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Renal cell carcinoma is a urological malignancy with a high metastatic rate, while

targeted therapy for renal cell carcinoma still has much room for improvement.

Some cutting-edge researches have focused on exosome in cancer treatment

and there are some breakthroughs in breast cancer, lung cancer, and pancreatic

cancer. Up to now, exosome in renal cell carcinoma progression and

implications for targeted therapy has been under research by scientists. In this

review, we have summarized the structure, formation, uptake, functions, and

detection of exosomes, classified the mechanisms of exosomes that cause renal

cell carcinoma progression, and listed the promising utilization of exosomes in

targeted therapy for renal cell carcinoma. In all, based on the mechanisms of

exosomes causing renal cell carcinoma progression and borrowing the

successful experience from renal cell carcinoma models and other cancers,

exosomes will possibly be a promising target for therapy in renal cell carcinoma

in the foreseeable future.
KEYWORDS
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1 Introduction

Renal cell carcinoma (RCC) is a urological malignancy with an increasing incidence in

recent years, which accounts for about 3% of malignancies in adults (1, 2). In 2022, about

79,000 new cases and 13,920 deaths were reported in the United States, while about 77,410

new cases and 46,345 deaths were reported in China (3). According to pathological

examinations, RCC could be classified as clear cell renal cell carcinoma (ccRCC), papillary

RCC, chromophobe RCC, translocation-associated RCC, medullar RCC, and collecting duct

RCC, while ccRCC is the most common pathological type, which takes up about 75% of RCC

(4). RCC incidence rises with age and is more prevalent in men than women, with major risk
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factors including excess body weight, hypertension, and cigarette

smoking. For ccRCC, it is characterized by frequent mutations in the

VHL tumor suppressor gene, leading to the activation of genes related

to angiogenesis, glycolysis, and apoptosis. Besides, additional genetic

and epigenetic alterations are required for ccRCC development. The

tumor microenvironment of ccRCC is characterized by high T cell

infiltration, particularly in higher-grade and stage tumors, with

increased T helper 2 and T regulatory cell infiltration (5). RCC

often presents without symptoms in its early stages, with many cases

being incidentally discovered during imaging studies performed for

unrelated reasons.When symptoms do appear, they can include flank

pain, hematuria, and a palpable abdominal mass. The diagnosis of

RCC relies on computed tomography (CT) or magnetic resonance

imaging (MRI) to assess the size, location, and extent of the tumor

(6). Though around 70% of patients were diagnosed with localized

RCC and complete nephrectomy was performed after diagnosis, 30%

of them would develop metastasis in the follow-up, whereas around

30% of patients were diagnosed withmetastatic RCC in the beginning

(4, 7). The drugs for metastatic RCC have improved a lot in recent

years, which mainly include targeted therapy (TT) agents and

immune checkpoint inhibitors (ICIs). The former could be

subdivided into inhibitors of vascular endothelial growth factor

(VEGF) signaling such as sunitinib and inhibitors of mammalian

target of rapamycin (mTOR) including temsirolimus, and the latter

contains programmed death-1 (PD-1), programmed death ligand-1

(PD-L1), and the cytotoxic T-lymphocyte associated protein-4

(CTLA-4) (8). Nonetheless, with the combination of targeted

therapy and immunotherapy for metastatic RCC, the average

survival time is only 48 months, and drug resistance and immune-

related adverse events (irAEs) are also unsolved problems (9).

Recently, more and more researches have cast light on exosomes

in cancer treatment including breast cancer, lung cancer, and

pancreatic cancer, and the relationship between tumor metastasis

and exosome is a cutting-edge topic (10, 11). In therapy for breast

cancer, exosomes are modified with active cancer-targeting folic acid

(FA) on the surface to carry indocyanine green (ICG) towards the

cancer cells, which could accumulate in tumor cells and suppress the

tumor growth significantly (12). As for lung cancer, some scientists

have constructed exosomes that could be the carriers for siRNA-

loaded PD-L1, which could target lung cancer cells (13). Moreover,

depending on CD47, the modified exosomes could target oncogenic

Kirsten rat sarcoma viral oncogene homolog (KRAS) via

micropinocytosis, which would suppress pancreatic cancer

progression and increase the survival rate in mice models (14).

