

on tools and applications relevant to genitourinary oncological research. The

review contains three sections: 1) an overview of image processing approaches

for histopathology slide analysis; 2) machine learning integration with spatially

resolved omics data analysis; 3) a discussion of current limitations and future

directions for integration of machine learning in the clinical decision-

making process.
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1 Introduction

Over the last decade, automation and digitization of laboratory processes have slowly

transformed everyday practices in hospitals. Recent advances in computational pathology,

especially with machine learning (ML) suggest an imminent revolution in the clinical

decision-making process (1). There has been a steady build-up of resources to further

support this transition. Adoption of digital pathology is becoming more common among

medical centers, and large repositories such as The Cancer Genome Atlas (TCGA) have

steadily been accruing digital tissue slides complemented by multi-omics profiles of each
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sample (https://www.cancer.gov/tcga). There have been ongoing

research efforts to adopt ML and artificial intelligence (AI) for

image analysis, with several tools already approved by the Food and

Drug Administration (FDA) for use with radiologic images

(https://www.fda.gov/). Utilizing ML for digital slide images

analysis could help clinicians not only with diagnosis but also

with risk stratification through predicting genetic alterations and

classifying tumors based on meaningful features. Features such as

microscopic morphology and expression pattern can be factored

into the learning process, along with “sub-visual” level image

features that may not be recognizable by human pathologists.

This enables the development of more precise modeling of

pathologies and therefore improved outcome prediction

compared to traditional grading systems, contributing to

precision medicine.

Spatially resolved omics is another field that ML may help

clinicians overcome the limitations of traditional molecular testing

methods. Analysis at a single-cell level has gained great popularity

over the recent few years (2). Spatial multi-omics further augments

single-cell technology by preserving the spatial information

associated with each transcript or protein. The extracted expression

profile is often combined with high-resolution hematoxylin and eosin

(H&E) stained tissue slide images for complementary information on

histological features (3). Computer vision can perform such cellular

image analysis with minimal user intervention (4). Spatial profiling

enables detection of unique features such as quantities of immune

and stromal components that are associated with the tumor

microenvironment (TME) in a spatial context (5). Employing such

tools in research for identifying novel biomarkers will help clinicians

identify with more ease in selecting patients who will benefit from

targeted therapies, notably immunotherapy. Compared to the rapid

gain of popularity in the development of ML algorithms, only a few

tools are currently approved by the FDA or undergoing clinical trials.

In this review, we aim to provide the reader with an overview of

currently available tools and methods in digital slide analysis and

spatial multi-omics, with a focus on open-source tools. Selected

studies are discussed to showcase the potential of ML in

investigating urologic pathologies, to provide a reference for

future research in the field of urology. Lastly, we discuss technical

and practical problems that need to be addressed before

clinical implementation.
Abbreviations:ML, Machine Learning; TCGA, The Cancer Genome Atlas; FDA,

Food and Drug Administration; AI, Artificial Intelligence; WSI, Whole Slide

Image; H&E, Hematoxylin and Eosin; CNN, Convolutional Neural Network;

SVM, Support Vector Machine; TSR, Tumor-Stroma Ratio; IHC,

Immunohistochemistry; BCG, Bacillus Calmette-Guerin; ST, Spatial

Transcriptomics; ISS, In-Situ Sequencing; ISH, In-Situ Hybridization; CODEX,

CO-Detection by indEXing; MIBI, Multiplexed Ion Beam Imaging; MALDI

FTICR, Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion

Cyclotron Resonance; IMS, Imaging Mass Spectrometry; SVG, Spatially

Variable Gene; RCTD, Robust Cell Type Decomposition; DNN, Deep Neural

Network; MS, Mass Spectrometry; KNN, K-Nearest Neighbors; PDX, Patient-

Derived Xenograft; DKD, Diabetic Kidney Disease; SNS, Single Nucleus

Sequencing; SCGV, Single Cell Genome Viewer.
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2 Use of AI/ML in
pathological diagnostics

