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Introduction: Colorectal cancer (CRC) is one of the most common

malignancies, with liver metastasis being its most common form of metastasis.

The diagnosis of colorectal cancer liver metastasis (CRCLM) mainly relies on

imaging techniques and puncture biopsy techniques, but there is no simple and

quick early diagnosisof CRCLM.

Methods: This study aims to develop a method for rapidly detecting the risk of

liver metastasis in CRC patients through blood test indicators based on machine

learning (ML) techniques, thereby improving treatment outcomes. To achieve

this, blood test indicators from 246 CRC patients and 256 CRCLM patients were

collected and analyzed, including routine blood tests, liver function tests,

electrolyte tests, renal function tests, glucose determination, cardiac enzyme

profiles, blood lipids, and tumor markers. Six commonly used ML models were

used for CRC and CRCLM classification and optimized by using a feature

selection strategy.

Results: The results showed that AdaBoost algorithm can achieve the highest

accuracy of 89.3% among the six models, which improved to 91.1% after feature

selection strategy, resulting with 20 key markers.

Conclusions: The results demonstrate that the combination of machine learning

techniques with blood markers is feasible and effective for the rapid diagnosis of

CRCLM, significantly im-proving diagnostic ac-curacy and patient prognosis.
KEYWORDS

colorectal cancer (CRC), colorectal cancer liver metastases (CRCLM), machine learning,
blood test indicators, rapid detection
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1 Introduction

Colorectal cancer (CRC) is a malignant tumor originating from

the tissues of the colon or rectum. It is one of the common cancers

globally, and considered as a serious threat to human health (1). In

2020, the newly diagnosed cases of CRC were 1.9 million, with

935,000 deaths attributed to the CRC, accounting for 9.4% of all

cancer-related fatalities (2, 3). The worldwide occurrence of CRC has

been steadily rising (4). CRC is the second most lethal cancer for both

men and women, following lung cancer (5). At the time of initial

diagnosis, approximately 20–30% of CRC patients have liver

metastasis (LM) (6). This trend is expected to continue, primarily

due to the changes in lifestyle and diet, population ageing, and genetic

factors (7). Each year, millions of people worldwide are diagnosed

with CRC, and millions lose their lives as a result (8). The

development of CRC often remains covert, with many patients

presenting no obvious symptoms in the early stages. Consequently,

a considerable number of patients are identified at a late stage of

diagnosis, leading to significant challenges in treatment and a high

mortality rate. CRC exhibits invasiveness and tends to metastasize to

surrounding tissues and organs, with colorectal cancer liver

metastasis (CRCLM) being particularly common (9).

CRCLM refers to the spread of the CRC cells to the liver from

the primary tumor site in the colon or rectum. It is a common

occurrence in the advanced stages of CRC and significantly

contributes to the prognosis and treatment outcome for the

patient (10). One-fifth of the CRC patients were found to develop

liver metastasis during the course of their disease (11–13). These are

the factors that make the liver become the favorite target of

metastasis: Anatomically, the liver is close to the colon and the

rectum. A rich blood supply at the liver enhances the ability of the

cancer cell to break and spread through the blood. The liver

metastasis in CRC consists of multistep processes: the local

invasion of cancer cells into blood vessels or lymphatic channels,

circulate in the bloodstream, and colonization and growth in the

liver parenchyma (14). After being established, it would lead to

CRCLM. Further, the size and location of the liver metastases would

then evoke a variety of symptoms, such as abdominal pain, fatigue,

weight loss, and several others (15). Despite the improvement in

treatment modalities, there still exists a lot of difficulty in managing

liver metastasis that arises from CRC due to poor prognosis (16).

Nevertheless, many advances in systemic therapies and

multidisciplinary approaches to treatment have improved the

survival outcome for some of these patients. In summary,

CRCLM represents a significant difficult clinical challenge in CRC

management. Early detection, accurate staging, and comprehensive

treatment strategies of CRCLM are indispensable steps for

optimizing patient outcomes and improving quality of life (17). It

is important in formulating the strategy for effective treatment,

prognostic assessment, direction of the monitoring of the patient for

treatment, and providing precision treatment (18–20).

Early diagnosis of CRCLM, therefore, is very important. It

forms an integral aspect of the management of the CRC patient

and therefore needs high priority from physicians and patients (21).

Timely detection of CRCLM makes it possible to take necessary

treatment measures, which enhance the effectiveness of treatment
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and survival rates. The diagnosis of CRCLM gives a physician

information about a patient’s prognosis. Diagnosis of CRCLM in

determining the starting treatment plan and subsequently guiding

monitoring and changes during treatment. It is of utmost

importance for a physician to monitor the dynamics of the

disease and efficacy of treatment on a routine basis through

imaging examinations and monitoring of blood indicators,

making changes if necessary to the treatment schedule to help the

patient live as long and enjoy a good quality of life as possible (22).