Given their ability to carry molecular cargo, it is not surprising that

exosomes are emerging as a promising target for RCC treatment.

Many medical professionals are optimistic that these novel targeted

therapies will be effective against this challenging malignancy. To

date, most of the reviews about exosome and RCC on the Internet

have only focused on the diagnosis of RCC through exosomal

molecules and the mechanisms of RCC drug resistance caused by

exosomes, while there is no review about the mechanisms that

exosome causes RCC progression and exosome as a promising new

target for RCC treatment. In this review, we will discuss the

mechanisms of exosome-mediated RCC progression and find out

potential ways for targeted therapies to inhibit RCC progression.
Frontiers in Oncology 02
Possibly, based on the mechanisms of exosomes causing renal cell

carcinoma progression and borrowing the successful experience from

renal cell carcinoma models and other cancers, exosomes will

possibly be a promising target for therapy in renal cell carcinoma

in the foreseeable future.
2 Structure, formation, uptake, and
functions of exosome

Extracellular vesicles are a class of cell-derived membrane

structures consisting of exosomes and microvesicles that originate

from the endosomal system or are shed from the plasma membrane,

respectively (15). Exosome, a membrane-bound vesicle of 30-150 nm

in diameter and also known as intraluminal vesicle (ILV), can be

secreted by all kinds of cells and has been found in plasma, serum,

lymph, urine, semen, saliva, bile, gastric acid, etc. (16, 17). The

membrane of the exosome mainly consists of lipid and protein,

which is rich in lipid raft, and multiple kinds of molecules have been

found in the lumen of the exosome (18). Exosomes contain specific

membrane proteins, lipids, nucleic acids, cell membrane proteins, and

other signaling molecules. These molecules can be trafficked to

recipient cells by exosomes, and the mechanisms by which different

molecules select carriers vary (19) (Table 1). The formation of the

exosome starts with the formation of the endosome, which is produced

by the internalization of the cell membrane. Later, the endosome would

be separated into many small vesicles named multivesicular bodies

(MVBs). Some of the MVBs would be degraded by lysosomes or

autophagosomes, while others would fuse with the cell membrane and

release the ILVs to the extracellular region as exosomes (18, 20). After

being secreted, the exosome could exchange information through

endocrine, paracrine, and autocrine. When the exosome reaches the

recipient cells, three mechanisms can explain its uptake: receptor-

ligand mediated interactions, membrane fusion, and endocytosis (21).
TABLE 1 Mechanisms of molecules selecting carriers.

Biological
Molecules

Main Components
Sorting
Mechanisms

Proteins

Transmembrane proteins (e.g.,
tetraspanins), membrane-
associated proteins (e.g.,
flotillins), and soluble proteins

Interactions with ESCRT
complexes
Plasma membrane
budding/shedding

RNA
mRNA, miRNAs, snRNAs,
circRNAs, lncRNAs, etc.

Active loading through
specific motifs
(EXOmotifs) and RBPs
(e.g., hnRNPA2B1,
FMRP)
Passive loading depending
on intracellular
RNA concentration

DNA
Genomic dsDNA, dsDNA-
binding histones, ssDNA,
and mtDNA

Mechanisms not fully
elucidated (may involve
cytoprotective functions)

Lipids

Cholesterol,
phosphatidylcholine,
phosphatidylserine,
sphingomyelin, and ceramide

Various ESCRT-
independent mechanisms
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The receptor-ligand mediated interactions mainly activate the

downstream signal in the recipient cell through signal transduction.

The membrane fusion relies on two distinct membranes getting close

and forming a fusion pore, which could transport the contents in the

exosomes into the cytoplasm (22). The endocytosis process would

require various transmembrane receptors to form coated vesicles for

internalization, and later the vesicles would be uncoated and fuse with

endosomes, which would undergo transcytosis and would be released

towards the neighboring cells through paracrine, or they would be

degraded by lysosomes (18, 23). The degradation products in the

lysosomes and the contents trafficked through membrane fusion could

also activate physiological and pathological responses (21). (Figure 1)

