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University, Lanzhou, China, 2Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China,
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Intelligence, Lanzhou, China, 4Department of Radiology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China, 5Department of Nuclear
Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of
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Background: The aim of this study is to develop deep learning models based on
18F-fluorodeoxyglucose positron emission tomography/computed tomographic

(18F-FDG PET/CT) images for predicting individual epidermal growth factor

receptor (EGFR) mutation status in lung adenocarcinoma (LUAD).

Methods: We enrolled 430 patients with non–small-cell lung cancer from two

institutions in this study. The advanced Inception V3 model to predict EGFR

mutations based on PET/CT images and developed CT, PET, and PET + CT

models was used. Additionally, each patient’s clinical characteristics (age, sex,

and smoking history) and 18 CT features were recorded and analyzed. Univariate

and multivariate regression analyses identified the independent risk factors for

EGFR mutations, and a clinical model was established. The performance using

the area under the receiver operating characteristic curve (AUC), accuracy,

sensitivity, specificity, recall, and F1-value was evaluated. The DeLong test was

used to compare the predictive performance across various models.

Results: Among these four models, deep learningmodels based on CT and PET +

CT exhibit the same predictive performance, followed by PET and the clinical

model. The AUC values for CT, PET, PET + CT, and clinical models in the training

set are 0.933 (95% CI, 0.922–0.943), 0.895 (95% CI, 0.882–0.907), 0.931 (95% CI,

0.921–0.942), and 0.740 (95% CI, 0.685–0.796), respectively; whereas those in

the testing set are:0.921 (95% CI, 0.904–0.938), 0.876 (95% CI, 0.855–0.897),

0.921 (95% CI, 0.904–0.937), and 0.721 (95% CI, 0.629–0.814), respectively. The

DeLong test results confirm that all deep learning models are superior to

clinical one.
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Conclusion: The PET/CT images based on trained CNNs effectively predict

EGFR and non-EGFR mutations in LUAD. The deep learning predictive models

could guide treatment options.
KEYWORDS
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1 Introduction

Lung cancer remains the leading cause of cancer-related

mortality worldwide (1, 2). For decades, the standard treatment

for advanced non–small-cell lung cancer (NSCLC) relied solely on

cytotoxic chemotherapy. However, the introduction of targeted

therapy and immunotherapy has rapidly transformed the field of

treatment (3). In eligible patients with metastatic NSCLC possessing

specific somatic genomic alterations, such as epidermal growth

factor receptor (EGFR) gene mutations, the response to treatment

involves corresponding tyrosine kinase inhibitors (TKIs). TKIs

effectively inhibit the activity of abnormal EGFR protein kinases,

leading to a significant improvement in the objective response rate,

extending progression-free survival, and dramatic improvement in

quality of life. As a result, they have replaced traditional

chemotherapy as a first-line treatment (4–8).

The EGFR mutation status is an important predictor of the

curative effects of EGFR-TKIs (9, 10). EGFR gene status can be

categorized into wild-type and mutant types, with mutant types

accounting for 40%–50% of the Asian population (11, 12). EGFR

mutations in exon 19 deletion (19DEL) and exon 21 L858R point

mutations are the two most common subtypes in NSCLC,

accounting for 90% of all mutations, and referred to as sensitive

mutations. Mutations in exons 18 and 20 are relatively rare, and

mutations in exon 20 are not suitable for TKIs treatment. Therefore,

it is very important to detect the EGFR mutation status before

treatment. Although molecular pathology is the gold standard, its

comprehensive coverage in clinical applications is limited by the

heterogeneity of tumors and invasive detection methods (13, 14).

Therefore, developing a non-invasive, effective, simple, and

practical method for predicting the EGFR mutation status is

essential, as is screening patients to determine their eligibility for

EGFR-TKI treatment.

In recent years, radiomics and deep learning fields have

achieved substantial advancements, particularly with the success

of deep learning in artificial intelligence due to its powerful feature

extraction and classification capabilities, eliminating the need for

laborious manual feature extraction.

Notably, deep learning methods have also advanced in research

on computed tomography (CT) and positron emission

tomography/CT (PET/CT) image prediction of EGFR gene

mutations. The research team, led by Yunyun Dong, developed a
02
multichannel, multitask, end-to-end deep learning model based on

CT images to predict EGFR and KRAS gene mutations, achieving

accuracy rates of 75.06% and 69.64%, respectively (15). Wei Mu

et al. constructed a deep learning model that integrated PET/CT

images with clinical features to predict EGFR mutation status (16).