The definite diagnosis of CRCLM is usually made through the use of

imaging techniques, including CT, MRI, or PET scans, which may

demonstrate the presence, location, and size of liver lesions (23).

Less sensitive imaging studies could result in false positive or

negative results for small or early metastatic lesions. However,

liver puncture biopsy technique is more invasive, and there is a

high possibility of getting complications like bleeding and infection.

It cannot adequately reflect the overall status of the tumor. The

genetic testing is expensive: it involves highly specialized

equipment, with high costs, and requires technical support, which

may result in serious risks of misdiagnosis or missed diagnosis.

These methods are common examination ways, but relatively, it is

difficult to carry out the preliminary screening examination

of CRCLM.

Blood test indicators, including liver function, renal function,

electrolytes, cardiac enzyme profile, blood lipids, and tumor

markers, are typically measured through blood tests. These

indicators encompass various aspects of human physiology and

pathology and are of significant importance for assessing organ

function, diagnosing diseases, and monitoring treatment efficacy

(24, 25). The blood sample is typically drawn and then sent for

analysis, where healthcare professionals examine different

components of the blood to obtain valuable information. Insights

into a wide range of health indicators could be provided by blood

tests (24, 26). They are used to diagnose and monitor various blood

disorders, such as anemia, leukemia, and other abnormalities in the

blood system (27). Low red blood cell counts and hemoglobin levels

may indicate iron deficiency or other nutritional deficiencies.

Recently, blood test indicators have also gained widespread

attention in cancer detection (28–30).

Machine learning (ML) offers several beneficial applications for

the diagnosis of diseases (8, 31–33), thereby showing its potential

contribution in gaining high accuracy and efficiency for cancer

diagnosis. An application based on ML models can be used for

analyzing complex datasets to discover the patterns in diseases that

exceed the level of intuitive judgments of human doctors (34). For

example, in the diagnosis of lung cancer (35, 36), breast cancer

(37–39), and many other types of cancers (40), the ML models have

been experimentally proven to be equal to or even better than a

radiologist in the diagnosis in some cases. A ML system can

automate data analysis and, thus, the time between detection to

diagnosis is shorter, especially for the diseases which need a rapid

response like stroke and heart attack (41). One study published

today reported findings in which ML has been helpful in identifying

the most effective treatment plans for large groups of patients,

offering data-driven support for personalized treatment. Such

means would have medical treatment tailored to an individual’s
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specific prevailing situation. ML helps improve the accuracy of

diagnosis with a better and efficient health outcome; hence, it

reduces the threats related to medical misdiagnosis and

overtreatment, which helps a person reduce undue cost associated

with medical problems (42–44). ML models are designed to

continue improving their diagnostic ability from new data.

In this study, the features were classified with different ML

classifiers such as Adaptive Boosting (AdaBoost), Extremely

Randomized Trees (ERT), Multi-layer Perceptron (MLP),

Stochastic Gradient Descent (SGD), Random Forest (RF),

EXtreme Gradient Boosting (XGBoost). The best optimal

classifier selected in these classifiers of the features as blood

markers for CRC and CRCLM. Additionally, considering that

redundant features in the feature set could interfere with

classification results and provide invalid information, the optimal

feature subset was calculated by using a feature selection strategy.

Specifically, p-values for each feature were computed to jointly

select the most discriminative optimal feature subset, and then

feature selection method was used to obtain the most optimal

feature subset. Finally, the best classification accuracy for CRC

and CRCLM classification was gained with the most optimal

feature subset.
2 Materials and Methods

2.1 Datasets

The blood data were provided by Jinhua Central Hospital,

which included 246 participants in CRC group, aged between 37

and 89, with 159 males and 87 females. There were also 254

participants in CRCLM group, aged between 23 and 91, with 174

males and 80 females. Participants in the CRC group were selected

based on a confirmed diagnosis of pathological analysis of tissue

samples. For the CRCLM group, participants were selected based on

not only a confirmed diagnosis of CRC but also evidence of

metastatic disease to the liver. This evidence could have been

obtained through imaging test demonstrating liver lesions that

were confirmed to be CRC metastases through additional testing

of biopsy. This study also had exclusion criteria to ensure that

participants did not have confounding medical conditions that

could interfere with the results or place them at undue risk. These

could include liver metastases caused by other primary tumors, as

well as comorbid serious diseases, such as combined severe

cardiovascular disease, organ failure, coagulation abnormalities

and other cancers. The complete blood test in the data is shown

in Table 1.
2.2 ML classifier

2.2.1 Adaptive boosting classifier
AdaBoost starts by training a weak classifier (typically a

decision tree) on the original dataset. Once the first classifier is

trained, AdaBoost increases the weights of the misclassified
Frontiers in Oncology 03
TABLE 1 Significant correlations with the risk of liver metastasis for the
blood test indicators.