The exosome mainly functions as a carrier for the circulation of

lipids, proteins, and nucleic acids in the extracellular region, which

may be important for intercellular communication, immune

response, tumor progression, etc. (16, 18). For instance, the

communications between intestinal epithelial cells (IECs) and

dendritic cells (DCs) rely on exosome loading with peptide-MHC

II complexes, which play a significant role in inflammatory bowel

diseases (IBDs) (24). Besides, Hamzah et al. have claimed that the

uptakes of different types of exosomes by neuronal cells have

different effects, though the mechanisms behind them are still

unknown (25). Additionally, Lu and colleagues have proved that

exosomes produced by senescent osteoblasts could upregulate the

miR-139-5p in endothelial cells (26). In neurodegenerative diseases,

the expression of exosomal miRNAs could be influenced by

oxidative stress, while the exosomal miRNAs could also affect the

oxidative stress response through gene regulation (27).

Additionally, Noonin et al. summarized the crosstalk between

exosomes and inflammasomes. For one thing, the release of

exosome could be regulated by the inflammasome, for another

exosome could also have an impact on the activation of
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inflammasome, while whether exosome is alleviating or

enhancing inflammasome activation depends on what kind of

cells are producing exosomes (28). The opinion that exosomes

played a key role in the pathological process of diabetes was

proposed by Chang et al. On the one hand, exosomes connect the

adipocyte stimulation with insulin resistance and the immune cell

response with pancreatic tissue injury. On the other hand, the

nucleic acids in the exosomes, especially miRNA and lncRNA,

could regulate the communications between organs involved in the

pathological processes of diabetes, such as impacting the metabolic

signals and insulin signals in the targeted tissues (29). Furthermore,

exosomes could also traffic biologically functional molecules

towards the recipient cells, which could reprogram the tumor

cells and modulate the metabolism of the stromal cells in the

tumor microenvironment (TME) (30). Exosomes promote

angiogenesis by carrying pro-angiogenic factors like VEGF to

stimulate the formation of new blood vessels, supporting tumor

growth and metastasis. In terms of immune modulation, exosomes

can carry immunosuppressive molecules like PD-L1, inhibiting the

immune cells to attack the tumor. Exosomes affect cancer stem cells

by regulating their self-renewal and differentiation, contributing to

the maintenance of cancer stem cell populations within the tumor.

Additionally, they can transfer drug resistance mechanisms between

cancer cells helping them resist chemotherapy. This would promote

the progression, metastasis, and drug resistance of the tumor (31).
3 Detection of exosomes

The process of detecting exosomes is usually divided into

several steps: isolation, purification, identification, and analysis.

Traditional methods of isolating and purifying exosomes include
FIGURE 1

The formation and uptake of exosomes.
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ultracentrifugation, ultrafiltration, size-exclusion chromatography,

immunoaffinity, and polymer precipitation, while more recent

methods include membrane based-separation and microfluidic

technology (32). The identification and analysis mainly rely on

nanoparticle tracking analysis, dynamic light scattering, resistive

pulse sensing, atomic force microscopy, transmission electron

microscopy, flow cytometry, while new approaches such as filter

paper-based techniques, electrochemical sensing, optical

approaches present low sample volumes and potentially much

lower operational costs (33).
4 The mechanisms of exosome cause
RCC progression

Tumor metastasis can’t be separated from intercellular

communication. Before the metastasis occurs, not only would tumor

cells transduce signals to the primary tumor microenvironment, but

tumors would also send signals towards the expected sites for future

metastasis, which could form a hospitable pre-metastatic niche (PMN)

for the arrival of tumor cells later (34). In detail, exosomes could

regulate the permeability of local vessels to make tumor progression

more convenient. Besides, to achieve the goal of sending signals to

metastatic sites, exosomes act as carriers for nucleic acids and proteins.

They regulate the physiology of distant non-tumor cells, making

potential metastatic sites suitable for the dissemination and growth

of metastatic tumor cells (35). Interestingly, the destinations of tumor

metastasis are decided by the exosomal integrin expressions. For

instance, Hoshino et al. reported that integrins a6b4 and a6b1 were

related to lung metastasis and exosomal integrin avb5 had a close

connection with liver metastasis (36). Besides, some papers have also

proved that the exosomes could also be trafficked from the cells in the

TME to tumor cells, or even from one tumor cell to another tumor cell,

which will be described in detail in the following parts (Table 2).
4.1 Transportation of exosomes from RCC
cells to other cells to regulate TME

In the progression of RCC, exosomes could function as the

carriers to transfer small molecules from RCC cells to their

destination to make the TME more suitable for tumor metastasis.