2.1 Current trend of ML in digital pathology
slide image analysis in urologic oncology

There has been an influx of basic and translational research

studies during the recent few years, mostly focused on developing

new workflows powered by AI and ML methods. With rising

availability of whole slide image (WSI) databases and rapidly

improving performance of computational pathology, there have

been efforts to detect and quantify novel features beside traditional

histological features of nuclear and cellular morphology. Newer

features often used for model development include immune cell

infiltration, stromal composition, glandular architecture, and even

topological features. Quantifying immune cell infiltration patterns

can provide insights into the tumor microenvironment and potential

response to immunotherapies. Analyzing stromal composition, such

as the presence of cancer-associated fibroblasts or extracellular matrix

components, can shed light on tumor invasiveness and metastatic

potential. Additionally, assessing glandular architecture and its

disruption can aid in grading and staging, especially for prostate

cancer. Of surveyed studies, we identified urological specific features

that had been used, including cribriform glandular pattern in prostate

cancer and glomerular structure along with tubular morphology for

kidney cancer (Figure 1). ML can aid in the discovery and

quantification of such meaningful features. Furthermore, by

integrating these features in model training, researchers are now

moving beyond basic cancer detection, with the goal of developing

more comprehensive and predictive models for tasks like survival

prediction and treatment stratification. This represents a paradigm

shift in the field, harnessing the power of ML and big data of

pathology slide images to unlock new insights and improve

patient outcomes.

Prostate cancer has garnered a relatively higher volume of

research investigations compared to other malignancies of the

urological system. This research emphasis can be attributed to the

high incidence rates of prostate cancer and its substantial

contribution to cancer-related morbidity and mortality. Huang

et al. trained their model on randomly sampled tiles from H&E

WSIs of The Cancer Genome Atlas (TCGA) Prostate

Adenocarcinoma (PRAD) dataset. Cell-specific features including

nuclear detail, glandular context and various TME elements

including immune cells and stroma were extracted with a

convolutional neural network (CNN) model to identify patterns

predictive of early recurrence (6). In another study, a deep learning

(DL) model was trained on the TCGA-PRAD dataset to predict

TP53 mutation status from WSIs (7).

Similar efforts have also been made for bladder and renal

carcinomas. Jiang et al. extracted TME features from TCGA

bladder urothelial carcinoma (BCLA) WSI samples using CNN,

which were then used to cluster the images by the K-means method.

The clusters were found to correlate with prognosis and immune

scores, suggesting there are differences in reactivity to immune

checkpoint inhibitors. The authors furthermore attempted to
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quantify the TMI characteristics through an AI score, where a

higher AI score predicted a higher therapeutic response to

immunotherapy (8). Studies investigating renal cell carcinoma are

relatively fewer in number compared to those focused on prostate

and bladder cancers. Chen et al. developed a ML-based pathomics

signature for clear cell renal cell carcinoma, where 5 most

prognostic image factors were selected through least absolute

shrinkage and selection operator (LASSO) analysis and factored

into the ML formula (9).
2.2 Open-source tools for digital
pathology analysis

While numerous studies have explored leveraging ML for

digital pathology image analysis, many models developed by

individual researchers and the complete methods and codes

remain inaccessible to the public domain. This could perhaps be

attributed to potential plans for patenting or commercializing the

developed workflows. Future researchers could take advantage of

several open-source tools, although optimization for individual

research purposes might be necessary. Table 1 shows a summary

of the most popular open-source tools and programs currently

available. Those tools are freely available to the public, and a wide
Frontiers in Oncology 03
range of extensions or plugins could be used in addition to further

expand the utility of the main tool. For instance, Stardist can

complement QuPath by using a pre-trained DL algorithm for

nucleus detection. As such, open-source tools offer great flexibility

in the functionality and the type of stains and data they can analyze.

QuPath utilizes deep learning methods like StarDist, which uses

CNN trained on annotated image data to precisely segment and

identify individual nuclei, for 2D and 3D nucleus detection (2).

