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Incorporating genotype
information in a precise
prediction model for platinum
sensitivity in epithelial
ovarian cancer
Nai-Yi Du1, Yan Li2, Hui Zheng3, Ya-Kun Liu1, Lu-Sha Liu1,
Jianbang Xie3 and Shan Kang1*

1Department of Gynecology, the Fourth Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China, 2Department of Molecular Biology, the Fourth Hospital of Hebei Medical University,
Shijiazhuang, Hebei, China, 3Department of Translation Medicine, Shijiazhuang Ninghong
Biotechnology Co., Ltd., Shijiazhuang, Hebei, China
Objective: Develop a predicting model that can help stratify patients with

epithelial ovarian cancer (EOC) before platinum-based chemotherapy.

Methods: 148 patients with pathologically confirmed EOC and with a minimum

5-year follow-up were retrospectively enrolled. Patients were classified into

platinum-sensitive and platinum-resistant groups according to treatment

responses. The correlation between clinical factors and drug sensitivity was

evaluated using statistical tests. Approximately 700,000 single-nucleotide

polymorphism (SNP) sites were assessed for association with drug sensitivity

via the Genome-wide Association Study (GWAS). LASSO regression and manual

selection were employed to reduce the number of variables. A predicting model

based on optimized variables was constructed. The predictive ability of themodel

was assessed using the Kaplan-Meier curve.

Results:No statistically significant association was found between clinical factors

and drug sensitivity. Sixteen SNPs were preserved after the optimization. A

predicting model for drug sensitivity was constructed based on those sixteen

SNPs. Coefficients of the synergistic effect for each SNPwere determined, and an

algorithm of the Drug Sensitivity Index (DSI) was built. The DSI score can

successfully distinguish the drug-sensitive or drug-resistant patients with

sensitivity, specificity, positive predictive value, and accuracy of 94.7%, 83.3%,

90.8%, and 90.5%, respectively. In both the training set and validating samples,

the Kaplan-Meier curve showed that the median PFS and mean OS were

significantly differentiated between the predicted sensitive and resistant

patients (p-value<0.001).
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Conclusions: A mathematical model incorporating genotype information could

help predict the drug sensitivity of platinum-based chemotherapy before the

treatment in EOC patients. A personal chemotherapy could be achieved based

on the model.
KEYWORDS

epithelial ovarian cancer, drug sensitivity, predicting model, single-nucleotide
polymorphism, clinical factors
1 Introduction

Ovarian cancer (OC) is the leading cause of death from

gynecologic cancers in the world, and ninety percent of OCs are

epithelial ovarian cancer (EOC) (1). Due to the lack of early

symptoms and insufficient sensitive screening methods, most EOC

patients are diagnosed at clinically advanced stages. Following the

primary cytoreductive surgery, platinum-based chemotherapy is the

first-line medication for advanced-stage EOC patients (2, 3).

Although the majority of patients respond well to the treatment,

approximately 15% of patients will show drug resistance at the initial

stage of chemotherapy, and an additional 30% will relapse within six

months after the treatment finished (4). Currently, almost all patients

will receive platinum-based chemotherapy for the front line of

treatment. Unfortunately, those platinum-resistant patients are

deprived of their opportunity for early optimal intervention, such

as non-platinum-based chemotherapy, targeted therapies, or

immunotherapy. Therefore, patient stratification prior to the

chemotherapy has a significant clinical impact.

Many clinical and genetic factors were reported to be influential on

the sensitivity of EOC patients to platinum-based drugs. A study

conducted by Winarno GNA et al. found that the mean age of the

platinum-sensitive group was significantly lower than that of the

platinum-resistant group (5). In addition, they observed that the

stage of EOC may also affect the response to the chemotherapy.

Ikeda et al. found that the residual tumor was an independent factor

for the response to platinum (6). Regarding genetic factors, single

nucleotide polymorphisms (SNPs) may be the main genetic factors

responsible for the variations of drug response among individuals.

Many researchers, including our group, have identified specific SNPs

associated with drug sensitivity in EOC (7–12). Furthermore, other

studies suggested that the serum level of lactate dehydrogenase and

ratios of platelet/lymphocyte and neutrophil/lymphocyte can be used to

predict the drug sensitivity of EOC patients (5, 6). Many models

utilizing CT images alone, or using CT images with genetic factors, or

combining CT images, clinical factors, and SNPs were also established

to predict the sensitivity to platinum-based chemotherapy (13–15).