Zhang et al. have explored that the RCC-derived exosomes contain a

large number of lncRNAs named lncARSR. The overexpression of

lncARSR could not only regulate the phenotype transformation and

function of macrophages but also promote the RCC progression. The

lncARSR could also interact with miR-34/miR-449 to upregulate the

expression of signal transducer and activator of transcription 3

(STAT3) to induce the polarization of M2 macrophages in RCC,

which may lead to tumor progression and metastasis due to

immunosuppression function of M2 macrophages (37). Similarly,

another research team has shown that RCC-derived exosomes with

high expression of circSAFB2 can induce the polarization of M2
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macrophages through the miR-620/JAK1/STAT3 pathway (38). A

similar idea was also claimed by Shen et al. that AP000439.2

translated from lncRNA AP000439.2 in the ccRCC-derived

exosomes could interact with STAT3 proteins and phosphorylate

STAT3 in macrophages, which would lead to the overexpression of

AP000439.2. In this way, the overexpression of AP000439.2 could

also increase the p65 phosphorylation and the expression of TGF-b
and IL-10, which would cause M2 macrophage polarization and

tumor progression and metastasis (39) (Figure 2). Furthermore,

exosomes derived from ccRCC could activate the TGF-b/SMAD

signaling pathway, resulting in the dysfunction of NK cells and

evasion of tumor immune surveillance (40). In addition, Li et al.

have found that the ApoC1 in the ccRCC-derived exosome could be

trafficked to vascular endothelial cells to promote metastasis through

activating STAT3. STAT3 is also a transcriptional regulator of VEGF,

which promotes neovascularization. This contributes to tumor

growth and spread by providing oxygen and nutrients to the

tumor (41)..
TABLE 2 Molecules conveyed by exosomes in the metastasis of RCC.

Conveyance
direction

Contents
in exosome

Function

RCC to TME

lncARSR Inducing the M2
macrophage polarization.

circSAFB2 Inducing the M2
macrophage polarization.

AP000439.2 Promoting RCC metastasis and
inducing M2 macrophage polarization.

TGF-b1 Leading to the dysfunction of
NK cells.

ApoC1 Enhancing RCC metastasis.

TME to RCC

miR-19b-3p Promoting RCC metastasis and
epithelial-mesenchymal transition.

miR-193a-5p Increasing vasculogenic mimicry and
tumor progression.

Not mentioned Enhancing RCC progression and
suppressing RCC apoptosis.

miR-224-5p Modulating RCC progression,
metastasis, invasion, and apoptosis.

miR-181d-5p Promoting RCC stemness and
inducing metastasis.

miR-155-5p Promoting RCC proliferation
and progression.

miR-21-5p Regulating RCC metastasis.

miR-342-3p Promoting RCC proliferation
and invasion.

RCC to RCC

circ-PRKCI Promoting RCC proliferation
and progression.

miR-15a Facilitating tumor progression.

lncHILAR Inducing RCC metastasis.
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4.2 Transportation of exosomes from TME
to RCC cells to induce the proliferation
and metastasis of RCC cells

Besides, exosomes could also be transferred from the cells in the

TME to RCC cells to induce tumor proliferation and metastasis.

Wang et al. have claimed that exosomes derived from cancer stem

cells (CSCs) could deliver miR-19b-3p towards ccRCC cells, which

could promote tumor metastasis and the epithelial-mesenchymal

transition (EMT). What was worth mentioning was that CD103+

CSC-derived exosomes could function as the guide for lung

metastasis (42). Besides, the upregulation of HIF-1a in
Frontiers in Oncology 05
macrophages could increase the expression of miR-193a-5p, and

later the exosomes produced by tumor-associated macrophages

(TAMs) could traffic the miR-193a-5p towards the 3’ untranslated

region (UTR) of TIMP2 mRNA in the RCC cells. The translation of

TIMP2 mRNA would be inhibited, resulting in the increase of

vasculogenic mimicry (VM) and tumor progression (43) (Figure 3).