Item Item
Abbreviation

P value

White blood cell count WBCC 5.2×10-03

Percentage of neutrophil NP 5.9×10-05

Percentage of lymphocytes POL 2.4×10-08

Percentage of eosinophils POE 3.7×10-01

Percentage of monocytes POM 1.1×10-03

Percentage of basophils POB 7.4×10-03

Neutrophil count NC 1.7×10-04

Monocyte count MC 5.7×10-06

Basophil count BC 2.5×10-01

Lymphocyte count LC 1.4×10-02

Eosinophil count ESC 3.1×10-01

Erythrocyte count ETC 4.0×10-02

Haemoglobin concentration HC 1.0×10-02

Specific volume of red blood cells SVORBC 3.6×10-03

Mean hematocrit MH 3.5×10-02

Mean red cell haemoglobin MRCH 1.2×10-01

Mean erythrocyte
haemoglobin concentration

MEHC 9.2×10-01

Erythrocyte volume distribution width EVDW 3.2×10-01

Total blood platelet count TBPC 1.2×10-02

Mean platelet volume MPV 2.5×10-01

Hematocrit (blood platelet count) BPC 1.7×10-02

Platelet volume distribution width PVDW 8.5×10-01

Ultrasensitive C-reactive protein UCP 4.8×10-08

Total protein TP 2.1×10-01

Globulin globulin 5.2×10-01

Albumin albumin 3.7×10-05

Total bilirubin TB 1.5×10-02

White ball ratio WBR 3.8×10-01

Indirect bilirubin IB 2.3×10-03

Direct bilirubin DB 2.8×10-01

Glutamine aminotransferase, an
amino acid

GATT 1.4×10-02

Glutamic transaminase, an amino acid GST 9.1×10-06

Glutamate/glutamate GTM 5.5×10-04

Y-glutamyltransferase YG 4.3×10-10

Alkaline phosphatase AP 2.4×10-15

Total bile acids TBA 5.1×10-02

(Continued)
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instances to focus more on the difficult cases. This process is

repeated for a specified number of iterations or until perfect

accuracy is achieved. Each classifier is assigned a performance-

based weight. Finally, AdaBoost combines these weak classifiers into

a single strong classifier by taking a weighted vote of their

predictions (45). By focusing on difficult cases, AdaBoost

minimizes errors on the training set and can achieve higher

accuracy than individual classifiers. It can be combined with any

learning algorithm, not requiring any parameter adjustments except

for the number of iterations. Despite its iterative nature, AdaBoost

can be less prone to overfitting compared to other powerful

classifiers, especially if weak classifiers are simple. AdaBoost can
Frontiers in Oncology 04
select informative features, reducing the dimensionality and

potentially improving the execution time.

2.2.2 Random forest classifier
RF classifier is a powerful, versatile ML algorithm that

constructs multiple decision trees at training time and outputs the

class that is the mode of the classes of the individual trees. This is

widely used for its robustness, simplicity, and effectiveness against

all types of data. At the core of the RF algorithm lies an ensemble of

decision trees trained on different subsets of the dataset. This is

done using a technique called “Bagging”, by repeatedly sampling

observation data points from the dataset with replacements to train

each tree (46–48). An additional randomness is incorporated while

building each tree, which is the selection of a random subset of

features at each split in RF. This ensures that diversity is achieved

among the trees, strengthening performance and decreasing the risk

of overfitting. Once all the trees are trained, we make predictions by

aggregating the predictions of all trees. The trees are used to predict

outputs, and most frequently, the predicted label by trees is used to

cast a vote similar to a majority voting system in classification tasks.

Unlike individual decision trees, which can easily overfit to the

training data, the aggregation method in RF helps in minimizing

overfitting, making it robust even when dealing with complex

datasets. RF can achieve high accuracy in many tasks,

outperforming many other classifiers, including some more

complex algorithms. It can handle large datasets with high

dimensionality and does not require feature scaling. RF can

provide estimates of feature importance, which can be very

informative in understanding which features are contributing

most to the decision-making process. It is effective for

classification and requires very little tuning of parameters.

2.2.3 Extremely randomized trees classifier
ERT classifier is an ensemble learning technique similar to RF,

designed to further randomize tree building in the quest for model

simplicity and variation. Due to the random nature of feature and

split selection, ERT can be much faster to train than more

traditional algorithms like RF, particularly on large datasets (49,

50). By averaging multiple trees, it can reduce the variance and help

prevent overfitting, similar to other ensemble methods. ERT’

method of using random thresholds for each feature makes it less

sensitive to noise in the input data. Moreover, its fewer parameters

to tune as compared with other algorithms, such as Gradient

Boosting or RF, undoubtedly for the choice of split point at each

node. Similarly, just like the RF, an ERT model can give some idea

of the importance that it has in some data within the training data

and hence be quite helpful in the feature selection process.