However, no consensus has been achieved on the best approach

for predicting drug sensitivity. More importantly, a commonly
02
encountered clinical problem was that two similar patients

received identical chemotherapies but responded significantly

differently. These divergent responses were most likely to be

determined by genetics. In most previous reports, only one or a

few SNPs were studied in one specific clinical setting. Limited SNPs

usually were insufficient for an accurate prediction of the drug

response, which is typically a multi-gene process (7–12, 15, 16).

In this study, we systematically assessed the effects of a large

amount of SNPs and several clinical factors regarding the drug

sensitivity of EOC patients. Based on the results, we built a

mathematical model that could predict the patient’s response to

platinum-based chemotherapy. The algorithm utilizes the genotyping

information from 16 SNPS and can help gynecological oncologists

stratify patients before the treatment.
2 Materials and methods

2.1 Study subjects

In this retrospective study, 148 EOC patients were recruited

from the Fourth Hospital of Hebei Medical University between

February 2008 and August 2016. The inclusion criteria for cases

were as follows: i) Pathologically confirmed primary EOC at any

age. ii) Clinically classified at stage III or IV according to the

International Federation of Gynecology and Obstetrics (FIGO)

criteria. No restriction on the histological subtypes of tumors. iii)

After the standard primary cytoreductive surgery, the first-line

treatment was the combination of paclitaxel and platinum; and

the patient received the treatment for six to eight cycles. iv) The

minimum follow-up period was five years or until the patient

was deceased. The exclusion criteria included: i) Diagnosed as

other types of cancers. ii) With a history of chemotherapy,

radiotherapy, or immunotherapy before the surgery. iii) The

patient received a non-standard primary cytoreductive surgery

or a non-standard intravenous chemotherapy. The study was

approved by the Ethics Committee of the Fourth Hospital of

Hebei Medical University (2023KS119), and consent was

obtained from all patients enrolled.
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2.2 Surveillance and categorization
of patients

The standard post-chemotherapeutical surveillances included

serial physical examinations, the cancer antigen 125 (CA-125)

blood test, and the computed tomography (CT) scanning as

clinically indicated. According to the National Comprehensive

Cancer Network (NCCN) guidelines, the recurrent disease was

identified by comprehensive evaluation of supportive evidence such

as clinical symptoms (i.e., pelvic pain and weight loss), blood

biomarkers (i.e., elevated CA-125 levels), and imaging examinations

(17). Patients who did not experience the relapse for not less than six

months from the end of the last round of platinum-based therapy

were defined as drug-sensitive, while patients who exhibited disease

progression during chemotherapy or who experienced relapse within

six months from the end of primary chemotherapy were considered

to be drug-resistant (18). Progression-free survival (PFS) was defined

as the time from the date of surgery to the first recurrence or the last

follow-up. Overall survival (OS) was defined as the time from the

diagnosis to the all-cause death.
2.3 DNA extraction and genotyping

The whole-blood sample (5ml) from each subject was collected

and was used for the genomic DNA extraction as previously

described by Miller et. al (19). DNA samples were quantified via

spectrometry and were stored at −20°C in TE buffer. Genotypes of

~700,000 single nucleotide polymorphism (SNP) sites were

determined by the Asian Screening Array system (Illumina, San

Diego, CA, USA) following the manufacturer’s instruction.
2.4 Construction of predictive model

2.4.1 SNP filtrations
All variants with a frequency of less than 0.05 or over 0.95 in the

East Asian population were excluded, referring to the GnomAD

v2.1.1 database (https://gnomad.broadinstitute.org/, last accessed on

June. 26, 2024). The Genome-wide Association Study (GWAS) was

performed to establish the association between the variant and the

sensitivity to the platinum-based regimens. A cutoff value of p <0.05

was used to further downsize the number of initial inputting SNPs.