They concluded that the area under the curve (AUC) of the

combined model was higher than that of SUVmax, clinical model,

and PET/CT deep learning models alone. Guotao Yin and

colleagues utilized a squeeze excitation residual network module

to construct two deep learning models based on CT and PET images

to predict the EGFR mutation status. After overlaying the CT and

PET images, the AUC value reached 0.84, surpassing the values

obtained from using CT or PET alone (17). Although their research

has achieved good results, larger sample sizes are still needed to

further validate and improve the predictive performance of

the model.

Deep learning provides a non-invasive approach for guiding the

clinical selection of patients suitable for TKIs treatment. However,

due to limited sample datasets, variations in PET/CT examination

equipment and differences in convolutional neural networks

(CNNs) to extract features, the application of deep learning

methods for predicting gene mutations requires additional clinical

validation and in-depth research.

Recently, the inception of CNN has shown excellent

performance in feature extraction and benign/malignant

classification of lung nodules, owing to its multi-scale convolution

nuclei and residual structure (18). Additionally, the inception of

CNN proves valuable in addressing image dataset problems (19).

The Inception V3 architecture, known for superior performance in

image detection, classification, and segmentation compared to other

deep learning algorithms, has found extensive use in the medical

field for classifying and diagnosing various image and video sources,

including MRI, CT, microscopy, ultrasound, X-ray, mammography,

and color fundus photos (20). However, there is a lack of relevant

research reports on whether it can be used to predict EGFR

mutations in lung cancer.

This study aims to train and independently validate an EGFR

mutation state prediction system using PET/CT Inception V3 CNN

to screen lung cancer patients for EGFR TKI treatment eligibility.

We developed three deep learning models and one clinical model

using two retrospective cohorts of patients from two institutions:

The Second Hospital of Lanzhou University (LUSH) in Gansu,
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Lanzhou, China, and Sichuan Provincial People’s Hospital (SPPH)

in Sichuan, Chengdu, China.
2 Materials and methods

2.1 Patient selection

This retrospective study was performed in accordance with the

ethical standards as laid down in the 1964 Declaration of Helsinki

and its later amendments or comparable ethical standards. In

addition, this study adhered to the protocol approved by the

Institutional Review Board at LUSH and SPPH, with the need for

informed patient consent waived. A total of 430 patients who meet

the following inclusion criteria were included in two retrospective

cohorts accrued from two institutions between March 2016 and

December 2022 included in this study. This study was based on the

primary tumor of each patient, as some patients have more than one

lesion in their lungs. There were 152 patients from LUSH and 278

from SPPH. The cohort coincidentally comprised 215 cases each of

wild-type and mutant-type patients. Demographic and clinical

information including age, sex, and smoking history was

recorded. The criteria used to select patients included: (1)

confirmed primary lung adenocarcinoma (LUAD) through a

puncture or surgical pathological biopsy; (2) all patients

underwent EGFR testing, and the results were sensitive mutations;

(3) availability of complete PET/CT images from the top of the skull

to the upper thigh before puncture or surgery; and (4)

comprehensive clinical data. The criteria used for patient

exclusion are as follows: (1) confirmation through a puncture or

surgical pathology as a non-LUAD diagnosis, such as small-cell

carcinoma; (2) patients who underwent radiotherapy,

chemotherapy, or targeted drug therapy before PET/CT; (3) the

duration between surgery/biopsy and PET/CT imaging exceed 1
Frontiers in Oncology 03
month; (4) inability to identify tumors on PET/CT images; and (5)

incomplete clinical data. The workflow of this retrospective study is

illustrated in Figure 1.
2.2 EGFR mutation analysis

Mutations in EGFR exons 18, 19, 20, and 21 were tested with

polymerase chain reaction (PCR)–based amplified refractory

mutation system by using the human EGFR gene mutation

detection kit of both institutions (LUSH: Beijing SinoMD Gene

Detection Technology Co., Ltd., China; Amoy Diagnostics, Beijing,

China; SPPH: Beijing SinoMD Gene Detection Technology Co.,

Ltd., China; Amoy Diagnostics, Xiamen, China). If they were

mutated at any point, then the patient was defined as EGFR

mutation; otherwise, the patient was considered to having the

EGFR wild-type.
2.3 PET/CT image acquisition

PET/CT scans of LUSH were performed with a Discovery Elite

PET/CT scanner (GEHealthcare,WI, USA). Scan parameters were low-

dose CT (120 kV, 100 mA), and the slice thickness was 3.75 mm. The

initial low-dose CT information was used for attenuation correction.

