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and Hongguang Zhou1,2*‡
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Nanjing, China, 2Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention
and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine,
Nanjing, China, 3Science and Technology Department, Jiangsu Collaborative Innovation Center of
Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese
Medicine, Nanjing, China
Background: The incidence and mortality of colorectal cancer (CRC) have been

rising steadily. Early diagnosis and precise treatment are essential for improving

patient survival outcomes. Over the past decade, the integration of artificial

intelligence (AI) and medical imaging technologies has positioned radiomics as a

critical area of research in the diagnosis, treatment, and prognosis of CRC.

Methods: We conducted a comprehensive review of CRC-related radiomics

literature published between 1 January 2013 and 31 December 2023 using the

Web of Science Core Collection database. Bibliometric tools such as

Bibliometrix, VOSviewer, and CiteSpace were employed to perform an in-

depth bibliometric analysis.

Results: Our search yielded 1,226 publications, revealing a consistent annual

growth in CRC radiomics research, with a significant rise after 2019. China led in

publication volume (406 papers), followed by the United States (263 papers),

whereas the United States dominated in citation numbers. Notable institutions

included General Electric, Harvard University, University of London, Maastricht

University, and the Chinese Academy of Sciences. Prominent researchers in this

field are Tian J from the Chinese Academy of Sciences, with the highest

publication count, and Ganeshan B from the University of London, with the

most citations. Journals leading in publication and citation counts are Frontiers in

Oncology and Radiology. Keyword and citation analysis identified deep learning,

texture analysis, rectal cancer, image analysis, and management as prevailing

research themes. Additionally, recent trends indicate the growing importance of

AI and multi-omics integration, with a focus on improving precision medicine

applications in CRC. Emerging keywords such as deep learning and AI have

shown rapid growth in citation bursts over the past 3 years, reflecting a shift

toward more advanced technological applications.

Conclusions: Radiomics plays a crucial role in the clinical management of CRC,

providing valuable insights for precision medicine. It significantly contributes to
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predicting molecular biomarkers, assessing tumor aggressiveness, and

monitoring treatment efficacy. Future research should prioritize advancing AI

algorithms, enhancing multi-omics data integration, and further expanding

radiomics applications in CRC precision medicine.
KEYWORDS

colorectal cancer, radiomics, bibliometric analysis, imaging biomarkers, precision
medicine
1 Introduction

Colorectal cancer (CRC) is one of the most prevalent malignant

tumors globally and a leading cause of cancer-related mortality. In

2020, approximately 1.9 million new CRC cases and over 900,000

related deaths were reported globally (1). Projections indicate that, in

2040, these figures will rise to 3.2 million cases and 1.6 million deaths

(2). Research indicates a positive correlation between CRC incidence

and the Human Development Index, with higher rates observed in

developed countries compared to those in developing countries (3).

Developed countries have managed to control CRC morbidity and

mortality somewhat effectively in recent years through early

screening programs and the adoption of precision medicine

strategies (4). Conversely, in developing countries, CRC incidence

is escalating because of rapid economic and social transformations.

The absence of robust healthcare systems and effective clinical

management strategies presents a significant challenge in these

regions (5, 6). Thus, it is crucial for developing countries to

enhance healthcare investments, expand early screening programs,

and advance precision medicine to mitigate the CRC burden.

Radiomics, a field of medical image analysis that blends

multiple disciplines and omics technologies, was formally

introduced by Dutch scholar Lambin P in 2012 (7). This field

utilizes computer algorithms to extract and analyze quantitative

features from conventional medical imaging data for applications

including tumor prediction, screening, treatment planning,

treatment response assessment, and prognosis (8). The workflow

of radiomics typically involves image acquisition and preprocessing,

image segmentation, feature extraction and selection, and model

development and application (9). Quantitative image features, or

image biomarkers, capture tumor tissue and lesion characteristics

non-invasively and reflect the molecular biology of tumors,

providing clinicians with comprehensive and objective reference

indicators (10). An expert panel organized by Cancer Research UK

and the European Organization for Research and Treatment of

Cancer has proposed 14 key recommendations to standardize and

promote the clinical translation of imaging biomarkers. These

recommendations include widely used clinical oncology decision-

making tools such as American College of Radiology Breast

Imaging-Reporting and Data System (ACR BI-RADS) breast
02
morphology, clinical Tumor, Node, Metastasis (TNM) stage, and

others (11). Notably, the circumferential resection margin status has

proven particularly valuable in assessing the prognostic value of

patients with CRC, with high-resolution MRI providing superior

assessment capabilities compared to American Joint Committee on

Cancer (AJCC) TNM-based risk assessment criteria for local

recurrence, disease-free survival, and overall survival (12).

Furthermore, the integration of radiomics and radiogenomics

holds the potential to replace traditional biopsy methods in

predicting tumor characteristics and outcomes in CRC, offering

new avenues for CRC screening, early diagnosis, and precision

medicine (13).

Bibliometrics is a quantitative analysis technique that employs

mathematics, statistics, and scientometrics to assess the key

contributors—countries, institutions, and authors—and identify

major research hotspots in various fields. This method also

uncovers potential research patterns and forecasts future trends

(14). Currently, it is extensively applied in oncology and radiology,

enhancing the depth and breadth of research and providing robust

data support for future studies. Aggarwal et al. (15) utilized

bibliometric methods to analyze global lung cancer research

trends between 2004 and 2013, identifying a focus on genetics,

systemic therapy, and prognostic biomarkers while noting a decline

in clinical translational research output. Their further analysis of

publications on radiotherapy from 2001 to 2015 highlighted a

disparity in the volume of research outputs and citations among

countries, suggesting increased support for radiotherapy research in

low- and middle-income countries (16). These findings underline

the pivotal role of bibliometrics in identifying research frontiers and

shaping future research directions. Since 2013, radiomics research

in CRC has expanded to include preoperative diagnosis, clinical

efficacy assessment, and prognosis prediction. However, the results

have not been systematically reviewed, potentially leading to

redundancy, unclear directions, and integration challenges in

future studies. Although several studies employing bibliometrics

to investigate radiomics in CRC provide valuable insights, more

comprehensive analyses are needed to fully harness the literature

available and enhance clinical applications and trend predictions.