2.2.4 Multi-layer perceptron classifier
MLP classifier is a type of neural network classifier used to

estimate tasks where an approximate function maps input features

to discrete output classes. MLP is a deep, artificial neural network

containing more than one perceptron. It consists of an input layer,

multiple hidden layers, and an output layer (51, 52). MLP is capable

of modeling the complex nonlinear relationship between input and
TABLE 1 Continued

Item Item
Abbreviation

P value

Potassium potassium 2.8×10-01

Sodium sodium 1.3×10-03

Chlorine chlorine 1.2×10-03

Calcium calcium 5.9×10-08

Phosphorus phosphorus 1.7×10-02

Magnesium magnesium 9.4×10-03

Creatinine creatinine 9.0×10-01

Urea nitrogen UN 6.2×10-01

Urea nitrogen: creatinine UN:C 9.3×10-01

Uric acid UA 6.2×10-01

Glucose glucose 6.7×10-01

Lactate dehydrogenase LD 1.2×10-05

Creatine kinase CK 2.1×10-01

Creatine kinase isoenzyme CKI 2.2×10-05

Myoglobin myoglobin 4.0×10-04

Total cholesterol TC 1.1×10-02

Triglyceride triglyceride 5.0×10-01

Apolipoprotein A AA 4.1×10-01

Apolipoprotein B AB 1.3×10-02

High density lipoprotein HDL 5.9×10-03

Low density lipoprotein LDL 1.3×10-03

Lipoprotein (a) L(a) 1.1×10-02

Alpha fetoprotein AFP 1.9×10-01

Carcinoembryonic antigen CEA 3.0×10-04

Glycoantigen 19-9 G 19-9 5.0×10-10

Prostate-specific antigen PSA 4.7×10-04

Free prostate-specific antigen FPSA 2.1×10-01

Free PSA: Total PSA FP: TP 3.6×10-01

Glycoantigen 125 G125 2.7×10-03
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output. MLP can be designed with varying the number of layers of

an MLP and the neurons to meet the variance in complexities

presented by the data. MLP classifiers are capable of handling noisy

input data. It is quite useful in classification tasks, equipped with

adaptations to handle multiple output decisions. MLP can be

trained with large datasets and scaled by increasing the number

of hidden layers or neurons to further increase its ability to model

very complex relationships. However, MLPs are still haunted by

several weaknesses, such as prone to overfitting, especially very deep

networks, or in the presence of inadequate training data. All that

aside, MLPs require plenty of computational resources while in the

middle of the training process, especially about changing the

network architecture.

2.2.5 Stochastic gradient descent classifier
SGD classifier is a general optimization procedure, using many

objective functions. It can be used with many objective functions,

even in some cases replacing various ML algorithms for training

linear classifiers and neural networks. It’s particularly favored for

large-scale and online ML problems (53–55). In contrast to the

conventional Gradient Descent method, where the model

parameters are updated based on the gradient computed across

the entire dataset, SGD updates these parameters using the gradient

of the loss function concerning a randomly selected individual

sample. It’s much faster than computing the exact gradient because

it uses only one data point (or a small batch) at a time, which

significantly reduces the computational burden when dealing with

large datasets. For large datasets, it can converge faster to the

minimum, as each step of the learning process is applied

immediately, allowing the model to start improving right away.

SGD is well-suited for online learning models where new data

continuously flows in because it can update the model

incrementally, without the need for retraining from scratch. It can

be used with a variety of loss functions and models, making it

adaptable to classification tasks. The inherent randomness in its

updates can help the algorithm to escape local minima, potentially

leading to better solutions in some cases.

2.2.6 Exreme gradient boosting classifier
XGBoost is efficiency, flexibility, and portability (56, 57). The

crucial difference is the use of regularization to control overfitting

and hence being effective even for non-smooth optimizations.

XGBoost is designed to be highly efficient and can run more than

ten times faster than other gradient boosting techniques. A number

of optimization techniques is utilized, including efficient handling

of sparse data and parallel processing. With default settings,

XGBoost gives better results, even outperforming other tools,

owing to its powerful handling of a variety of data types,

relationships, and distributions. This is a built-in support for the

measurement of feature importance and can be very useful when

trying to figure out which features had the most impact for the

predictions. It handles a plethora of diverse objective functions and

evaluation criteria for classification tasks.
Frontiers in Oncology 05
2.3 Feature selection

This study first subjected the dataset to an initial feature

selection process, utilizing the one-way analysis of variance

(ANOVA) method. In this phase, p-values were calculated for

each feature, with a threshold of 0.05 set to determine statistical

significance. Features with p-values less than or equal to 0.05 were

deemed significant, indicating a potential relationship with the

response variable for further investigation.