ImageJ, with its Trainable Weka Segmentation plugin (Fiji plugin),

uses pixel classification approach for image segmentation. Pixel

classification strategy means that each pixel in the image is

transformed into a feature vector capturing properties such as

intensity values, edge information, texture, etc. If the user

manually annotates a subset of pixels, labeling them into distinct

classes like cells or background, these labeled pixels serve as training

examples for a ML classifier, such as a random forest (RF) or

support vector machine (SVM). Once trained, the classifier predicts

class labels for all remaining unlabeled pixels in the image. This tool

often employs supervised learning methods where users annotate

training data to teach the model (18). TMarker employs ML

algorithms such as random decision trees and SVM to improve

tumor and cell segmentation. Superpixels, which is an algorithm

starting with a rough initial division of pixels and updating the

clustering until the result meets a certain criterion, are used to
FIGURE 1

The various features and machine approaches used in urological cancer research. The recent urological cancer research used image features (blue),
molecular features(green), and clinical features (yellow) for digital diagnosis. While solid lines indicate the machine learning models that are
predominantly used in urological cancer research, dashed lines indicate machine learning models that have not yetbeen widely applied in this field.
CNVs, Copy Number Variations; DEGs, Differentially Expressed Genes; SVM, Support Vector Machine.
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segment the tissue image, and these segments are classified into

foreground and background, and subsequently into malignant and

benign categories (19). Orbit uses object classification through a

linear SVM to differentiate objects within images. The trained SVM

model can then predict the class label for all segmented objects in an

image based on their feature representations (20). CYTOMINE is

an open-source web platform enabling collaborative analysis of

multi-gigapixel biomedifcal images through an integration of

manual annotation tools and ML algorithms. It allows multiple

remote users to access and create semantic annotations on shared

images by labeling regions of interest with ontology terms,

providing ground truth data for training models (21). The Digital

Slide Archive (DSA) is a comprehensive platform designed to

handle large imaging data sets by offering capabilities for storage,

management, visualization, and annotation. The DSA is composed

of an analysis toolkit enabling users to perform a variety of image

analysis tasks (HistomicsTK), an interface that allows users to

visualize slides and label annotations (HistomicsUI), a database

layer for storing and managing the vast amounts of image data and

associated metadata (MongoDB), and a web-server providing API

for interacting with the platform and managing data (Girder) (22).

CellProfiler, which is open-source software developed by the Broad

Institute, employs supervised learning to classify objects based on
Frontiers in Oncology 04
their properties. CellProfiler first measures various features of each

cell/object. These quantitative measurements extracted by

CellProfiler pipelines serve as the feature vectors input to the ML

classifier. Once trained on the user-provided labeled examples, the

classifier model can automatically score and classify all objects in

the dataset based on their measured features. It is compatible with

various data analysis tools and supported by a robust user

community and comprehensive documentation, including

tutorials and forums (23). Ilastik utilizes random forests for pixel

classification and segmentation. ICY is an open community

platform for both applied mathematicians developing new

algorithms and biologists seeking a powerful and intuitive tool for

image analysis (24). Lastly, PathML applies DL models to automate

and enhance histopathology image analysis, making these tools

pivotal in advancing bioimage informatics through ML. PathML

integrates with PyTorch and TensorFlow, which is a DL framework

for model development, training, and inference using CNN, to

enable training and evaluating DL models on standardized

pathology datasets (25).

However, although there are many tools based on various ML

models, almost all urologic cancer research has primarily utilized

open-source tools based on CNN, with other ML models not being

extensively applied yet (Figure 1). Wen et al. evaluated the
TABLE 1 Open-source tools available for digital pathology image analysis.

Programming
language

Tool Functions Stains WSI ML methods
Examples
of application

Java QuPath
project management, preprocessing, annotation,
segmentation, classification, object detection,
density mapping, biomarker quantification

Brightfield,
fluorescence stains

WSI RF (10)

Java ImageJ/Fiji
preprocessing, annotation, segmentation,
classification, object detection, quantification, etc.
depending on the plugins used

Brightfield,
fluorescence stains

WSI With plugins (11)

Java TMarker
segmentation, classification, nuclei counting, IHC
staining estimation, regression

IHC TMA RF, SVM (12)

Java Orbit
annotation, segmentation, classification, object
detection, quantification

Brightfield,
fluorescence stains

WSI RF, SVM (13)

Java Cytomine
project management, annotation, segmentation,
classification, object detection, quantification