Furthermore, there is often a need for more detailed summaries of

biomarkers to enrich these studies (17).
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Utilizing a bibliometric approach, this study systematically

evaluates the current status and future trends of radiomics

applications in CRC precision medicine. By providing a

comprehensive review of radiomics in the diagnosis and

treatment of CRC, this study explores the relationship between

research funding distribution and thematic trends, highlighting the

application of imaging biomarkers, PET/CT, visualization

techniques, and artificial intelligence (AI) in the field. This

analysis offers insights for researchers to refine their future

research strategies and to promote the further development and

application of radiomics in CRC management.
2 Methods

2.1 Selection of databases

We selected the Web of Science Core Collection (WoSCC) from

Clarivate Analytics as our primary literature source due to its

rigorous indexing standards, which ensure the inclusion of high-

quality literature. This selection strategy is aligned with Bradford’s

Law, which asserts that the most significant scientific discoveries are

predominantly published in core journals (18). This approach

makes WoSCC an ideal tool for accurately tracking and analyzing

key scientific outcomes, aiding in the identification of research

hotspots and trends, thereby providing a solid data foundation for

informed research decisions.
2.2 Definition of the time frame of
the study

The study period was set from 1 January 2013 to 31 December

2023. This time frame was chosen because radiomics was formally

introduced in 2012, and its application in CRC began gaining

traction in 2013. Analyzing literature from this period allows for

a comprehensive review of the field’s evolution from its initial stages

to more recent developments. Additionally, using a full year’s data

helps maintain continuity and clarity in the analysis of publication

trends, avoiding potential errors from truncated data and revealing

long-term developmental trends and pivotal moments in radiomics

applied to CRC.

At the same time, we used Scopus data for cross-validation,

which enhances the robustness of this study. Detailed analysis of the

results can be found in the Supplementary Materials.
2.3 Literature search

The literature search was conducted on 1 January 2024, targeting

publications related to CRC and radiomics from 1 January 2013 to 31

December 2023. The search formula was TS = [(“Colorectal

Neoplasm*” OR “Colorectal Tumor*” OR “Colorectal Cancer*” OR

“Colorectal Carcinoma*” OR “Colonic Neoplasm*” OR “Colon

Neoplasm*” OR “Colon Cancer*” OR “Colonic Cancer*” OR
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“Cancer of the Colon “ OR “Colon Adenocarcinoma*” OR “Rectal

Neoplasm*” OR “Rectum Neoplasm*” OR “Rectal Tumor*” OR

“Cancer of Rectum “ OR “Rectal Cancer*” OR “Rectum Cancer*”)

AND (“radiomics” OR “image-based phenotyping” OR “imaging

biomarkers” OR “texture analysis” OR “radiogenomics” OR

“quantitative imaging” OR “imaging genomics” OR “image

analysis” OR “computer-aided diagnosis” OR “machine learning in

imaging”)]. Two researchers (Yupei Zhuang and Weichen Yuan)

independently performed the searches to ensure the accuracy of the

results. Inclusion criteria specified that the literature must be research

articles or reviews published in English between 1 January 2013 and

31 December 2023. We followed the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines in the

selection of studies, where the inclusion and exclusion criteria were

defined a priori, and the search strategy was documented to ensure

reproducibility. The data were saved as “Full Record and Cited

References” and exported as a plain text file. The search process is

illustrated in Figure 1.
2.4 Data analysis tools

Various tools were employed for data analysis in this study.

Adobe Illustrator 2022 was used to create a visual flowchart of the

literature screening criteria and process. Microsoft Excel 2019

facilitated data cleaning and preliminary statistical analysis, such

as frequency counting and trend plotting. For bibliometric analysis,

we utilized the Bibliometrix package (19), VOSviewer (20), and

CiteSpace (21).

Bibliometrix Analysis (version 4.1.3): To analyze the

publication volume of authors and generate a timeline graph,

follow these steps: Compress the exported.txt file into a.zip

format. Initiate Bibliometrix 4.1.3 using R and sequentially

navigate through “Import or Load Files” and “Import Raw File

(s).” Choose “Web of Science (WoS/WoK).” Select the

compressed.zip file. For data selection, choose “Authors” and

“Country Scientific Production.”

VOSviewer Co-occurrence and Network Visualization (version

1.6.19): For co-occurrence analysis and temporal network

visualization: Open VOSviewer and select “Create a map based on

bibliographic data.” Opt for “Read data from bibliographic database

files” and choose “Web of Science” for database selection. Import the

pre-processed text files. Set the “Type of analysis” to “Co-authorship”

and select “authors,” “organizations,” and “countries” as units of

analysis. Use “Full counting” as the counting method. Adjust

parameters for “network visualization” and “overlay visualization.”

Utilize Scimago Graphica to geo-visualize the volume of national

publications derived from VOSviewer outputs.

CiteSpace Cluster and Trend Analysis (version 6.2 R6): For

keyword and reference cluster analysis, temporal analysis, and

detection of emerging trends: Prepare the working directory with

four new folders: “input,” “output,” “data,” and “project.” Save the

downloaded file as “download_xx.txt” in the “input” folder. Process

the file and initiate a new project in CiteSpace. For “Time Slicing,”

select the desired analysis period. For “Node Types,” choose
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“Keyword” and “Reference,” and configure the “g-index” with k =

25. Depending on the analysis needs, select the algorithm

“Pathfinder” and execute cluster analysis, temporal analysis, and

detection of emerging trends. Generate overlay maps of journals

using the “Overlay Maps” module.

Further descriptions of these tools and their operations can be

found in the respective software manuals.
3 Results

3.1 Trends in the number of publications

A total of 1,226 relevant publications from 2013 to 2023 were

included in this analysis. Trends in the annual number of

publications over this period are depicted in Figure 2A. From

2013 to 2018, there was a gradual increase in publication output,

with an average annual count below 100. Starting in 2019, there was

a notable rise in the number of publications, averaging over 180

annually. However, a slight decline was observed in 2022 and 2023.

An exponential growth model applied to the cumulative publication

data yielded a goodness-of-fit R² = 0.9773, demonstrating that the

model accurately reflects the publication growth trend with

high precision.
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3.2 Country/regions and
institutional analysis

A total of 1,869 research institutions across 69 countries/regions

were included in this analysis. Table 1 lists the top 10 countries/

regions and institutions based on the number of publications. China

leads with 406 publications, followed by the United States with 263,

the United Kingdom with 126, and Italy with 133; each has

generated over 100 publications. Whereas China has the highest

publication count, the United States leads in terms of total citations.

Figure 2B illustrates the distribution of publications by the main

contributing countries/regions. In 2013, Canada, France, the United

Kingdom, Italy, and the United States were prominent in

publication numbers. Since 2015, the share of publications from

countries like Germany and China has seen significant growth.

Figures 3A, B depict the patterns of collaboration and cooperative

relationships among countries/regions through geographic

distribution maps, cooperation chord diagrams, and cooperation

networks, respectively. Countries such as the United States, China,

France, Japan, and Australia demonstrate close cooperation, whereas

European nations like the United Kingdom, Italy, Spain, New

Zealand, and Switzerland also show strong connectivity.