Next, the AdaBoost algorithm, a powerful ensemble learning

method, was employed to analyze the importance of the selected

features. AdaBoost not only evaluated the significance of each

feature but also ranked them in descending order based on their

influence in classification problems. This step produced a ranked

list of feature importance, serving as a robust guide for subsequent

feature selection.

Adopting a stepwise approach, the study then iteratively

analyzed the feature importance array. At each iteration, the top

“n” features (where “n” corresponded to the current iteration

number) were extracted and used to construct classification

models. These models were trained and tested to measure their

classification accuracy, which served as the criterion for evaluating

the quality of the feature subsets.

By systematically adding features, the study observed how the

classification accuracy changed as the number of features increased.

Throughout this process, detailed records were maintained,

focusing on feature sets that notably improved model accuracy.

When no further gains in accuracy were observed or a decline

commenced, the optimal feature subset was identified. This subset

encompassed the most crucial features contributing significantly to

enhancing model accuracy.

The highest classification accuracy achieved was associated with

the specific combination of features within the optimal subset. This

not only facilitated model interpretability but also improved the

model’s generalization capability on unseen data. The hybrid

feature selection strategy, combining statistical significance and

ML algorithm evaluation, efficiently reduced the feature space,

enhancing computational efficiency while ensuring the predictive

performance of the model remained intact. In handling high-

dimensional data, this approach offers a highly viable and

efficient solution.
2.4 Evaluation metrics for classifiers

As for this research, classification accuracy was measured using

five-fold cross-validation, of which it ranks one of the most popular

methods to find the performance of ML models. It consists in

splitting the dataset into five equal parts and training the model five

times, each time with four folds as a training set and one fold as a

validation set. After each training iteration, you validate the model

using the validation set, typically with some performance metric

such as accuracy, precision, recall, etc. Finally, averaging was done
frontiersin.org

https://doi.org/10.3389/fonc.2024.1460136
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2024.1460136
between the results of the five training iterations, and standard

deviation for the final result was calculated. In addition, during the

five-fold cross-validation, the random introduction of noise that

may not be representative of the population into the model is

reduced by repeating training and validation many times over, thus

giving the estimate of model generalization greater accuracy and

making it easier to detect if issues of overfitting or underfitting

plague the model.

This study evaluates the performance of the model using

accuracy, precision, recall, and F1 score. Here are the definitions

of accuracy, precision, recall, and F1 score based on true positives

(TP), false negatives (FN), true negatives (TN), and false positives

(FP). Accuracy is the proportion of correct predictions (both TP

and TN) among the total number of predictions made by the model.

Precision is the proportion of TP among all the instances that the

model predicted as positive. It measures how accurate the model is

in identifying positive instances. Recall is the proportion of TP that

the model correctly identified out of all the actual positive instances.

It measures how well the model is able to find all the positive

instances. F1 Score is the harmonic mean of precision and recall. It

provides a single score that balances the trade-off between precision

and recall. An F1 Score reaches its best value at 1 and worst score at

0. TP, FN, TN, and FP were obtained by comparing predicted labels

with true labels. Specifically, TP represents the number of positive

labels predicted correctly as positive, FN represents the number of

positive labels predicted incorrectly as negative, FP represents the

number of negative labels predicted incorrectly as positive, and TN

represents the number of negative labels predicted correctly

as negative.
2.5 Statistical analysis

All statistical analyses were performed using SPSS version 26.0

(IBM Corp., Armonk, NY, USA). Continuous variables were

expressed as mean ± standard deviation (SD). Continuous

variables were expressed as mean ± standard deviation (SD). All

statistical tests were two-sided, and p-values less than 0.05 were

considered statistically significant.
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3 Results

3.1 Classification effects of classifiers

Table 2 presents the performance metrics for six different ML

models in predicting the diagnosis of CRC and CRCLM through

cross-validation. In the comparative analysis of ML models,

AdaBoost exhibited the highest precision at 89.4%, demonstrating

the strongest ability to distinguish between CRC and CRCLM

diagnoses. It also achieved the highest predictive accuracy of

89.3%, indicating it as the most reliable model for correct

predictions in testing. Both the F1 score and recall rate evaluation

metrics showed the best performance, both at 89.3%. Although the

RF model did not outperform AdaBoost, it still demonstrated

relatively high accuracy, precision, F1 score, and recall rate,

reaching 89.3%, 89.2%, 89.3%, and 89.3%, respectively. The

overall performance of MLP was the lowest, with accuracy,

precision, F1 score, and recall rate all at their lowest values. This

suggests that they may not be as effective, which could pose

significant implications for medical diagnosis if CRCLM is not

identified, leading to adverse consequences. The superior

performance of AdaBoost can be attributed to its adoption of the

strategy of adaptive weight adjustment, whereby higher weights are

assigned to misclassified samples, thereby focusing the model more

on difficult-to-classify samples and improving its ability to classify

boundary samples. In conclusion, AdaBoost emerges as the most

promising model for predicting CRC and CRCLM based on routine

blood test indicators, providing a particularly robust approach.
3.2 Optimization results of
feature selection