Brightfield,
fluorescence stains

WSI CNN (14)

Python
Digital Slide
Archive/
HitomicsTK

TCGA data searching and downloading, project
management, annotation, analysis through
integration with other tools

Brightfield stains WSI – (15)

Python CellProfiler
preprocessing, annotation, segmentation,
classification, object detection, quantification

Brightfield,
fluorescence stains

Sections U-net, CNN (11)

Python Ilastik
preprocessing, annotation, segmentation,
classification, object detection, quantification,
density mapping

Brightfield,
fluorescence stains

Sections RF (16)

Java ICY
project management, annotation, analysis
through integration with other tools

Brightfield,
fluorescence stains

WSI With plugins (14)

Python PathML
preprocessing, segmentation, classification,
analysis through integration with other tools

Brightfield,
fluorescence stains

WSI CNN (17)
RF, Random Forest; SVM, Support Vector Machine; CNN, Convolutional Neural Network; U-net, An Encoder-Decoder Convolutional Neural Network; IHC, immunohistochemistry; TMA,
Tissue Microarray.
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performance of SVM, RF, and CNN for nucleus segmentation in

breast and pancreatic cancer. The area under curve (AUC) values

for breast cancer was 0.54 for SVM; 0.67 for RF; and 0.82, 0.84, and

0.86 for 3 runs of CNN. Similar results were seen with pancreatic

cancer with AUC 0.47 for SVM; 0.42 for RF; and 0.69, 0.79, and 0.80

for CNN. Three runs were performed with CNN as the randomness

in the data augmentation process presents different classification

results across runs. Although CNN outperformed the two other

algorithms in accuracy, its processing time was significantly longer

than that of SVM and RF, with RF being the fastest method (26).

Another study on cervical intraepithelial lesions and malignancy

used CNN for feature extraction then compared KNN, RF, and

SVM classification models on the extracted features. The stacked

classification models were found to have higher accuracy compared

to purely CNN classification, with the accuracy of the CNN model

being 70.83%, and the accuracy of the CNN-KNN, CNN-RF, CNN-

SVM models being 85.83%, 80.83% and 86.67%, respectively. This

suggests stacking of different ML methods may be able to achieve

better performance than a single classifier (27).

QuPath’s pixel classifier has been used on immunohistochemistry

(IHC) stained images of prostate cancer for quantification of TME to

predict response to immune checkpoint inhibitors (10) (18). In

muscle invasive bladder cancer, tumor-stroma ratio (TSR)

quantified by ML was linked to prognosis (28). The cell classifier

for TSR calculation was based on a previously developed ML

algorithm (29) and QuPath. Tools other than QuPath have also

been utilized in other studies, although less often in urology.

CellProfiler was used for feature extraction from H&E images for

diagnosis of clear cell renal cell carcinoma (30). On the more practical

side, QuPath was used to train ML algorithms for automated Ki-67

index quantification in prostate cancer tissue microarray (TMA)

samples to assess PSA recurrence risk (31). This could possibly

streamline Ki-67 assessment, which is an important prognostic

indicator along with Gleason grade in prostate cancer.

There are several AI tools that have been validated with the

large clinical trial cohorts and approved by the FDA that are

clinically available. Paige Prostate (https://paige.ai/diagnostic-ai/)

is so far the only AI tool in urologic pathology approved for whole

slide image analysis (32). It uses scanned slide images to detect

possible areas of prostate cancer based on morphology and p63

staining pattern. Artera AI (https://artera.ai) is another AI tool that

predicts risk of progression and predicts the treatment response

based on the histomorphology and patient’s clinical data (33). A few

clinical trials are underway for evaluation and implementation of

newly developed tools. Ramon et al. developed a deep learning

algorithm for predicting FGFR alterations from H&E WSIs of

bladder cancer and pan-tumor datasets including prostate cancer

(34). This could help lessen the tumor screening burden in

determining eligibility for treatment with erdafitinib, thereby

improving access to targeted therapy. Another clinical trial aims

to evaluate an AI algorithm for predicting response to adjuvant

BCG (Bacillus Calmette-Guerin) treatment in non-muscle invasive

bladder cancer (35). However, it should be noted that the AI tools

are not recommended for autonomous diagnosis but as an

assistance tool for the pathologists.
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3 Machine learning in guided
spatial profiling