Additionally, Figure 3C presents the patterns of collaboration

between different research institutions through cluster analysis,
FIGURE 1

Flowchart of literature retrieval.
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emphasizing the emergence of tightly-knit collaborative groups. The

top three institutions by number of publications are General Electric

(56 publications), Harvard University (38 publications), and the

University of London (38 publications). Maastricht University holds

a central position in the global collaboration network, with a centrality

index of 0.42, followed by Harvard University (centrality = 0.29) and

Fudan University (centrality = 0.24).
Frontiers in Oncology 05
3.3 Analysis of authors and co-
cited authors

A comprehensive analysis included the literature of 7,230

authors. Table 2 highlights the top 10 most prolific and most cited

authors, pinpointing the key contributors in the field and their

academic impact. Tian J from the Institute of Automation, Chinese

Academy of Sciences, emerged as the author with the highest number

of publications. Meanwhile, Ganeshan B from University College

London Hospitals accumulated the most citations.

Figure 4A presents a line graph that tracks the publication output

of these influential authors over time, illustrating changes in their

research activity and highlighting periods of significant contributions.

Liu ZY, also from the Institute of Automation, Chinese Academy of

Sciences, is noteworthy for appearing in the top 10 for both

publications and citations, indicating a consistent and substantial

impact on the field since 2016. Figure 4B delineates the collaboration

patterns and clustering relationships among the authors. In this

network visualization, Tian J, Tomlinson I, Kirsch R, Gonen M,

Pang P, Zhang Y, and Liu ZY stand out as central nodes linking

various clustered groups, highlighting their roles in bridging different

research communities. Figure 4C showcases the collaborative

relationships among co-cited authors, with Jemal A, Siegel R, and

Lambin P holding key positions within the co-citation network. This

indicates their pivotal contributions as frequently referenced sources

in the field, underscoring their influence on the research community.
3.4 Analysis of journals and
co-cited journals

This analysis encompassed 369 academic journals, with Table 3

presenting the top 10 journals based on the number of publications

and citations. Frontiers in Oncology led with 78 publications,

followed by Cancers with 65 and Abdominal Radiology with 41.

Among these, eight journals are ranked in the JCR Q1 division and

two in the Q2 division. Regarding impact factors, two journals boast

an impact factor above 5, whereas the remaining eight have impact
TABLE 1 Top 10 countries/regions and institutions by number of publications.

Country Count Citation Institution Count Centrality

USA 263 11,524 General Electric 56 0.18

China 406 9,369 Harvard University 38 0.29

UK 126 5,342 University of London 38 0.2

Italy 133 3,308 Maastricht University 35 0.42

Germany 78 2,602 Chinese Academy of Sciences 32 0.12

Netherlands 66 2,275 SUN Yat-Sen University 30 0.13

France 48 2,205 Fudan University 30 0.24

Japan 61 1,934 Sichuan University 28 0.1

South Korea 70 1,623 Harvard Medical School 26 0.14

Switzerland 28 1,040 Massachusetts General Hospital 20 0
FIGURE 2

Analysis of publication trends and distribution. (A) Trends in annual
and cumulative annual growth in publications: This graph displays
two trends: the annual number of publications and the cumulative
total over time from 2013 to 2023. The annual trend line illustrates
the number of publications yearly, showing fluctuations and growth
patterns. The cumulative trend line, overlaid on the same graph,
reflects the total number of publications accruing over the specified
period, providing a visual representation of overall growth in the
field. (B) Percentage of annual publications in top 10 countries: This
bar chart represents the distribution of publications by the top 10
contributing countries each year from 2013 to 2023. It highlights the
percentage share of each country’s publications relative to the total
annual output, showing shifts in the research landscape and
indicating which countries are leading or increasing their
contributions over time.
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factors below this threshold. Notably, Radiology, European

Radiology, Journal of Clinical Oncology, and Scientific Reports

each accrued over 1,000 citations among the top cited journals.

Figure 5A illustrates the collaborative network between journals

through various clusters, where node size reflects the number of co-

citations, and the line thickness indicates the closeness of

collaboration. The prominent node in the red cluster underscores
Frontiers in Oncology 06
the central role of Cancers in facilitating inter-journal collaboration.

Figure 5B identifies collaboration patterns between co-cited journals,

with Scientific Reports and Clinical Cancer Research playing pivotal

roles in fostering inter-journal collaboration. Figure 5C, a double plot

overlay, shows the distribution of citing and cited journals,

highlighting the direction of knowledge flow and interactions

between disciplines. Cited journals are predominantly located
FIGURE 3

Visualizations of collaborative patterns in research. (A) Geographic visualization of country origination collaboration : This map illustrates the
geographical distribution of collaboration among countries involved in the research. Countries are color-coded based on the intensity of their
collaborative efforts, with warmer colors indicating higher levels of cooperation. (B) Country origination collaboration chord map : This chord
diagram depicts the interconnections between countries, with lines connecting countries that have collaborated on research. The thickness of the
lines represents the volume of collaborative publications, providing a visual representation of the strength of partnerships. (C) Institutional
collaboration clustering map : This map clusters institutions based on the extent of their collaboration. Institutions within the same cluster are
closely connected through joint research efforts, and different clusters are indicated by varying colors. This visualization helps identify which
institutions are central to the network and how they are interconnected.
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within disciplines such as medicine and clinical science (Discipline

2#) and molecular biology and immunology (Discipline 4#), whereas

citing journals mainly pertain to health, nursing, and medicine

(Discipline 5#) and molecular biology and genetics (Discipline 8#).

The yellow trajectory underscores the significant influence of

publications from the medical and clinical fields, impacted by

developments in health care and medicine (z = 5.80, f = 4,358) and

molecular biology and genetics (z = 4.15, f = 3181). This visualizes the

interdisciplinary research trends and the emergence of new fields.
3.5 Analysis of references

A comprehensive analysis incorporated 35,353 references cited

across studies related to CRC. Table 4 presents the 10 most cited

references, highlighting their significance in the field. The article

“Radiomics: Images Are More than Pictures, They Are Data” by

Gillies et al. topped this list with 113 citations. This foundational study

elaborated on the process, challenges, and potential of radiomics to

enhance clinical decision-making, especially in oncology, setting a

pivotal intellectual groundwork for further research on the application

of radiomics in CRC (22). Figure 6A visualizes the citation dynamics

of the referenced literature from 2021 to 2023. This timeline graph and

node size variation reflect the rapid advancements and significant

achievements in the field over recent years. The evolution of research

hotspots is further delineated in Figure 6B, a co-citation clustering

network graph, and Figure 6C, which offers a temporal view across 15

thematic categories. The top five themes identified were “#0 rectal

cancer,” “#1 kras,” “#2 colonoscopy,” “#3 heterogeneity,” and “#4

radiomics.” Figure 6D displays the top 25 references with the highest

citation bursts, using a red bold line to indicate the duration of each

citation surge. The standout paper, “Assessment of Primary Colorectal

Cancer Heterogeneity by Using Whole-Tumor Texture Analysis:

Contrast-enhanced CT Texture as a Biomarker of 5-year Survival,”

demonstrated a correlation between CT texture characteristics of

primary CRC and 5-year overall survival, proposing that CT texture

analysis might serve as a predictive biomarker for long-term survival

in patients with CRC (23).
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3.6 Keyword analysis

Keywords are crucial in literature search and defining research

domains as they encapsulate the core themes of scholarly work.