2.4.2 Model developing strategy
The goal of our study is to build a mathematical model that can

predict the sensitivity of epithelial ovarian cancer patients to

platinum-based chemotherapeutic regimens. Although we believe

that the sensitivity of EOC patients to the drugs is mainly

determined by genetics, we cannot exclude the influence of non-

genetic factors (age, stage, histology, and residual tumor). Firstly, we

evaluated the correlation between the non-genetic factors and drug

sensitivity using statistical tests. If any of these factors displayed a

significant correlation with drug sensitivity, we would integrate that

factor into our model. We also examined the genetic variants. Due to
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the significant number of genetic variants (genotypes), we first used

the Least Absolute Shrinkage and Selection Operator (LASSO)

regression to reduce the total number of potential variants, and we

manually checked the biological functions of the gene loci containing

those possible variants. Only variants that had meaningful functions

to platinum or paclitaxel were preserved. Then, another round of

linear regression was applied to establish the model. Of all 148 EOC

patients, 104 data sets were randomly chosen for training purposes,

and the remaining 44 sets were for validation.

2.4.3 Initial assignment of SNPs
The genotype of each SNP site was transformed into a numerical

value as its initial assignment. The human referential genome

(version 37, GRCh37) was used as the standard and was referred to

as the ‘wild type’. The most common alternative sequence from the

dbSNP database was referred to as the ‘mutant’. A comparison was

made between the patient’s genotype and the referential sequences. If

the sequences of the two alleles were both the same as the wild type,

the initial assignment for that SNP would be ‘0’. If at least one of the

sequences of two alleles was the same as the mutant, the initial

assignment for that SNP would be ‘1’. If at least one allelic sequence

differed from either the wild type or the mutant, a value of ‘0’ would

also be assigned to that site. The initial assigned value for SNP is an

integer alternated as either 0 or 1.

2.4.4 Model development
The predictive model was constructed based on the LASSO

regression algorithm implemented in the R (version 3.5.1) package

‘glmnet’. The optimal regularization parameters were determined

using a 10-fold cross-validation technique. Bootstrap analysis was

utilized to sample the dataset with replacement 500 times.

Subsequently, a model was constructed for each bootstrap cohort.

The final model incorporated only markers that were observed in

over 50% of all bootstraps.
2.5 Statistical analysis

Statistical analysis was performed with SPSS v24.0 for Windows

(Chicago, IL, USA). The association between the patient’s

characteristics and the drug responses was assessed by the Mann-

Whitney U test for continuous variables (i.e. age) and the Fisher’s

Exact test for categorical variables (i.e. Clinical histology). Survival

curves were plotted by Kaplan-Meier analysis with the log-rank test.

P < 0.05 was considered a significant difference.
3 Results

3.1 Characteristics of patients

As shown in Table 1, out of the 148 patients, 94 (63.5%)

exhibited drug-sensitive, and 54 (36.5%) displayed drug-resistant.

The median of PFS for drug-sensitive patients was 40 months, and

the corresponding time for the drug-resistant patients was only
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seven months. The median of OS for drug-sensitive patients was 60

months, which was also significantly longer than that of the drug-

resistant patients (22 months). In terms of histology, 92 (62.2%) out

of the 148 patients were diagnosed with high-grade serous ovarian

cancer, 18(12.1%) with low-grade serous ovarian cancer, and 38

(25.7%) with endometrioid ovarian cancer. There were 136 cases

(91.9%) in FIGO stage III and 12 cases (8.1%) in FIGO stage IV. A

total of 98 patients (66.2%) underwent satisfactory cytoreductive

surgery, with 36 (24.3%) and 62 (41.9%) patients having residual

tumor sizes of 0cm and 0-1cm, respectively. The remaining 50

patients (33.8%) underwent unsatisfactory cytoreductive surgery

(residual tumor>1cm).
3.2 Influence of clinical factors on the
drug sensitivity

As shown in Table 2, no clinical factor was significantly associated

with drug sensitivity among all tested non-genetic features such as age,

clinical histology, stage, and residual tumor. Notably, in our dataset,
Frontiers in Oncology 04
11 pairs of patients shared the same clinical characteristics including

surgical methods, age, histological type, stage, chemotherapeutical

regimen, and residual tumor status yet substantially differed in the

drug sensitivity (Supplementary Table S2).
3.3 Association of genetic variants with the
drug sensitivity

As aforementioned we could not find a clinical factor that

affected the drug sensitivity significantly in our sample set.