There are several well-established commercial platforms

available for spatial transcriptomics (ST) analysis. Notable

platforms that use image-based ST technologies include Xenium

of 10X Genomics, which improves on CARTANA by combining in-

situ sequencing (ISS) with in-situ hybridization (ISH). MERSCOPE

and CosMx Spatial Molecular Imager of NanoString are both based

on ISH. Sequencing-based technologies are used in several array-

based ST platforms such as Visium of 10X Genomics, BMKMANU

S1000 of Biomarker, and Slide-seq. Stereo-seq achieves an even

lower resolution and is available as STOmics by BGI. GeoMx Digital

Spatial Profiler implements microdissection technology instead of

microarray (36).

While spatial proteomics still lags behind ST, a few tools and

technologies are available for use. CO-Detection by indEXing

(CODEX; PhenoCycler™) allows highly multiplexed protein

detection through sequential rounds of antibody staining and

imaging, visualizing up to 60 proteins in a single section (37).

Hyperion Imaging System combines mass cytometry with imaging

for high-dimensional protein analysis (38). Multiplexed Ion Beam

Imaging (MIBI) employs secondary ion mass spectrometry with

metal-tagged antibodies for multiplexed detection and spatial

resolution at the cell level (39). CyteFinder combines high-

content imaging with multi-parameter protein detection and

allows for the spatial localization and quantification of proteins in

tissue sections. The IMS (Imaging Mass Spectrometry) platforms

from Bruker uses Matrix-Assisted Laser Desorption/Ionization

(MALDI) mass spectrometry (MS) imaging to map protein

distribution within tissue sections at high spatial resolution and

represents a cutting-edge approach in spatial proteomics (40). This

platform utilizes MALDI for sample ionization and Fourier

Transform Ion Cyclotron Resonance (FTICR) for mass analysis,

enabling the detection and spatial localization of a broad range of

biomolecules with high mass accuracy and resolution. The GeoMx

DSP is also used to quantify protein expression in spatially resolved

sections (41). These platforms are crucial for providing invaluable

data to advance our understanding of the spatial and functional

roles of RNAs and proteins in tissues and provide insights into

cellular processes and disease mechanisms.

ML methods are increasingly being incorporated into spatially

resolved transcriptomics and proteomics analysis. Deep learning

models including CNN are often used for automatic feature selection

and pattern recognition in imaging-based spatial omics, implemented

as some of the open-source tools for digital pathology discussed above.

There are several image analysis tools developed specifically for spatial

omics analysis; Squidpy and Giotto utilize various ML-based methods

for image analysis and visualization (42, 43). Spatial profiling offers

measurement of several unique features that cannot be measured with

simple single cell analysis, such as cell density, cell to cell interaction,

cell proximity, and aggregation. Various ML methods and closely

related statistical models are used to contextualize these measurements

and carry out different tasks at hand (44, 45). Common tasks in

spatially resolved transcriptomics analysis include spatial clustering,
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spatially variable gene (SVG) detection, cell type deconvolution, and

identification of cellular interactions.

SpaCell and StLearn extract histological features from slide images

via ResNet50, a convolutional neural network model pre-trained on

ImageNet, then integrates the information with gene expression data in

clustering (46, 47). SpaGCN is based on a graph convolutional network

that works by extracting RGB values of each pixel which then separates

spots into different spatial domains by unsupervised iterative clustering.

SVGs (Spatially Variable Genes) can then be identified for each spatial

domain (48). Supervised learning approaches can also aid in spatial cell

type deconvolution, where traditional scRNA-seq deconvolution

methods may not work as well. Robust Cell Type Decomposition

(RCTD) is a supervised learning approach that leverages maximum

likelihood estimation using annotated single-cell RNA-seq (scRNA-

seq) data to infer cell types of proportions for each pixel (49).