Figure 7A presents a keyword network visualization, highlighting

the top 10 keywords by frequency within the field. These include

“colorectal cancer” (n = 493), “rectal cancer” (n = 252), “survival” (n

= 173), “texture analysis” (n = 161), “artificial intelligence” (n =

122), “magnetic resonance imaging” (n = 120), “colon cancer” (n =

115), “deep learning” (n = 114), “classification” (n = 111), and

“computed tomography” (n = 106). This visualization provides a

graphical representation of the frequency and centrality of terms

within the research landscape. Figure 7B explores the

interconnectivity among these keywords through a clustering

graph. This graph categorizes the keywords into distinct clusters

based on their association with the literature, illustrating how

different research topics are interlinked. Figure 7C, a timeline

view of keyword clustering, tracks the evolution of these research

themes over time. This dynamic representation helps identify how

certain topics have gained or waned in prominence, reflecting shifts

in research focus and technological advancements. The seven major

research theme clusters identified are “#0 deep learning,” “#1

texture analysis,” “#2 rectal cancer,” “#3 image analysis,” “#4

management,” “#5 apoptosis,” and “#6 colorectal neoplasms.”

Figure 7D highlights the top 25 keywords with the highest

outbreak rate, indicating sudden increases in usage over a specific

period. Notably, “expression,” “tumor heterogeneity,” and “image

analysis” each show an outbreak intensity of more than 10,

underscoring their emerging significance in recent research.
4 Discussion

In this study, we conducted a bibliometric analysis and knowledge

graph visualization of 1,226 publications in the field of radiomics and

CRC in the WoSCC from 2013 to 2023. This analysis aimed to

visualize the publication trends, collaborative networks, research

hotspots, and future directions in this field over the past 11 years.
TABLE 2 Top 10 most prolific and most cited authors.

Author Count H-index Cited author Citation H-index

Tian J 16 80 Ganeshan B 298 26

Liu ZY 12 55 Lambin P 263 92

Song B 12 18 Horvat N 217 18

Tong 12 7 Gillies RJ 197 99

Liu Zaiyi 11 37 Liu ZY 183 55

Shen F 11 7 Huang YQ 174 15

Feng 10 23 Siegel RL 168 59

Liang CH 10 36 Maas M 167 43

Pang PP 10 20 Miles K 157 48

Duan SF 9 24 Jemal A 155 139
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4.1 General situation analysis

The analysis of annual publication trends reveals that the field’s

development can be divided into three distinct phases: the early

phase (2013–2018), the development phase (2019–2021), and the

late phase (2022–2023). During the early phase, the publication

growth was modest, primarily originating from countries like the

United States, the United Kingdom, France, Canada, and Italy.

These nations demonstrated early contributions to and advanced

levels of radiomics, reflecting their longstanding intellectual

engagement in oncology. The development phase saw a rapid

increase in publications, with countries such as China, Germany,

Japan, South Korea, and The Netherlands intensifying their

contributions. This surge indicates a growing recognition of the

field’s importance and an increase in resource allocation, which
Frontiers in Oncology 08
likely corresponds to the rising social and healthcare burdens

associated with CRC. In the late phase, there was a decline in

publication numbers, potentially due to the scarcity of high-quality

multicenter studies, which poses challenges in translating imaging

biomarkers from this field into clinical practice effectively. The top

10 institutions by publication volume include four each from China

and the United States, with one each from the United Kingdom and

The Netherlands. China leads in total publication count, likely

driven by the recent escalation in CRC incidence linked to rapid

economic changes, coupled with increased national investments in

research resources. The United States, holding the highest total

citation count, indicates the high impact and global recognition of

its research outputs. Furthermore, it has been particularly active in

fostering international collaborations; establishing networks with

countries such as China, Japan, and Australia; and maintaining
FIGURE 4

Author publication and collaboration visualizations. (A) Author publication timeline graph: This graph displays the publication timeline of key authors
over the period from 2013 to 2023. It visualizes the volume of publications per year for each author, allowing for a comparative analysis of
productivity over time. The graph aims to highlight trends in individual research outputs and identify periods of heightened activity. (B) Author
collaboration clustering network graph : This network graph illustrates the collaboration patterns among authors, showing how researchers are
interconnected through their joint works. The nodes represent individual authors, with node size indicating the number of publications. Links
between nodes depict collaborative relationships and clusters within the network suggest groups of authors who frequently collaborate. This
visualization helps identify key researchers and their networks within the community. (C) Co-cited author collaboration network graph : This graph
maps the relationships among co-cited authors, showing which authors are frequently cited together in the literature. Nodes in this network
represent authors, with lines between them indicating that their works are commonly cited in conjunction with one another. The positioning and
proximity of nodes reflect the strength of co-citation links, highlighting influential authors whose work is foundational or pivotal in the field.
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TABLE 3 Top 10 journals by number of publications and citations.

Journal Count JCR (2023) IF (2023) Cited journal Citation JCR (2023) IF (2023)

Frontiers in Oncology 78 Q2 3.5 Radiology 1,790 Q1 12.1

Cancers 65 Q1 4.5 European Radiology 1,544 Q1 4.7

Abdominal Radiology 41 Q2 2.3 Journal of Clinical Oncology 1,209 Q1 42.1

European Radiology 40 Q1 4.7 Scientific Reports 1,033 Q1 3.8

World Journal of Gastroenterology 31 Q1 4.3 Clinical Cancer Research 870 Q1 10.0

Scientific Reports 30 Q1 3.8 Gastrointestinal Endoscopy 778 Q1 6.7

Academic Radiology 23 Q1 3.8 Plos One 747 Q1 2.9

Diagnostics 23 Q1 3 New England Journal of Medicine 714 Q1 96.2

European Journal of Radiology 20 Q1 3.2 Gastroenterology 699 Q1 25.7

Plos One 15 Q1 2.9 Radiologia Medica 683 Q1 9.7
F
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FIGURE 5

Visualization of journal collaborative and citation dynamics. (A) Journal collaborative clustering network: This graph displays a network visualization
of journal collaborations, illustrating how journals within certain research fields or themes cluster together based on their joint publication efforts.
The node size within the network represents the volume of collaborative outputs, and the thickness of the lines between nodes indicates the
strength or frequency of collaborations. This clustering helps identify which journals frequently co-publish, suggesting areas of concentrated
research activity and interdisciplinary connections. (B) Cited journal collaborative clustering network: This visualization focuses on the citation
relationships among journals. Similar to the previous graph, nodes represent journals, but, here, the links depict citation relationships rather than co-
authorship. The node size reflects the citation frequency, and connections between nodes show how often journals cite one another. This network
provides insights into the influence and citation dynamics within the scholarly community, highlighting journals that serve as key references in
various research domains. (C) Journal dual graph overlay: This dual graph overlay combines information about both the citing and cited journals,
mapping the flow of information and influence across different disciplines and fields. The graph uses two layers: one representing journals that cite
others (outgoing influence) and another for cited journals (incoming influence). The trajectory shown by a yellow curve illustrates significant trends
in knowledge transfer between disciplines, emphasizing how certain fields are shaping research directions in others.
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close ties with European nations like the United Kingdom, Italy,

and Switzerland. This pattern suggests that future research should

place greater emphasis on international cooperation to enhance

research quality, facilitate the sharing of findings, and propel the

field’s development.