Consequently, we employed a whole-genome SNP array with

approximately 700,000 loci to test the association of those SNPs

with drug sensitivity. After the GWAS analysis, a total of 446 SNP

loci were identified that exhibited potential associations (p-value

<0.05) with the drug sensitivity. However, 446 SNPs cannot directly

be used to predict drug sensitivity, and we constructed a

mathematical model to downsize the number of SNPs

for prediction.
3.4 Construction of the model(drug
sensitivity index)

Subsequently, we randomly divided 148 cases into the training

set (104 cases, 70%) and the validation set (44 cases, 30%). The

LASSO regression was applied to the 104 training datasets using 446

SNP loci. Briefly, each SNP site was initially assigned a value

depending on its genotype (see method part). Next, the

generalized linear model was applied using the R package. The

nature of LASSO regression will automatically exclude non-

significant variables. Then based on the remaining variables, we

manually selected biologically meaningful SNP sites for the

refinement. After the optimization, 16 effective SNP loci were

selected for the predicting model. Among the 16 sites, seven had
TABLE 2 Statistical comparison of the clinical parameters between
sensitive and resistant patients.

Patients with
sensitive (n/%)

Patients with
resistance

(n/%)

P

Age (range/median) (34-73) y/55y (45-73) y/53y 0.8418

Clinical histology 0.2599

High grade serous 54 (58.7%) 38 (41.3%)

Low grade serous 12 (66.7%) 6 (33.3%)

Endometrioid 28 (73.7%) 10 (26.3%)

Stage 0.2116

III 84 (61.8%) 52 (38.2%)

IV 10 (83.3%) 2 (16.7%)

Residual tumor 0.2075

≤1cm 66 (67.3%) 32 (32.7%)

>1cm 28 (56.0%) 22 (44.0%)
frontie
TABLE 1 The clinical characteristics of 148 EOC patients.

Patients (n/%) Median Range

Age (years)

<50 52 (35.1%) 45y (34-49)y

≥50 96 (64.9%) 58y (50-73)y

Clinical histology

High grade serous 92 (62.2%)

Low grade serous 18 (12.1%)

Endometrioid 38 (25.7%)

Stage

III 136 (91.9%)

IV 12 (8.1%)

Residual tumor

≤1cm 98 (66.2%)

0cm 36 (24.3%)

0-1cm 62 (41.9%)

>1cm 50 (33.8%)

Drug reaction

Sensitive 94 (63.5%)

Resistance 54 (36.5%)

PFS of patients (months)

PFS of sensitive 40m (11-60)m

PFS of resistance 7m (2-13)m

OS of patients (months)

OS of sensitive 60m (17-60)m

OS of resistance 22m (5-53)m
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a negative coefficient, and nine were positive, with values varying

from about -0·29 to about 0·27 (Figure 1). The exact locations of

these 16 sites and their precise coefficients are shown in

Supplementary Table S1. By combining the assigned value and

coefficient values of each site, a Drug Sensitivity Index (DSI) was

defined as: DSI=0.50194+ (Ai×Ci). Where: Ai=assigned value of the

site i, which equals “0” or “1”, Ci = coefficient value of the site i, the

detailed value for each site see Supplementary Table S1.

DSI= 0:50194+( − 0:29405�DS1value)+(− 0:24243

�DS2value)+( − 0:17686�DS3   value)+  …  +  (0:27524

�DS16   value)

The threshold of DSI was set to 0.5. If DSI ≥0.5 the patient

would be predicted to be positive (drug-sensitive), and if DSI<0.5

the patient would be predicted to be negative (drug-resistant). We

checked the training set by this threshold setting. There were 65 true

drug-sensitive patients with five misclassified and 39 true drug-

resistant patients with six misclassified (Figure 2A). The overall

performance of this model on the 104 sets of training data was as

follows: sensitivity, 92.3%; specificity, 84.6%; positive predictive

value, 90.9%; and accuracy 89.4%.
3.5 Validation of the model

Based on this model, the DSI values were calculated for the 44

validating samples, and the results are illustrated in Figure 2B. 29

true drug-sensitive patients were all correctly classified and three of

fifteen true drug-resistant patients were misclassified as drug-

sensitive. The sensitivity, specificity, positive predictive value, and

accuracy of the model for validating samples were 100%, 80.0%,

90.6%, and 93.2%, respectively. If the two sets of data were

combined, the overall sensitivity, specificity, positive predictive

value, and accuracy of the model were 94.7%, 83.3%, 90.8%, and

90.5%, respectively.
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3.6 Evaluate the predictive ability of
the model