Moreover, exosomes produced by cancer-associated fibroblasts

(CAFs) could be internalized by RCC cells, resulting in the

enhancement of the proliferation, progression, and migration of

the tumor cells, while the tumor cell apoptosis would be suppressed.

Besides, the exosomes could also increase the proportion of S phase

cells and the expression of fibronectin, N-cadherin, vimentin,
FIGURE 3

TAM-derived exosomal miR-193a-5p downregulates TIMP2 expression to facilitate vasculogenic mimicry and invasion of RCC cells. Reprinted with
permission from Liu Q, Zhao E, Geng B, Gao S, Yu H, He X, et al. Tumor-associated macrophage-derived exosomes transmitting miR-193a-5p
promote the progression of renal cell carcinoma via TIMP2-dependent vasculogenic mimicry. Cell death & disease. 2022;13(4):382. Copyright
Springer Nature.
FIGURE 2

Graphical summary of lncRNA AP000439.2 regulation. Reprinted with permission from Shen T, Miao S, Zhou Y, Yi X, Xue S, Du B, et al. Exosomal
AP000439.2 from clear cell renal cell carcinoma induces M2 macrophage polarization to promote tumor progression through activation of STAT3.
Cell communication and signaling: CCS. 2022;20(1):152. Copyright Springer Nature.
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MMP9, and MMP2 in tumor cells (44). Also, Liu et al. gave an

example that exosomes secreted by CAFs would act as a carrier for

miR-224-5p, which could be internalized by ccRCC cells to

modulate the progression, metastasis, invasion, and apoptosis

(45). Similarly, researchers have also reported that the miR-181d-

5p in the exosomes could trafficked from CAFs to RCC cells, which

could activate the Wnt/b-catenin signaling pathway to promote

cancer stemness and tumor progression. In addition, ring finger

protein 43 (RNF43), a direct target of miR-181d-5p, was a negative

regulator of the Wnt/b-catenin signaling pathway. The miR-181d-

5p could also suppress the expression of RNF43 to induce RCC

metastasis (46). In addition, extracellular vesicles derived from

CAFs transfer SNHG1 to RCC cells, leading to increased

expression of SNHG1 in RCC cells. The exosomes secreted by

CAFs promote the proliferation, migration, and invasion of RCC

cells, while SNHG1 knockdown weakens the promoting effect of

CAFs exosomes on RCC progression (47). Furthermore, exosomes

produced by hypoxic TAMs could transport miR-155-5p to RCC

cells, which could promote the progression and metastasis of the

tumor cells via the IGF1R/PI3K/AKT pathway. Besides, the miR-

155-5p could also increase the stability of IGF1R mRNA by

interacting with human antigen R (HuR) to promote the

proliferation and progression of RCC (48). Additionally, Zhang

et al. have explored that exosomes produced by the pro-tumorigenic

M2 macrophages could transport miR-21-5p to RCC cells. The

miR-21-5p would target PTEN-3’UTR to regulate the PTEN/Akt

signaling pathway, resulting in RCC metastasis (49). Similarly,

another study has proved that M2 macrophage-derived

extracellular vesicles could highly express miR-342-3p and

transport it to RCC cells, which would specifically bind NEDD4L

and suppress the expression of NEDD4L. This could improve the

expression level of the CEP55 protein, promoting RCC proliferation

and invasion through the PI3K/AKT/mTOR pathway (50).
4.3 Transportation of exosomes from RCC
cells to RCC cells to promote metastasis