Cell2location uses a hierarchical Bayesian model to estimate the

absolute abundance of cell types at a location based on predefined

cell type signature sets (50). Spatial-ID employs a deep neural network

(DNN) model pretrained on scRNA-seq datasets to produce cell type

probabilities distributions (51). To infer intercellular signaling, MISTy

trains a RF model for each target feature to derive feature importance

scores. NicheNet observes the underlying spatial interactions and

networks through a graph affinity algorithm based on predefined

ligand-receptor pairs (52).

Spatial proteomics have also benefited from the integration of

various ML methods into the data analysis pipeline (53). Much like

other MS-based proteomics data, MS-based spatial proteomic data

often suffers from missing measurement values. K-nearest

neighbors (KNN) imputation is often used for missing value

imputations before downstream analysis. Various ML classifiers

may be used for protein localization prediction, including SVM, RF,

KNN, neural networks, and others as mentioned in a review (54).

pRolocs is an R package based on a SVM classifier for protein

localization (55). MetaMass performs K-means clustering and

assigns each cluster a location based on its marker content,

available for Excel and R (56). TRANSPIRE uses a probabilistic

Gaussian process classifier trained on organelle protein markers to

predict protein translocation (57) (Table 2).

While there is a relative abundance of basic research focused on

biomarker discovery and understanding molecular mechanisms,

there is a need for more translational research that bridges the gap

between basic and clinical studies by testing new techniques and

methods on animal and patient-derived xenograft (PDX) models.

Zimmerman et al. designed multiplex ISH probes that target the

protein coding genes of the mouse and human transcriptome to

integrate the transcriptome with histological features in diabetic

kidney disease (DKD) (58). The development of such whole

transcriptome panels across multiple organisms enables further

discoveries through translational and clinical studies. Wang et al.

modeled a spatially resolved metabolic network of the prostate

cancer TME to predict selective metabolic targets for cancer cells

(59). Although the application of spatial omics technology in the

clinic is still in its development stage, image analysis combined with

spatial omics technology offers great potential in improving clinical

practices. Well-trained deep learning algorithms could extract

meaningful spatial features and molecular patterns from spatial
Frontiers in Oncology 06
datasets, identifying new biomarkers and aiding clinical

decision making.
4 Challenges and future directions

4.1 Common challenges in adopting ML
into clinical practice

The integration of AI and ML in medicine faces significant real-

world challenges, particularly in quality assurance and regulatory

compliance. Like other medical devices, AI/ML tools are regulated

by the FDA, and developing these regulations is a meticulous

process. The College of American Pathologists (CAP) Advocacy

Committee is actively working with government agencies to ensure

fair and effective regulation of AI in pathology.

Real-world performance and quality assurance also present notable

technical hurdles. Similar to traditional diagnostic tests, AI tools must

undergo rigorous validation and regulatory scrutiny, as incorrect

results can have serious implications for patient care. Despite the

promising potential of ML, there are currently limited published

examples in urologic cancers where they were tested and validated in

a clinical trial setting. Key challenges on the research perspective

include limited robustness, reproducibility, comparability, and

interpretability. Current ML research heavily relies on retrospective

data analysis, often notably using the TCGA datasets. This raises

concerns about dataset biases and the generalizability of developed

models. Prospective multicenter validation with adequate sample sizes

is crucial to assess the robustness of ML algorithms before

clinical implementation.
TABLE 2 Overview of machine learning applications in guided
spatial profiling.

Category Tools Functions

ML for
Spatial
Transcriptomics

Squidpy,
Giotto

ML methods for analyzing and visualizing
spatial data, extracting features like cell
density, cell proximity, and cell to
cell interactions.

ML for
Spatial
Clustering

SpaCell,
StLearn

Use deep learning to extract spatial
features from histological images and
cluster spatial domains, integrating gene
expression data.

SVGs (Spatially
Variable
Genes)
Detection

SpaGCN
Cluster spatial spots using RGB values and
identify SVGs (Spatially Variable Genes)
within each domain.

Cell
Type
Deconvolution

RCTD,
Cell2location,
Spatial-ID

Supervised ML models to estimate cell type
probabilities distributions using spatial
transcriptomics data.

Intercellular
Signaling &
Cellular
Interactions

MISTy,
NicheNet

Predict cellular interactions by analyzing
spatial relationships and ligand-
receptor pairs.