In this study, a preliminary statistical testing was conducted to

screen a subset of features with p-values less than 0.05,

demonstrating significant correlations with the target variable, as

shown in Table 1. Subsequently, the importance of these features

was further analyzed using the AdaBoost classifier, yielding a global

ranking of feature importance. This step was crucial as it helped
TABLE 2 Classification effects of multiple ML models.

Classifier
Accuracy (%)
(mean ± sd)

Precision (%)
(mean ± sd)

F1 Score (%)
(mean ± sd)

Recall (%)
(mean ± sd)

ERT 84.2 ± 3.5 84.7 ± 3.1 84.1 ± 3.6 84.2 ± 3.5

MLP 79.6 ± 1.9 80.1 ± 1.7 79.4 ± 2.1 796 ± 1.9

SGD 80.4 ± 4.3 83.0 ± 2.0 80.0 ± 4.9 80.4 ± 4.3

RF 89.3 ± 5.0 89.2 ± 5.0 89.3 ± 5.0 89.3 ± 5.0

XGBoost 86.7 ± 4.2 86.8 ± 4.3 86.7 ± 4.2 86.7 ± 4.2

AdaBoost 89.3 ± 3.5 89.4 ± 3.5 89.3 ± 3.5 89.3 ± 3.5
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identify the features that exerted the greatest impact on the model’s

predictive ability. Following the acquisition of the feature

importance ranking, the top n-ranked features were selected in an

attempt to achieve optimal classification performance. The selection

of the number of features, denoted as n, was based on multiple

iterations and adjustments through experimentation.
FIGURE 1

Relationship between number of ranked features and accuracy.
TABLE 3 Feature importance ranking.

Feature Name Feature
Importance

Accuracy
(mean ± sd)

CKI 1 73.1 ± 1.6

G125 2 79.3 ± 2.7

CEA 3 84.7 ± 4.5

G 19-9 4 87.3 ± 3.0

AP 5 88.4 ± 3.7

YG 6 88.4 ± 4.8

LD 7 88.2 ± 4.6

PSA 8 88.7 ± 3.3

UCP 9 88.4 ± 5.1

myoglobin 10 88.9 ± 4.6

calcium 11 88.9 ± 4.4

GST 12 88.4 ± 4.4

sodium 13 88.9 ± 4.9

IB 14 89.6 ± 4.1

HDL 15 90.2 ± 4.5

L(a) 16 90.7 ± 4.9

POL 17 90.9 ± 4.2

AB 18 90.7 ± 4.8

NP 19 90.7 ± 3.9

TB 20 91.1 ± 4.6

magnesium 21 90.2 ± 4.9

chlorine 22 90.7 ± 4.4

GTM 23 91.1 ± 4.5

(Continued)
TABLE 3 Continued

Feature Name Feature
Importance

Accuracy
(mean ± sd)

ESC 24 90.2 ± 4.9

MC 25 90.9 ± 4.3

albumin 26 90.4 ± 5.0

phosphorus 27 90.7 ± 4.2

POM 28 90.7 ± 4.8

LC 29 90.7 ± 4.8

MH 30 90.2 ± 5.5

NC 31 90.7 ± 5.1

LDL 32 90.7 ± 5.0

WBCC 33 90.7 ± 4.7

GATT 34 90.0 ± 4.2

HC 35 89.3 ± 4.7

SVORBC 36 90.7 ± 5.3

ETC 37 90.4 ± 5.5

TBPC 38 90.2 ± 4.1

BPC 39 89.6 ± 5.2

TC 40 89.1 ± 4.5

POB 41 88.7 ± 3.7
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The fluctuation of classification accuracy with the variation of n

was meticulously recorded, as depicted in Figure 1. From this graph,

it is evident that as n increases, the classification accuracy gradually

improves until reaching a peak, after which further increases in n

result in decreased accuracy. This indicates that a greater number of

features does not always lead to better model performance but

rather suggests an optimal number of features. The feature

importance scores from the Adaboost model, are displayed in

Table 3. These scores are calculated. In this case, when the

number of features reached 20, the classification accuracy peaked

at 91.1 ± 4.6%.

This significant improvement in performance compared to the

initial classification is detailed in Table 4. Such optimization notably
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enhances the predictive capability of the model while mitigating the

risk of overfitting potentially induced by feature redundancy.