As shown in Figure 3, in both the training set and validating set,

the Kaplan-Meier curve showed that the median PFS (Figures 3A,

C) and mean OS (Figures 3B, D) were significantly longer for the

predicted drug-sensitive patients compared to the predicted drug-

resistant patients (PFS and OS in training group: 37m vs. 7m, 50.7m

vs. 25.8m; PFS and OS in validation group: 31m vs. 8m, 54.0m vs.

26.0m). The log-rank test showed statistically significant differences

in PFS and OS between these two predicted groups in both training

and validating samples (all four P<0.001).
4 Discussion

In the present study, we investigated the clinical and genetic

factors associated with platinum-based drug sensitivity in EOC

patients. We established a regularized linear regression model

incorporating 16 SNPs for predicting the drug susceptibility of

EOC patients. The overall sensitivity, specificity, positive predictive

value, and accuracy of the model were 94.7%, 83.3%, 90.8%, and

90.5%, respectively. The Kaplan-Meier curves showed the PFS and

OS were significantly different in the predicted sensitive and

resistant groups, indicating that the model has high predictive

power for the EOC patients’ drug susceptibility.

Although Winarno G.N.A et al.’s study reported that the age

and the FIGO stage were significant differences between the

platinum-sensitive and platinum-resistant groups in EOC patients

(P<0.05) (5), our study showed that there was no significant

difference between the two groups regarding the age and staging

(Table 2). It was consistent with the found of Asami Ikeda et al. that

age was not a factor affecting the response to platinum-based drugs

(6). We believe the divergence between our study and Winarno

G.N.A, et al.’s work was caused by the FIGO staging difference of

included patients. In their work, the studied patients were FIGO
FIGURE 1

Coefficients of 16 SNP Loci. The coefficients of 16 SNP loci were shown for their synergistic powers on the prediction of the platinum-based drug
sensitivity. X-axis: IDs of the SNP loci. Y-axis: Correlation coefficients.
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stage I to III EOC, and 42.2% of patients presented with stage I in

the platinum-sensitive group. But in our study, there were no stage I

or II patients. Similarly, Buttitta F. et al. included only stage III and

IV patients in their study, and they did not find a significant staging

difference between the platinum-sensitive and resistant group either

(20), which was in line with our result. In our study, we also found

there was no significant difference between the two groups in

histology types (Table 2), which was supported by other reports

(5, 6, 21). As for the residual tumor, the previous multivariate

analysis showed that the residual tumor was an independent

predictor of platinum resistance. Compared to patients with the

absence of macroscopic residual tumor(R:0cm), those with

macroscopic residual tumor (R:0-1cm and >1cm) exhibited an

increased risk of developing platinum resistance (HR:2.111, 95%

CI: 1.415-3.151, p<0.001) (6). Another study reported that

compared to patients with residual tumor <2cm, those with

residual tumor >2cm had an elevated risk of developing platinum

resistance(OR:13.455, 95%CI: 2.624-68.992, p=0.0018) (20).

However, our study showed that there was no significant
Frontiers in Oncology 06
difference between platinum-sensitive and resistant groups in

residual tumor factor (Table 2). One possible explanation for this

disagreement could be the differences in the criteria employed by

different studies to group residual tumors. We adopted a grouped

standard that closely aligns with clinical practice, which was

whether a satisfactory cytoreductive surgery was conducted(R ≤

1cm or R>1cm). This classification criterion was consistent with

that utilized by Mendiola M., et al. (22). Another important factor is

that although the extent of residual tumor should be documented

clearly by the operating gynecological surgeon, it is recognized that

there are limitations to the accurate recording of residual tumor, in

both the measurement of lesions and the quantification of the

tumor residuum (23). The personal subjective factors of an

operating gynecological surgeon may affect the accurate recording

of residual tumors.