Apart from the communications via exosomes between RCC

cells and TME, there also exists communications between RCC cells

to promote tumor metastasis. For example, Qian et al. found that

the exosomes derived from the RCC could deliver circ-PRKCI from

highly malignant tumors to comparatively less malignant tumors,

which could promote RCC proliferation and progression. In detail,

the circ-PRKCI could promote RCC progression through the miR-

545-3p/CCND1 pathway (51). Besides, other doctors have explored

that miR-15a in the exosome produced by the RCC cells could

activate the PI3K/AKT signaling pathway, which could lead to RCC

proliferation, invasion, metastasis, and EMT. Moreover, B-cell

translocation gene 2 (BTG2), a target gene of miR-15a, was

negatively correlated with miR-15a expression and could inhibit

the RCC proliferation. The miR-15a could also downregulate the

expression of BTG2 and facilitate tumor progression (52). In

addition, Hu and colleagues have explored the impact of hypoxia

on RCC metastasis. The exosomes produced by hypoxic RCC cells

could carry lncHILAR towards normoxic RCC cells. The lncHILAR
Frontiers in Oncology 06
would function as a competing endogenous RNA (ceRNA) for miR-

613/206/1-1-3p, resulting in the upregulation of Jagged-1 and the

C-X-C motif chemokine receptor 4 (CXCR4). After being activated,

Jagged-1/Notch/CXCR4 axis would induce RCC metastasis (53).

Another interesting article found that exosomes produced by VHL

(–) RCC cells can induce EMT, migration, invasion, and distant

metastasis of VHL (+) RCC cells after being uptaken (54).
5 Promising utilization of exosome in
targeted therapy for RCC

Based on the function of intercellular transportations, exosomes

could traffic small molecules to specific cells or tissues, which may

play an important role in targeted therapy (55). On the one hand,

exosomes could effectively prevent nucleic acid drugs from being

degraded or neutralized by intracellular enzymes when certain drugs

have to be transported into the target cells (56). On the other hand, to

prevent exosomes from promoting tumor metastasis via intercellular

communication, targeted therapies could aim at blocking exosome

generation, secretion, and uptake (57). Up to now, exosomes have

been applied to treating various diseases including infectious diseases,

cardiovascular diseases, and nervous system diseases (58). A review

published by Shi et al. has summarized that endogenous exosomes

may be a promising tool to carry the functional Cas9 and HBV-

specific gRNA to cut HBV DNA in HBV DNA transfected cells (59).

Besides, Bu et al. have developed a system that could modify IL-10

mRNAwith twomiR-155 recognition sites.When the miR-155 in the

macrophages was expressed, the IL-10 mRNA in the exosome could

be delivered into macrophages and other cells in the plaque, and later

the IL-10 mRNA would translate into protein, which could alleviate

the atherosclerosis in the model (60). Another team has reported a

device that could design the exosome to enhance exosome

production, specific mRNA packaging, and delivery of the mRNA

into the cytosol of target cells. This was used in the model for

trafficking mRNA to the brain, which could alleviate neurotoxicity

and neuroinflammation in models of Parkinson’s disease (61).
5.1 Utilizing the intercellular
communications of exosomes to inhibit
RCC metastasis

One of the functions of exosomes is intercellular communication,

and therapies could make full use of it to send signals to prevent RCC

metastasis. For instance, Yoshino et al. have found that miRNA-1

(miR-1) could suppress RCC growth and invasion. Their experiment

has shown that the miR-1 expression would be elevated in the RCC

cells if they were treated with exosomes produced by miR-1-transfected

cells. They believed that this interesting finding would be a potential

treatment for RCC (62). Besides, IL-12-anchored renal cancer cells

could produce exosomes expressing renal cell carcinoma-associated

antigen G250 and glycolipid-anchored-IL-12 (GPI-IL-12).

Surprisingly, exosomes with GPI-IL-12 could significantly promote

the proliferation of T cells and later would increase the release of IFN-g.
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Besides, stimulating exosomes with GPI-IL-12 could effectively induce

antigen-specific cytotoxic T lymphocytes (CTLs), which results in

significant cytotoxic effects. All these results have shown that

exosomes derived from IL-12-anchored renal cancer cells could

express GPI-IL-12 and G250, which may be applied to treating RCC

in the future (63). In addition, Brossa and colleagues have conducted

experiments about the influence of extracellular vesicles (EVs)

produced by human liver stem cells (HLSCs) on renal CSCs.

Through systemic administration, EVs from HLSCs could suppress

the subcutaneous tumor growth by decreasing the vascularization of

the tumor and inducing the apoptosis of tumor cells, which may result

from the transportation of antitumor miRNAs. This would also be a

possible method to treat RCC in the future (64). Moreover, another

study found that exosomal circSPIRE1 could suppress RCCmetastasis.