Furthermore, to gain a deeper understanding of the biological

significance of these 20 optimal features between CRC and CRCLM,

detailed statistical analyses were conducted. Specifically, we

computed the mean expression levels of these features in CRC

and CRCLM, followed by a comparative analysis. Additionally, to

validate the statistical significance of these differences, relevant p-

values were calculated. Visualization of these data is presented in

Figure 2. The results indicate that the expression differences of the

majority of features between the two groups are statistically

significant, further emphasizing the potential crucial roles of these

features may play in the development and metastasis of CRC.
TABLE 4 Comparison of classification effects after feature selection.

Feature Type
Accuracy (%)
(mean ± sd)

Precision (%)
(mean ± sd)

F1-Score (%)
(mean ± sd)

Recall (%)
(mean ± sd)

All Features 89.3 ± 3.5 89.4 ± 3.5 89.3 ± 3.5 89.3 ± 3.5

Optimal Features 91.1 ± 4.6 91.1 ± 4.6 91.1 ± 4.6 91.1 ± 4.6
FIGURE 2

Mean values of the comparison between CRC and CRCLM in the optimal feature subset. ** means p ≤ 0.01, and *** means p ≤ 0.001.
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Through this series of analyses and experiments, the accuracy of

the classification model was improved and a deeper understanding

of the biomarkers associated with CRC and CRCLM was gained.

This discovery would make a more efficient biological basis for the

early diagnosis and targeted treatment of CRC and CRCLM.

Additionally, such a methodological approach demonstrates the

feasibility in performing effective feature selection and classification

modeling for complex biomedical data, and in doing so, provides

robust technical support and a theoretical foundation for future

related research efforts.
4 Discussion

The current CRCLM diagnosis has faced several challenges,

from early detection to accurate diagnosis. It is in this study that ML

models are used for the diagnosis of CRCLM, basing on blood test

indicators. Some promising results were found in these studies. The

derived results of this research show possible value in using ML

models for CRCLM diagnosis. Notably, in the classification of CRC

and CRCLM, the AdaBoost model depicted the best discriminative

performance, carrying out excellent predictive accuracy. This means

that the combination of blood test markers and ML algorithms

could be applied to develop a working model for the early

prediction of CRCLM. The present study findings bring out the

performance differential of various ML models in the diagnosis of

CRCLM. By using ML algorithms and blood test indicators, it is

possible to create a fast and accurate way for the early diagnosis of

metastases of CRC to the liver and thus make a tool useful even in

general clinical practice to improve treatment and patient care

processes. The findings of the study thus contribute to a novel

approach in the diagnostic determination of CRCLM and are

therefore valuable for further research, from basic sciences to

clinical applications of medical diagnostics.

The most important twenty contributing factors (ranked as per

importance) in CRCLM diagnosis, according to our Adaboost

model, are: CKI, G125, CEA, G19-9, AP, YG, LD, PSA, UCP,

myoglobin, calcium, GST, sodium, IB, HDL, L(a), POL, AB, NP, TB.

In this study, it is observed that CKI, G125 and CEA can achieve

85% classification accuracy. In patients with liver metastasis,

elevated levels of certain CKI have been observed. This elevation

may be due to increased cellular turnover and damage caused by the

metastasis of cancer cells to the liver. Multiple studies have reported

the correlation between elevated CKI and liver metastasis in CRC

patients. These studies emphasize the potential of CKI as non-

invasive biomarkers for monitoring disease progression and

metastasis. CEA is one of the most commonly used tumor

markers for CRC (4, 58). CA125 is mainly used as a marker for

ovarian cancer, but its levels may also be elevated in some CRC

patients, especially those with CRCLM. In clinical practice, a single

tumor marker, such as CEA, to differentiate between CRC and

CRCLM is not very specific. However, the combination of CKI,

G125, and CEA will have good clinical significance and value.

Further attention could be paid to these indicators in future studies.

In CRCLM patients, myoglobin levels may be elevated. This

elevation could be due to increased tumor burden leading to muscle
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damage or tissue destruction caused by liver metastasis. When the

tumor invades the liver and causes liver cell damage, myoglobin

may be released into the blood as a non-specific response. In

colorectal cancer patients, particularly those with liver metastasis,

HDL levels are often significantly elevated. This elevation may be

due to the high metabolic activity of tumor cells and tissue damage

caused by liver metastasis. Rapid tumor cell proliferation and high

metabolic activity lead to increased lactate production, which is

further exacerbated by liver metastasis. CA19-9 is primarily used for

the detection of pancreatic cancer. Although PSA is mainly used for

the detection of prostate cancer, its potential association with

CRCLM cannot be ignored. The elevation of CA125, CA19-9, and

PSA suggests the possibility of malignancy or metastasis.

Monitoring these tumor markers is of significant value for

diagnosis, prognosis evaluation, and treatment monitoring. Liver

lesions, including liver metastasis, can lead to elevated levels of AP.