From the above results, we found that the clinical factors (age,

stage, residual tumor, and histology types) may not exert a

dominant influence on the patient’s susceptibility to platinum-

based chemotherapy. Furthermore, in our dataset, 11 pairs of
FIGURE 2

Performance of DSI in the training and validating samples. The DSI scores of each sample were calculated according to the LASSO regression model.
The categories of prediction results were color indexed (FN= False Negative, purple; FP= False Positive, orange; TN=True Negative, green; TP=True
Positive,blue). (A) Training samples. (B) Validating samples. X-axis: Prediction Results. Y-axis: DSI Scores.
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patients shared identical surgical methods, age, histological type,

stage, chemotherapy regimen, and residual tumor status, yet their

drug responses differed significantly, which strongly implied that

the inter-individual genetic variants may exert a significant

influence on drug sensitivity. The most prevalent genetic variation

in the human genome arises from single nucleotide polymorphisms

(24–26). Previous studies have identified specific SNPs associated

with the response to platinum-based chemotherapy in EOC (7–12).

However, these studies focused only on very few variants and lacked

a comprehensive assessment of the synergistic effect of multiple

variants. The isolated results from these studies could barely be used

for clinical guidance while the complexity of the human genome

brought many difficulties for solving the problem methodologically.

To overcome this drawback, the whole-genome-wise SNP array was

employed in this study to comprehensively investigate

approximately 700,000 SNP sites within the human genome. The

goals of the study were to: 1.) discover as many as possible variants

that are relevant to the drug sensitivity; 2.) quantitatively determine

the effects of these effective variants; 3.) build an accurate model for

the drug sensitivity prediction that can be easily used by the

gynecological oncologists in the clinic. Although the epigenetics

may also impact the chemotherapy resistance in EOC (27), we did

not compare our discoveries with epigenetics. Because in terms of

platinum resistance in ovarian cancer, there are two types of
Frontiers in Oncology 07
resistance: primary and acquired. The primary resistance means

the patient showed resistance at the early stage of the platinum

therapy (less than 6 months) and acquired resistance means the

resistance shows up after a long period (over 12 months) (28).

Generally, the primary resistance is determined by genetic variants

and the acquired resistance is affected by alterations in multiple

signaling pathways and usually is related to epigenetic

modifications. Our study focuses on the primary resistance;

therefore, we did not compare our discoveries with epigenetics.

One common problem for model construction is that the

observed sample size (n) is much smaller than the number of

predictive variables (p), and usually the variable selection (feature

selection) is required. In our data, there is a small sample size (148

samples) and a high number of independent variables (about

700,000). It is obvious that n<<p. To solve this problem the

LASSO regression was introduced by Robert Tibshirani in the

year of 1996 (29). The LASSO regression is widely employed as a

regularization method for linear models. As an alternative to the

least squares regression, LASSO regression introduces an L1 penalty

function as a regularization term, effectively addressing the problem

of multicollinearity, promoting variable selection (feature

selection), and helping to improve the predictive ability and

interpretability of the model (30–33). In GWAS analysis, when

multiple SNP loci are used as independent variables, the L1 norm-
FIGURE 3

Kaplan-Meier survival curves of predicted drug-sensitive and resistant patients. (A) Median 5y-PFS of predicted drug-sensitive and resistant patients
in training group were 37.0, and 7.0 months, respectively (P<0.001). (B) Mean 5y-OS of predicted drug-sensitive and resistant patients in training
group were 50.7, and 25.8 months, respectively (P<0.001). (C) Median 5y-PFS of predicted drug-sensitive and resistant patients in validating group
were 31.0, and 8.0 months, respectively (P<0.001). (D) Mean 5y-OS of predicted drug-sensitive and resistant patients in validating group were 54.0,
and 26.0 months, respectively (P<0.001).
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based feature selection can not only solve the problem of overfitting

but also select important SNP loci (34). Combined with LASSO

regression and biological feature selection, we successfully shrank

the variables to 16 SNP sites. Then next round of least squares

regression was applied. In this new scenario, the sample size (n)

greatly exceeds the number of predictive variables (p), and the least

squares regression worked well and showed highly accurate

predicting capability (Figure 3). In the construction of the model,

we also tested the elastic net regression which combined LASSO and

Ridge regressions. However, the elastic net regression didn’t show

any better performance when checked by the ROAUC curve and

also resulted in more leftover variants. And we also tried other

models including binary logistic regression. However, similar to the

elastic net regression, the performance is no better than the

LASSO regression.