Tian J (H-index = 80), from the Chinese Academy of Sciences,

stands as the most prolific author in our analysis, with a total of 16

publications. His extensive research spans radiology, nuclear

medicine, and medical imaging, earning him recognition as a

cross-disciplinary Highly Cited Scholar for three consecutive

years (2021–2023). This accolade underscores his significant

contributions to the fields of radiology and nuclear medicine. In

2016, Tian J and his team developed an innovative radiomics model

that integrates imaging features, CT-reported lymph node status,

and clinical risk factors (24). This model serves as a crucial tool for

the preoperative prediction of CRC lymph node metastasis and

guides personalized treatment approaches. On the other hand,

Ganeshan B (H-index = 26), from University College London, has

amassed the most citations in this study, totaling 298. His

pioneering work in 2013 on applying CT texture analysis to

quantify tumor heterogeneity has been pivotal, providing essential

insights for tumor imaging, treatment response assessment, and

prognosis (25). The contributions of both have significantly

advanced the use of radiomics in oncology, particularly in CRC,

inspiring new directions in tumor diagnosis and precision medicine.
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We analyzed the influence of funding on research trends by

integrating information on national policies and the activity of

research institutions. The pronounced research output and high

citation rates in the United States and China underscore substantial

investments in radiomics and oncology, aligning with these nations’

governmental priorities on medical technology and innovation.

Significant funding initiatives such as the Information Technology

Initiative for Cancer Research sponsored by the National Cancer

Institute in the United States and the Natural Science Foundation of

China in China are pivotal in driving vigorous research activities in

these fields (26, 27). These programs underscore the commitment of

both countries to advancing medical research and technology. In the

realm of tumor radiomics, there is a discernible preference for

developing specific research themes such as deep learning and

multiparametric imaging models. This focus reflects the funding

bodies’ support for projects with high potential for clinical

translation, emphasizing emerging technologies and advanced data

analysis techniques. This strategic funding has not only accelerated

technological innovations but also fostered conditions conducive to

significant scientific breakthroughs (28). Further analysis indicates

that funding support is often channeled toward research institutions

that participate in international collaborations. These collaborations

are instrumental in expanding sample sizes and enhancing data

diversity, thereby increasing the research’s impact and applicability

(29). Given these insights, it is advisable for future funding strategies
TABLE 4 Top 10 most cited references.

Title DOI First author Year Journal Citation

Radiomics: Images Are More than Pictures,
They Are Data

10.1148/radiol.2015151169 Gillies RJ 2016 Radiology 113

Radiomics Analysis for Evaluation of
Pathological Complete Response to
Neoadjuvant Chemoradiotherapy in Locally
Advanced Rectal Cancer

10.1158/1078-0432.CCR-17-1038 Liu ZY 2017 Clinical Cancer Research 105

Radiomics: The Bridge between Medical
Imaging and Personalized Medicine

10.1038/nrclinonc.2017.141 Lambin P 2017 Nature Reviews
Clinical Oncology

103

MR Imaging of Rectal Cancer: Radiomics
Analysis to Assess Treatment Response after
Neoadjuvant Therapy

10.1148/radiol.2018172300 Horvat N 2018 Radiology 100

Cancer Statistics, 2021 10.3322/caac.21254 Siegel RL 2021 CA: A Cancer Journal
for Clinicians

86

Development and Validation of a Radiomics
Nomogram for Preoperative Prediction of
Lymph Node Metastasis in Colorectal Cancer

10.1200/JCO.2015.65.9128 Huang YQ 2016 Journal of Clinical Oncology 76

Radiomics Analysis of Multiparametric MRI
for Prediction of Pathological Complete
Response to Neoadjuvant Chemoradiotherapy
in Locally Advanced Rectal Cancer

10.1007/s00330-018-5683-9 Cui YF 2019 European Radiology 74

Rectal Cancer: Assessment of Neoadjuvant
Chemoradiation Outcome Based on Radiomics
of Multiparametric MRI

10.1158/1078-0432.CCR-15-2997 Nie K 2016 Clinical Cancer Research 73

Computational Radiomics System to Decode
the Radiographic Phenotype

10.1158/0008-5472.CAN-17-0339 van Griethuysen JJM 2017 Cancer Research 73

Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries

10.3322/caac.21660 Sung H 2021 CA: A Cancer Journal
for Clinicians

67
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to prioritize clinically relevant research projects, especially those

involving multicenter and multinational studies. Such a focus will

likely enhance the clinical application of radiomics technologies and

promote international academic exchange.

Frontiers in Oncology (IF = 3.5) leads as the journal with the

most publications in this study. It encompasses all domains of

cancer research, striving to enhance our understanding of cancer to

refine diagnostic, therapeutic, and management strategies. The

rising potential of radiomics in clinical management strategies for

CRC has notably piqued the journal’s interest, steering its focus

toward this innovative area. Additionally, many high-output

journals are Open Access (OA). OA journals provide unrestricted

access to their content, which can lead to a higher number of

submissions as authors seek wider dissemination and increased

citations of their work. The OA model facilitates academic

communication and boosts the visibility and impact of research

articles. Radiology (IF = 12.1) stands as the most cited journal. This

journal is a cornerstone in the field of radiology and imaging,

publishing works that command high authority in the realm of

radiomics. Its contributions are instrumental in shaping the
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foundational and advanced understanding of radiomics

applications. Among the top 10 most cited references, two discuss

theoretical frameworks underlying the origins and prospects of

radiomics. Two others are epidemiological studies analyzing global

cancer trends, and six involve developmental trials of

multiparametric radiomics models specifically targeting CRC.