Elevated AP suggests liver involvement or bone metastasis. YG

levels are elevated in liver diseases and in patients with liver

metastasis. The detection of YG helps assess liver function and

metastasis. GST plays a crucial role in detoxification, and liver

damage or liver metastasis can cause changes in its levels. The

detection of GST is used to assess liver function and metastasis.

Liver diseases and liver metastasis can lead to elevated levels of IB.

Elevated IB indicates liver function damage or bile duct obstruction.

The detection of TB is used to assess liver function and metabolic

health, indicating the importance of liver function blood tests in

assessing the risk of liver metastasis. The detection of NP is used to

rule out cardiovascular system issues and assess liver function. Total

cholesterol levels may change in patients with liver dysfunction and

metastasis. When tumor cells are metabolically active, POL levels

may rise, especially during metastasis. The detection of POL is used

to assess tumor activity and metastasis. Elevated levels of TB are

common in liver diseases and metastasis. UCP levels are elevated in

liver lesions and patients with liver dysfunction. The detection of

UCP helps assess liver function and metastasis. Liver metastasis can

cause abnormal calcium metabolism, leading to elevated or

decreased blood calcium levels. Abnormal calcium levels indicate

liver function abnormalities or bone metastasis. Liver dysfunction

and metastasis can lead to electrolyte imbalances, including

abnormal sodium levels. The detection of sodium levels is used to

assess liver function and electrolyte balance. HDL levels may change

in patients with liver disease and metastasis. The detection of HDL

is used to assess cardiovascular risk and liver function. L(a) levels

are associated with the risk of various cancers and may change

during liver metastasis. The detection of L(a) is used to assess

cardiovascular disease risk and tumor progression. The detection of

AB is used to assess liver function and bile duct health.

In this regard, the findings provide a new perspective regarding

the significance level in the use of hospital routine blood indicators

for the diagnosis of CRCLM. At a larger scope that includes the

twenty factors identified by the Adaboost model, the factors identify

the blood test indicators accounted for by the diagnosis of CRCLM

(1, 4, 7, 59). These results are consistent with established literature,

where these factors have previously been considered potential risk

factors for the diagnosis of CRCLM. Undoubtedly, the Adaboost

model accurately identifies key driving factors for the diagnosis of
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CRCLM, marking the formulation of targeted intervention

strategies to improve the initial critical stages of CRCLM.

Adaboost models are becoming increasingly important in

oncology, providing multifaceted approaches (60–63). This

powerful algorithm has been proven particularly valuable (64, 65).

The major applications where Adaboost has contributed majorly

are the prediction of the risk of cancer, survival, diagnosing the

staging, and assisting in classifying the cancer. The abilities of

Adaboost models to easily aggregate different sources of data,

hence identifying complex patterns, have transformed the

advance understanding of cancer in improving patient outcomes.

This study provides valuable insights into the rapid detection of

CRCLM from CRC, but it is important to acknowledge several

limitations that may affect the interpretability and generalizability

of our results. Firstly, the sample size in this study is relatively small

and primarily focused on patients from a specific region, which may

limit the generalizability of the results. Therefore, future research

needs to validate the findings in larger and more diverse CRC

populations to ensure broader applicability. Secondly, while this

study demonstrates the potential of rapidly detecting CRCLM

patients from CRC patients through blood test indicators, its

limitations and the challenges of clinical implementation should

not be overlooked. Training healthcare professionals is essential

when introducing this detection method into clinical practice.

Additionally, seamlessly integrating this approach into existing

diagnostic workflows without increasing the clinical burden is

another significant challenge. Future research should focus on

expanding sample sizes, validating and standardizing detection

methods, assessing cost-effectiveness, and developing practical

clinical integration strategies. By addressing these issues, this

method can be further advanced for clinical application,

ultimately improving patient outcomes.
5 Conclusions

Blood testing indicators can increase the likelihood of diagnosis

for CRCLM in community hospitals. This study focused on utilizing

traditional ML algorithms and a feature selection strategy, to

investigate the classification of CRCLM and CRC. In terms of

CRCLM, AdaBoost algorithm achieved high accuracy reaching a

maximum of 89.3%. The results of this algorithm were applied to

identify the top 20 most relevant blood test features. Following

feature selection strategy, the accuracy increased to 91.1% in the

classification study. The findings of this study indicate that the

AdaBoost model combined with blood testing indicators can be

used to identify the liver metastases from CRC. Based on the above

analytical framework and conclusions, the practical implication of

this study is that it provides a potential tool for clinicians to rapidly

identify patients who may have CRCLM, which can be integrated

into existing diagnostic workflows and lead to earlier detection and

treatment. In the future, this study will explore larger and more

diverse datasets to confirm the findings of this study, and develop

testing systems for clinical use.
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