ML in
Spatial
Proteomics

pRolocs (R
package),
MetaMass,
TRANSPIRE

ML models for protein localization
prediction, aiding spatial
proteomic analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1465098
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kim et al. 10.3389/fonc.2024.1465098
Furthermore, the relative lack of standardized data formats, and

consistent outcome measures across studies makes it challenging to

reproduce and objectively compare existing ML models. Publishing

publicly available datasets, standardizing data collection protocols,

and sharing developed algorithms as open-source resources could

improve reproducibility and facilitate benchmarking.

Integrating ML into clinical workflows presents additional

financial and operational challenges that must be considered. Many

models suffer from the “black box” effect, where the decision-making

process is opaque and difficult to interpret for clinicians. Improving

transparency and providing clinically relevant outputs, such as

diagnostic reports, could enhance trust and adoption of ML tools

by clinicians. The cost for adoption of ML-based workflows should

also be taken into account. Storing and processing large volumes of

high-dimensional whole slide image data imposes significant

computational demands, necessitating investments in hardware and

computing resources. Continuous monitoring and updating of ML

models incur additional recurring costs. Dedicated resources should

also be set aside for integrating ML models with existing laboratory

information systems. The final barriers to clinical implementation

may be regulatory and ethical requirements and lack of clear

guidelines for approving ML-based decision support tools.

Although a clear guideline is yet to be established, addressing

ethical concerns surrounding data privacy and liability is essential

for acceptance among clinicians and patients. Overcoming these

multifaceted challenges requires substantial financial investments

and interdisciplinary collaborations.
4.2 Limitations for clinical application of
spatial and single cell technologies

In current studies, there are efforts to apply single cell genomics

to diagnostics. One study utilized single-cell genomic analysis to

assess prostate cancer risk from prostate biopsy samples.

Researchers employed single nucleus sequencing (SNS) to help

the diagnosis. The sequencing examined copy number variations

in individual cells, developing methods to identify clonal cell

populations and reconstruct phylogenetic relationships among

them. The genomic data was integrated with histopathology and

anatomical information using a custom visualization tool named

the Single Cell Genome Viewer (SCGV). The author concluded that

SNS has the potential to enhance prostate cancer diagnosis and risk

assessment from biopsies by providing more detailed genomic

information than standard histopathology alone (60).

Technical limitations to clinical application of ST include

complexity and repeatability. The complexity of the data and the

need for sophisticated computational tools can be a barrier in clinical

settings. Many spatial and single-cell omics methods require extensive

sample preparation and processing, which can be time-consuming and

not scalable for high-throughput methods. This limits their practicality

for routine clinical use where quick turnaround time is often critical.

The equipment for spatial and single-cell analyses is often expensive,

making it difficult to implement these technologies widely in clinical

settings, particularly in resource-limited environments. These complex

and time-consuming procedures involved in preparing and analyzing
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routine clinical use. Integrating and interpreting data from spatial

and single-cell analyses with traditional clinical data (e.g.,

histopathological assessments, clinical imaging) may also prove to be

challenging. Additionally, one of the primary challenges is that the

profile obtained may not be representative of the entire tumor. The

spatial heterogeneity within tumors means that sampling a small

fraction of the tumor might not capture all relevant biological

phenomena, leading to incomplete or skewed data. As for spatial

proteomics, it should be noted that it is currently challenging to

measure the whole proteome due to technological limitations.

Advances are needed in the development of more specific antibodies

and techniques beyond mass spectrometry-based methods to enhance

the range and accuracy of protein detection. Although spatial

technology shows more potential as a research tool than a clinical

diagnostic tool due to these challenges, addressing these limitations

could significantly enhance its clinical applicability.
4.3 Underrepresented
urological malignancies

There exists a bias in the types of urological carcinomas being

investigated, with a relative abundance of studies focusing on

prostate cancer compared to kidney and bladder cancers.

Additionally, several other urological malignancies remain

understudied due to their lower incidence rates, such as testicular

cancer, upper tract urothelial carcinoma, and penile cancer. Such

underrepresentation of these cancers in research efforts underscores

the necessity of addressing this disparity.
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