Collectively, these references underscore the substantial promise

of radiomics in the assessment, prediction, and personalized

treatment approaches for CRC, reflecting widespread global

interest and vigorous research efforts in this arena. In terms of

temporal milestones, the year 2015 marked a pivotal shift in

research orientation. Before this year, studies predominantly

focused on cancers such as non–small- cell lung cancer (30),

metastatic renal cell carcinoma (31), and CRC (23), with imaging

techniques mainly confined to CT texture analysis as a predictive

biomarker. This period characterized the exploratory phase of

radiomics in oncology (32). Post-2015, the research emphasis

transitioned toward embracing novel technologies and addressing

clinical challenges, including the application of deep learning, MRI

in the context of rectal cancer (33), and studies on liver metastases
FIGURE 6

Visualization of reference co -citation and citation dynamics. (A) Reference co-citation visualization: This graph displays a network of how often
references are cited together within the literature, illustrating the interconnectedness of studies based on shared citations. Nodes represent
individual studies, and the lines between them indicate a co-citation relationship. The size of each node reflects the frequency of co-citations,
highlighting references that commonly appear together in the literature and suggesting their thematic or methodological similarities. (B) Reference
co-citation clustering visualization : This visualization segments the co-citation network into clusters, each representing a group of studies that are
frequently cited together, suggesting they pertain to related topics or methodologies. Different colors are used to distinguish each cluster, aiding in
the visual discrimination of thematic groups within the broader research landscape. (C) Timeline plot of reference co-citation clustering: This
timeline graph plots the clusters of co-cited references over time, showing the evolution of research themes and the emergence of new trends.
Each cluster is plotted against the year to demonstrate when certain topics gained prominence or faded in relevance, providing insights into the
historical and developmental trajectory of research in the field. (D) Top 20 references with the highest citation explosion rate: This graph identifies
the top 20 references that have experienced the most significant surges in citations over a specific period, indicating their rising influence or
foundational impact on current research. Each reference is represented by a bar, the length of which corresponds to the “explosion” rate of
citations, and color-coded to indicate the duration of the citation surge.
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(34). This shift indicates a robust movement toward precision

medicine and personalized treatment strategies. Concurrently, the

introduction and integration of advanced AI algorithms have

magnified the significance of radiomics in cancer diagnosis and

treatment, heralding a new era of innovation in medical imaging.

The keywords such as survival, texture analysis, and artificial

intelligence stand out because of their high co-occurrence intensity,

highlighting central research focuses and trends within the field.

Survival emerges as a pivotal indicator of treatment outcome

assessment, underscoring the research emphasis on the efficacy of

various treatment modalities, including radiotherapy,

chemotherapy, and neoadjuvant therapy. This focus suggests that

enhancing patient survival remains a fundamental objective in CRC

research and treatment strategies. Texture analysis, a cornerstone

technology in radiomics, is instrumental in diagnosing, typing, and

assessing the prognosis of diseases by analyzing textural features

within medical images. Related keywords such as angiogenesis,

tumor heterogeneity, and tumor classification further illuminate

the scope of texture analysis in elucidating tumor biology and

assessing treatment responses. The evolution of AI plays a critical

role in advancing radiomics, particularly through the adoption of

deep learning and convolutional neural network (CNN)
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technologies. These sophisticated algorithms have shown

substantial benefits in processing multidimensional image data,

automating feature extraction, and addressing complex

multiparametric challenges. Although initial studies primarily

utilized machine learning algorithms such as random forests,

decision trees, and regression models, current research trends

increasingly leverage more advanced AI techniques. This shift

aims to amplify the contribution of radiomics to clinical decision-

making, enhancing its utility and precision in the medical field (35).

In this study, IF and citation counts served as preliminary

indicators of literature quality. Comparative analysis identified

several issues in publications of lower quality: non-randomized

and outdated research designs lacking theoretically supported

hypotheses; data handling flaws, including insufficient sample

sizes, opaque data processing, and reliance on single-center data;

and problems related to clinical translation and practical

application, characterized by high repetitiveness and low clinical

application rates. The prevalence of such lower-quality literature

may be attributed to academic bandwagoning and specific national

policies. These factors have a limited contribution to defining the

field’s central themes and trends and cannot be entirely mitigated by

IF and citation counts, potentially introducing bias into our analysis
FIGURE 7

Visualizations of keyword dynamics and impact in research. (A) Keyword network visualization : This diagram illustrates the network of relationships
among the most frequently used keywords within the field of CRC research. The graph displays keywords as nodes, with lines connecting them
based on their co-occurrence in the literature. The size of each node indicates the frequency of the keyword”s appearance, providing insight into
the prominence of certain topics. (B) Keyword clustering visualization: This graph segments the keyword network into clusters based on their
associations, revealing groups of keywords that frequently appear together. Each cluster is color-coded to differentiate thematic groupings, making
it easy to identify related research areas at a glance. (C) Keyword clustering timeline graph : This timeline graph depicts the emergence and
evolution of keyword clusters over time. It helps trace the development of research themes within the field, showing when specific topics gained
relevance or became less prominent. This dynamic view facilitates understanding of trends and shifts in the research focus over the years. (D) Top 25
burst words: This chart identifies keywords that have experienced significant bursts in usage within a defined period, indicating emerging trends or
sudden increases in research activity around specific topics. Each keyword is represented by a bar, the length of which corresponds to the intensity
of the burst, and is color-coded to illustrate the duration of the surge in popularity.
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of future trends. To address these shortcomings, we integrated

bibliometrics with a systematic review to summarize recent

research hotspots and project future trends. Furthermore, to

enhance the quality of future research, we recommend that

researchers adopt rigorous standards and appropriate statistical

analysis methods in their study designs. It is also advised that

researchers provide comprehensive details of their data collection

and analysis to support independent verification and validation.

Studies that are multicenter and interdisciplinary tend to improve

research quality more effectively and are more likely to achieve

clinically valuable outcomes.
4.2 Application of radiomics in CRC

Through comprehensive analysis of citations and keywords,

seven major research theme clusters have been identified,

showcasing the diversity of research hotspots within the field.

These clusters span from biomarker discovery and technological

advancements to clinical management strategies for CRC. This

section summarizes and discusses the broad applications of

radiomics in CRC management, emphasizing the prediction of

molecular biomarkers, analysis of tumor aggressiveness, and

assessment of treatment responses.

4.2.1 Molecular biomarker prediction for CRC
The National Comprehensive Cancer Network recognizes high-

frequency microsatellite instability (MSI-H), along with Kirsten rat

sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene,

serine/threonine kinase (BRAF) mutations, as clinically significant

molecular markers of CRC (36). The identification of these

biomarkers plays a crucial role in predicting disease progression

and response to treatment. It also enables the provision of more

precise and personalized treatment strategies for patients.