In the manual selection, 16 SNPs were preserved based on their

biological functions (Supplementary Table S1). 12 SNPs were

located within the exonic region, while one each was found in the

promoter, enhancer, 5’ UTR, and upstream regions. Notably, out of

the 12 exonic SNPs, ten resulted in missense mutations, one led to a

synonymous mutation, and another caused a nonsense mutation.

When we searched the function of these 16 genes, three genes,

including LIG1(DNA ligase 1), VEGFR2(one reception for VEGF),

and PPP4R3A (a highly conserved member of the phosphatase

family of serine/threonine phosphatases) have been demonstrated

to be associated with the response to platinum and paclitaxel

chemotherapy in EOC (35–41). Although the remaining 13 genes

have not been conclusively associated with drug response in EOC

they all have relevant bio-functions. The L3MBTL3, PLA2G7,

KIAA1614, and C3orf33 genes were implicated in DNA repair,

cell proliferation, apoptosis, and the cell cycle, and may be involved

in the development of cancers (42–46). LAP3, ADRA1D, KIF25,

GPS2, and MCF2L genes were associated with proliferation,

movement, and invasion of tumor cells (47–52). CLEC7A and

XIRP2 genes can contribute to cellular motility through their

involvement with actin (53, 54). The CEP128 gene encodes a

centrosomal protein that is a fundamental subdistal appendage

protein and functions on the mother centriole for the organization

of the centriolar microtubules (55, 56). Finally, the SLC25A39 gene

was necessary for mitochondrial glutathione import in mammalian

cells (57). Therefore, all those 16 SNPs may play some role in the

pharmacology of platinum and paclitaxel combined chemotherapy.

Precision medicine, also known as personalized medicine, is a

kind of medical care based on an individual’s genetic information

and is the main direction of future medicine (58, 59). The

fundamental concept for it is that each therapy should be

customized based on personal characteristics. Genetic features are

the most predominantly used personal characteristics for precision

medicine. In clinical practice, both congenital genetic traits (e.g.

germline mutations of breast and ovarian cancers) and acquired

genetic traits (e.g. somatic mutations of lung cancer, etc.) have been

employed in targeted therapy and immunotherapy interventions

(60–63). In this study, we aim to develop a precision medicine

approach that enables gynecologic oncologists to effectively utilize

genetic features. Compared with other methods, our approach is
Frontiers in Oncology 08
relatively simplified and more clinically feasible. It just needs the

blood sample, which can be easily obtained, and the genotype

information, which can also be easily acquired either by

fluorescent PCR, gene chip genotyping, or sequencing.

However, there were several limitations in our study. Firstly, the

retrospective nature of this study may introduce selection bias.

Secondly, the sample size in our study was modest, potentially

impacting the stability and reliability of our model. Thirdly, this

study is limited by its reliance on data from a single institution for

both the training and validation cohorts. External validation using

an independent cohort from other institutions will be necessary for

the performance of our model. In future research, a prospective

multicenter study should be conducted. Fourthly, we did not recruit

any patients with other histotypes such as ovarian clear cell ovarian

cancer in this study in addition to high-grade serous ovarian cancer,

low-grade serous ovarian cancer and endometrioid ovarian cancer,

although we did not restrict the histotypes in the inclusion criteria.

Therefore, we restrict our conclusion within the histotypes included

in our study. In future research, other histotypes may be concluded.

Fifthly, the ethnic variances could compromise our conclusions in

Western populations.

In summary, clinical factors may not exert a predominant

influence on predicting the sensitivity of epithelial ovarian cancer

to platinum-based chemotherapy, while a mathematical model that

incorporates multiple genetic variations can achieve good outcomes

in this context. Future prospective multicenter studies with a larger

sample size should be conducted to validate our prediction model

and to optimize it for clinical practice.
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