It could upregulate polypeptide N-acetylgalactosaminyltransferase 3

(GALNT3) and KH domain RNA binding protein (QKI) expression.

GALNT3 could promote glycosylation and cytomembrane localization

of E-cadherin and QKI could form a positive feedback loop to enhance

circSPIRE1 expression. Additionally, exosomal circSPIRE1 could also

suppress angiogenesis and vessel permeability (65) (Figure 4).
5.2 Suppressing the formation of exosomes
could reduce their bad effects

Exosomes could promote RCC proliferation, invasion,

metastas is , and drug resistance through intercel lular

communications while suppressing the formation of exosomes

could reduce tumor progression. Greenberg et al. have explored

that Ketoconazole (KTZ), a kind of anti-fungal medicine, could

suppress the biogenesis and secretion of exosomes, which would be

an effective medicine for RCC treatment because it could inhibit the

RCC metastasis induced by exosomes (66) (Figure 5). The same

research team also claimed that sunitinib resistance (SR) of RCC is

due to existing SR exosomes, while the use of tipifarnib decreases

the expression of PD-L1 protein and SR exosome production and

secretion (67). Besides, Wang et al. have proposed a transformable

dual-inhibition system (TDS) that could reduce the transportation

of exosomes produced by CSCs, which could inhibit the delivery of

miR-19b. This could increase the expression of PTEN and suppress

the RCC metastasis mediated by CSCs (68).
6 Discussion and future perspectives

The major role of exosomes in RCC metastasis could be divided

into regulating TME through the transportation of exosomes from

RCC cells to other cells, inducing the proliferation and metastasis of

RCC cells via transporting exosomes from TME to RCC cells, and

promoting tumor metastasis by the transportation of exosomes from

RCC cells to RCC cells. When the immune-related cells in the TME

are recipient cells of exosome transportation, the main function of

exosome trafficking is to suppress the immune system. However,

when RCC cells are the recipient cells of exosome transportation, the

main function of exosome trafficking is to promote RCC proliferation

and metastasis through signaling pathways. Moreover, though only
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limited studies have focused on the utilization of exosomes in treating

RCC, the main function of exosomes in targeted therapy could be also

categorized into two types, which are utilizing the intercellular

communications of exosomes to inhibit RCC metastasis and

suppressing the exosome formation to reduce their bad effects

(Figure 6). On the one hand, exosomes could be genetically

engineered or chemically modified, including the expression of

specific proteins or ligands on their surfaces to enhance the

selective binding ability to RCC cells and target cells within the

TME, or could be loaded with therapeutic molecules, such as

miRNAs, lncRNAs, to regulate gene expression or signaling

pathways within the target cells to activate the immune response

and cancer inhibition-related signaling pathways within the TME. On

the other hand, cutting off exosome-associated intercellular

communication and preventing the activation of pro-cancer

pathways through exosome-neutralizing antibodies or competitive

antibodies, reducing the likelihood of immunosuppression and

immune cell depletion in TME. The key molecules VHL and

mTOR, as well as the critical pathways VHL-HIF and PI3K/Akt/

mTOR, may be the prime targets in kidney cancer therapy (69).

These involved cells, molecules, and pathways may become targets

for the exosome-based treatment of renal cell carcinoma.

Up to now, there have been four clinical trials involving

exosomes and renal cancer, and the main focus of these studies

has been on using exosomes to evaluate the efficacy of renal cancer

treatments and as early biomarkers for renal cancer. NCT02439008,

NCT02071719, and NCT05705583 are three studies that assess the

effectiveness of different treatment modalities for renal cancer

through exosomes. NCT04053855 is a study that aims to detect

tumor exosomes in urine to provide a new liquid biopsy tool for the

early diagnosis of clear cell renal cell carcinoma (https://

clinicaltrials.gov). It is evident that the application of exosomes in

targeted therapies for renal cancer requires further exploration of

their potential.

Besides, according to the examples listed above, exosomes mostly

function as the carriers of RNAs and proteins, while non-coding RNAs

especially microRNAs consist of the majority of exosome cargos.