4.2.1.1 MSI-H

In CRC, MSI-H serves as a sensitive indicator of defective DNA

mismatch repair in approximately 15% of cases (37). Patients with

MSI-H CRC typically show poor responses to conventional

chemotherapy but exhibit favorable responses to immune checkpoint

inhibitor therapy (38). Advanced radiomics models, particularly those

incorporating machine learning, have proven effective in predicting

MSI status, thus optimizing treatment strategies. For example,

radiomics column line plots that combine clinical indicators with

imaging features have demonstrated the ability to distinguish non–

MSI-H fromMSI-H cases effectively, with areas under the curve (AUC)

ranging from 0.74 to 0.77 (39). The radiomics IROI3 model, which

assesses a 3-mm contraction of the tumor’s largest area, non-invasively

reflects intratumor heterogeneity and genetic instability, achieving an

AUC of 0.908 (40). These models have also identified clinical factors

such as older age, right-sided colon cancers, hypertension, and N-

staging as independently associated with MSI-H. Additionally, a

machine learning model that integrates Fluorodeoxyglucose (18F)

(18F-FDG) PET/CT data with PET features and clinical parameters

efficiently predicts MSI-H, offering a novel approach to personalizing

treatment for patients with MSI-H CRC (41).
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4.2.1.2 KRAS and BRAF mutations

The KRAS and BRAF genes are crucial in regulating the

epidermal growth factor receptor (EGFR) signaling pathway,

particularly in the treatment of metastatic CRC (mCRC).

Mutations in these genes often result in resistance and poor

prognosis in response to anti-EGFR therapies, such as

panitumumab and cetuximab (42, 43). Radiomics models,

especially those using multiphase CT and deep learning

techniques, have shown potential in predicting these mutations,

thereby informing personalized therapy strategies. Hu et al. (44)

found that multiphase CT radiomics models can effectively predict

KRAS mutations, highlighting the importance of log-sigma-glrlm-

LongRunEmphasis features associated with these mutations. The

introduction of deep learning has further enhanced the accuracy

and non-invasiveness of predicting KRAS mutations using CT

imaging models (45). Similarly, Cui et al. (46) developed a T2-

weighted imaging–based model that demonstrated moderate

performance in predicting KRAS mutation status in rectal cancer

patients, noting that an increased tumor axial-to-longitudinal size

ratio correlates with a higher risk of KRASmutations. A two-center

study highlighted that BRAF mutations might lead to shorter

survival in patients with CRC through radiomics modeling, with

wavelet filtering features identified as optimal for predicting BRAF

mutations (47). Moreover, texture features have been positively

correlated with BRAF mutations and 5-year overall survival in

patients with advanced CRC (48). These findings underscore the

potential of radiomics in predicting KRAS and BRAF mutations in

CRC, providing crucial insights for personalized patient treatment

and guiding future research toward enhancing model performance

and validating the clinical utility of these biomarkers.

4.2.2 Analysis of CRC aggressiveness
The invasive nature of CRC is a crucial factor in tumor biology,

directly influencing the prognosis of CRC and the choice of

therapeutic strategies. Lymph node metastasis and neuroinvasion

are key indicators for assessing tumor behavior (49, 50).

4.2.2.1 Lymph node metastasis

Accurate preoperative prediction of lymph node metastasis is

crucial for formulating treatment plans for CRC. It informs the extent

of surgery and the necessity for adjuvant therapy (51). Huang et al.

(24) developed a radiomics line chart that accurately predicted lymph

node metastasis risk in patients with CRC by analyzing CT images,

effectively stratifying patients. This highlights the potential of

radiomics in detecting early metastasis, essential for preoperative

planning. Moreover, deep learning has expanded the capabilities in

this field by analyzing complex tumor features, thus enhancing clinical

decision-making. Li et al. (52) utilized deep learning to integrate tumor

and lymph node characteristics, improving risk stratification and

prognostic accuracy for patients with stage II CRC. Further, the

combination of deep learning and genomics has advanced imaging

genomics, as shown by Zhao et al., who demonstrated that deep

learning–selected features correlated with gene enrichment related to

metabolic and immune pathways, significantly improving lymph node

metastasis prediction (53). These advancements underscore the

potential of radiomics to refine lymph node metastasis forecasts and
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preoperative planning in CRC, emphasizing the value of technology

integration and interdisciplinary collaboration for comprehensive and

personalized patient management.

4.2.2.2 Perineural infiltration

Perineural infiltration (PNI) is detected in approximately 20%

to 30% of surgically resected CRC samples. Its presence indicates a

highly invasive tumor, associated with increased recurrence and

decreased survival rates (54, 55). Integrating clinical markers with

imaging features, radiomics accurately assesses PNI risk in patients

with CRC, facilitating the development of tailored adjuvant

treatment strategies (56). The use of 18F-FDG PET has proven

effective in evaluating PNI risk. A specific radiomics model, utilizing

18F-FDG PET/CT data, has shown high accuracy in predicting PNI

in patients with non-metastatic CRC. Independent predictors

identified include Carcinoembryonic Antigen (CEA) levels, lymph

node metastasis detected by PET/CT, and total lesion glycolysis

(57). Additionally, MRI-based radiomics studies suggest that

models integrating multiple imaging features outperform those

based on a single feature. This advancement underscores the

potential of radiomics to enhance CRC prognostic assessments,

potentially supplanting traditional clinical prognostic factors such

as depth of infiltration and offering novel insights for treatment

strategies (58).
4.2.2.3 Distant metastases

In the analysis of CRC aggressiveness, distant metastasis,

particularly to the liver, is a definitive indicator of high tumor

aggressiveness and spread. Consequently, early detection of liver

metastases is critically important for effective patient management

(59, 60). Recently, the integration of CT radiomics with AI

algorithms, specifically CNNs, has emerged as a novel approach

for the early diagnosis of CRC liver metastases. Studies have shown

that radiomics models incorporating CNNs not only match the

performance of radiologists in detecting small, low-attenuation liver

nodules but also demonstrate higher diagnostic confidence (61).

However, although radiomics models incorporate machine learning

mirror clinical parameters in reflecting patient status, they do not

provide additional prognostic benefits (62). This indicates that

CNNs are superior to traditional machine learning techniques in

enhancing the clinical utility of imaging histology. The application

of radiomics in diagnosing CRC liver metastases and informing

treatment decisions underscores its potential. Future research

should focus on integrating data from various imaging modalities

and incorporating clinical, pathological, and molecular biomarker

information to enhance the predictive capabilities of these models

and provide more accurate guidance for the early diagnosis and

treatment of distant CRC metastases.
4.2.3 Assessment of treatment response in CRC
CRC treatment employs various methods such as surgery,

chemotherapy, radiotherapy, targeted therapy, and immunotherapy.

Central to these treatments is the regular monitoring of treatment

responses, which is essential for modifying treatment plans,
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enhancing efficacy, and ensuring patient quality of life. Radiomics

plays a pivotal role in providing precise tumor and treatment

response data, thereby optimizing personalized treatment strategies.