Different non-coding RNAs have different functions and may suggest

different stages of tumor progression, so the upregulation of specific

non-coding RNAs in the body fluid could be detected and may be

promising markers for the early diagnosis of localized and metastatic

RCC separately (70). In addition, drug resistance is a big problem in

RCC treatment, while some non-coding RNAs have been proven to

play an important role in RCC proliferation and sunitinib resistance

(71). Preventing the formation of harmful exosomes, targeting the

conveyance of harmful exosomes, and inhibiting the harmful exosomes

from binding to recipient cells may work as useful tools to prevent RCC

proliferation and sunitinib resistance, resulting in a better prognosis for

RCC treatments. Perhaps in the near future, targeted therapy targeting

these harmful exosomes or targeting some molecules carried by

exosomes will become a new approach in cancer treatment.

Nonetheless, exosomes are also a double-edged sword, which means

that not all exosomes are harmful to the human body and promote

tumor proliferation and migration. Some beneficial exosomes

trafficking certain molecules would also be helpful in activating

immune response to suppress tumor progression (72). It is also
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worth trying to modify the exosomes to obtain beneficial functions or

trying to let exosomes carry therapeutic drugs may be a problem solver

for the current situation, which would also be a breakthrough point in

exosome-based targeted therapy. Exosomes possess significant

advantages as natural carriers in targeted therapy. First, they can

effectively avoid phagocytosis by immune cells and freely cross the

vessel wall and extracellular matrix, ensuring the wide distribution and

stability of exosomes in biological fluids. Second, compared with
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synthetic nanoparticles, exosomes are derived from human cells and

have better biocompatibility and lower immunogenicity. Exosomes can

enter target cells through receptor-mediated endocytosis, which

optimizes the endocytosis process and promotes the effective

internalization of drugs. What’s more, exosomes have a natural

targeting ability to penetrate biological barriers, such as the blood-

brain barrier, making them highly promising carriers for targeted drugs

(11). However, there are still a number of issues that need to be
FIGURE 4

Mechanism of circSPIRE1 during RCC metastasis in tumor microenvironment. Reprinted with permission from Shu G, Lu X, Pan Y, Cen J, Huang K,
Zhou M, et al. Exosomal circSPIRE1 mediates glycosylation of E-cadherin to suppress metastasis of renal cell carcinoma. Oncogene. 2023;42
(22):1802-20. Copyright Springer Nature.
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FIGURE 6

Major roles of exosomes in RCC progression and ways for potential treatments.
FIGURE 5

Exosome-mediated transfer of therapeutic resistance in the RCC microenvironment by the clinically approved KTZ. Reprinted with permission from
Greenberg JW, Kim H, Moustafa AA, Datta A, Barata PC, Boulares AH, et al. Repurposing ketoconazole as an exosome directed adjunct to sunitinib in
treating renal cell carcinoma. Scientific reports. 2021;11(1):10200. Copyright Springer Nature.
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addressed before this goal can be realized. It is necessary to confirm that

these molecules can inhibit tumor progression, and then there should

be appropriate ways to link them with the transportation of exosomes

in order to be applied to the researches on the treatment of renal cell

carcinoma. Besides, large-scale production of exosomes is limited by

their short circulating lifespan, inaccurate targeting ability, and

inappropriate controls (73).
7 Conclusions

In a nutshell, metastatic RCC is a disease that still lacks effective

treatments though targeted therapy and immunotherapy have

brought hope to doctors and patients. Since exosomes were first

discovered, the discussion about their connection with cancers has

never stopped. Exosomes are important carriers for intercellular

transportation and communications, which could deliver small

molecules from one cell to another. Studies have found the

secrets behind RCC metastasis related to exosomes, which are the

cell transportation from RCC to TME, from TME to RCC, and from

RCC to RCC. Based on these findings, many doctors have proposed

that their findings about the mechanism of RCC metastasis would

have a promising future in treating metastatic RCC. However, till

now, limited papers have reported their research advance in therapy

targeting exosomes, and most of these researches were conducted

on the model. Nonetheless, as for some other diseases, utilizing

exosomes for carrying certain medicines and inhibiting the

formation of exosomes have already been the pilot therapies.

Probably, in the near future, exosomes will be a promising target

for renal cell carcinoma treatment.
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