Particularly when integrated with genomic data, radiomics has

proven exceptionally valuable in assessing responses of patients

with CRC to immune and targeted therapies. For instance, Huang

et al. (63) demonstrated that, using an imaging genomics model

combined with genomic analysis, several immune-related genes such

as Platelet Endothelial Cell Adhesion Molecule 1 (PECAM1), PR

Domain Zinc Finger Protein 1 (PRDM1), Allograft Inflammatory

Factor 1 (AIF1), Interleukin 10 (IL10), Interferon Stimulated

Exonuclease Gene 20 (ISG20), and Toll-Like Receptor 8 (TLR8)

have a strong positive correlation with the imaging features of stage

III CRC. This finding highlights the potential of these genes as

personalized therapeutic targets. Additionally, texture analysis and

radiomics parameters like SHAPE Volume, HISTO Kurtosis, and

Gray-Level Run-Length Matrix (GLRLM) Gray-Level Non-

Uniformity (GLNU) have shown promise in predicting responses

to targeted therapies, aiding clinical decision-making (64). Further

research has indicated the importance of the Notch-Jagged1 signaling

pathway in prognosticating outcomes for patients with advanced

CRC treated with bevacizumab; high marker expression correlates

with early disease progression during treatment (65). Moreover,

imaging histology, when combined with machine learning

techniques like the RF5 model, has surpassed traditional methods

in accurately predicting responses to adjuvant chemotherapy in

patients with CRC (66). Radiomics is also effective in forecasting

responses to chemotherapy and radiofrequency ablation in patients

with distant metastatic CRC (67, 68). In conclusion, the

interdisciplinary application of radiomics has significantly

enhanced the accuracy of treatment response assessments and

provided a foundation for personalized treatment decisions,

showcasing its vast potential in CRC management.
4.3 Application of visualization techniques :
PET/CT as an example

Visualization techniques play a central role in radiomics

research. By transforming complex datasets into intuitive images

or graphs, these tools not only facilitate a better understanding of

imaging data but also reveal patterns and trends, especially in the

analysis of tumor heterogeneity, morphological changes, and their

correlation with patient prognosis. Additionally, visualization

techniques enable the integration of diverse data sources, such as

imaging data combined with genetic, protein, and other clinical

information, providing a foundation for comprehensive disease

mechanism analysis. This multidimensional data integration help

overcome the limitations of single-source data, allowing for a

deeper understanding of diseases and supporting more precise

clinical decision-making.

PET/CT imaging is a prime example of the application of

visualization techniques in radiomics, particularly in cancer

treatment. For instance, studies have shown that 18F-FDG-PET

and PET/CT are widely used in the treatment planning of patients
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with colorectal liver metastases, especially for selective internal

radiation therapy with yttrium-90 (69). These imaging

technologies provide more precise information on metabolic

activity through visualization, allowing for better assessment of

treatment response. Additionally, PET/CT is used in radiotherapy

planning to define the biological target volume, combining

metabolic and anatomical information to help physicians develop

more accurate treatment plans (70). With these visualization tools,

physicians can better identify and differentiate tumor heterogeneity,

applying this knowledge to personalized treatment.

As radiomics continues to evolve, the integration of PET/CT

data with other imaging modalities (such as MRI) and multi-omics

data (such as genomic information) is becoming increasingly

mainstream. This data fusion supports visualization techniques by

offering additional dimensions of analysis, enabling a more

comprehensive understanding of tumor biology. In this process,

AI-driven visualization tools are also playing an important role, not

only automating the analysis of complex images but also enhancing

the ability to process large-scale datasets. These advancements are

driving the application of radiomics in precision medicine,

particularly in its critical role in cancer diagnosis and treatment

decision-making.
4.4 Directions for future research

Future research should prioritize the application of advanced AI

techniques, including deep learning and CNNs, in the diagnosis and

treatment of CRC. These technologies have the potential to

automate the recognition and classification of CRC imaging data,

significantly improving diagnostic accuracy and efficiency. For

instance, new algorithms could be developed to autonomously

detect subtle changes in early-stage tumors from radiological

images. Additionally, generative adversarial networks are capable

of generating high-quality synthetic medical images, which are

invaluable in training AI models, especially in scenarios where

data are scarce. This could enhance the models’ generalization

abilities and increase the accuracy and reliability of their clinical

applications. Combining multi-omics data (e.g., genomic,

transcriptomic, proteomic, and metabolomic data) with radiomics

is another vital research direction for advancing precision medicine.

By integrating various levels of biological information, researchers

can thoroughly analyze the biological characteristics of tumors and

devise personalized treatment plans. Future studies might also

leverage AI algorithms to investigate the correlation between gene

expression and imaging features, potentially identifying novel

biomarkers to predict treatment responses. Current technical

challenges include data integration, the interpretability of

algorithms, and the clinical translation of models. Despite the

progress AI technology has made in radiomics, ensuring

algorithmic transparency and interpretability remains crucial for

clinician trust in AI decisions. Future technological advancements

should aim to enhance the interpretive power of these algorithms

and the safety of the systems to assure the reliability of AI
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applications in diverse clinical environments. The integration of

AI with multi-omics data promises substantial improvements in

CRC diagnosis and treatment. Through detailed analyses of the

genetic characteristics of tumors and their imaging manifestations,

it is feasible to accurately localize tumors, predict disease

progression, and tailor treatment strategies, ultimately enhancing

treatment outcomes.
4.5 Limitations of the study

This study employs bibliometric methods to evaluate the

utilization of radiomics in CRC, shedding light on both the

current trends and focal points in the field, as well as offering

new perspectives for future research. However, bibliometric analysis

inherently possesses certain limitations. Primarily, this method

depends on published literature, which may not promptly reflect

the latest research developments or technological innovations.

Additionally, radiomics is a multidisciplinary field that intersects

with medicine, biology, and computer science. The bibliometric

approach might not capture the breadth of literature across all these

relevant disciplines, potentially resulting in an incomplete analysis.

To mitigate these limitations, future research should include

multifaceted data from the literature by conducting systematic

literature reviews or by integrating new theories and analytical

tools, which would facilitate a more comprehensive analysis and

enable the identification of more accurate research trends.
5 Conclusions

This study represents the first comprehensive bibliometric

analysis of research in the field of radiomics in CRC since 2013. A

systematic analysis of 1,226 publications from 2013 to 2023 was

conducted to identify key contributors, institutions, and journals, as

well as to examine the correlation between funding allocations and

research focal areas. Through the integration of keyword and

reference analysis, this research elucidates the current application

of radiomics in CRC. It highlights its use in predicting molecular

biomarkers, analyzing tumor aggressiveness, and assessing

therapeutic responses. Future research should aim to further

explore and integrate the multidisciplinary cross-application of

innovative AI algorithms, multi-omics data (including genomics

and proteomics), and imaging genomics. Such integration has the

potential to enhance CRC prevention and the precision of medicine.

This interdisciplinary approach is poised to not only improve the

accuracy of disease diagnosis and treatment response prediction but

also unveil new insights into the biological mechanisms of tumors

and identify novel therapeutic targets. In conclusion, the application

of radiomics in CRCmanagement is evolving to be more diverse and

in-depth. Its importance in the realm of precision medicine is

anticipated to increase continually. It is hoped that more

researchers will focus on this area to further advance the

application of imagingomics in cancer prevention and treatment.
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