The acquired CT data with a slice thickness of 3.75 mm were

reconstructed to 1.25 mm by GE Retro Recon. The reconstruction

parameters were as follows: thickness, 1.25 mm; interval, 1.25 mm;

Display field of view (DFOV), 70cm; and Recon Type, stand.

PET/CT examination of SPPH was performed with a hybrid

scanner (Biograph Duo or Biograph mCTFlow64-4R, Siemens

Healthcare Solutions Knoxville, TN). A non-contrast CT scan was

firstly performed for localization and attenuation correction, with a

slice thickness of 3 mm, interval of 2 mm, a tube voltage of 120 kV,
FIGURE 1

Flow diagram of the recruitment pathway.
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and tube current depending on the patient’s weight. Afterward, PET

images were acquired from the base of the skull to the proximal

thigh for 3 min per bed position in three-dimensional (3D) mode

(Biograph Duo) or continuous table motion acquisitions (Biograph

mCT Flow 64-4R). PET images were then reconstructed with an

ordered method of ultra HDPET, which included time of flight and

resolution recovery (TrueX) information.
2.4 CT image interpretation

CT images were interpreted independently by a nuclear

medicine physician with 10 years of PET/CT experience and

another radiologist with 8 years of CT experience in lung cancer

imaging. They were blinded to the clinical data and EGFR statuses.

All CT images had a thickness of 1.25 mm. A total of 18 CT features

were evaluated. The pleural retraction was defined as a pleural

movement toward the tumor, whereas an air bronchogram referred

to a tube-like or branched air structure within the tumor. Bubble-

like lucency denoted a 1- to 3-mm air density area within the mass

(21). In regard to the tumor texture, it contains both pure ground

glass nodule (GGN) and part-solid GGN. After performing separate

evaluations, differences were resolved by consensus.
2.5 Tumor segmentation

PET and CT scans were exported in Digital Imaging and

Communications in Medicine (DICOM) format at their original

resolutions. Two nuclear medicine physicians with experience in

PET/CT lung tumor diagnosis manually segmented PET/CT images

using ITK-SNAP software (version 3.8.0; www.itksnap.org).

Initially, the tumor’s region of interest (ROI) of the tumor was

delineated on the CT image, and delineation was completed on

transverse lung window (window width, 1,500 HU; window level,

−500 HU) and confirmed on coronal and sagittal images.

Delineation proceeded from head to toe, encompassing the entire

primary tumor and at least 10 mm of its peripheral region was

included in the ROI. After each layer, was delineated, a 3D volume

of the region of interest (VOI) was generated. For PET

segmentation, the tumor’s location on CT is first located to avoid

misidentification when the tumor metabolism is low and semi-

automatically drawn by referencing to the ROIs with a standard

uptake value threshold of 40%. The two reviewers were unaware of

the patient’s clinical data and EGFR test results while outlining

tumor VOI. The Kappa test assessed the consistency of VOI-

extracted features between the two reviewers using intra/inter-

class correlation coefficients (ICCs) as evaluation indicators. The

closer the ICC value is to 1, the higher the consistency, and

vice versa.
2.6 Data pre-processing

In the context of image preprocessing for CT data, the original

images are first adjusted to a window width and level setting of −500
Frontiers in Oncology 04
and 1,500, respectively. Following this adjustment, the data undergo

a 1 × 1 × 1 resampling process. Subsequently, the CT images are

cropped on the basis of the maximal edge range of the 3D ROI. For

each case, eight central images from the lesion area are retained as

input data (the eight central images of the lesion refer to the eight-

layer coronal images of the central slice of the 3D lesion). Similarly,

in the case of PET images, after completing the SUV conversion

using LIFEx software (version v6.20) (22), the images are cropped

on the basis of the maximal edge of the 3D ROI. Again, eight central

images from the lesion are preserved as input data for each case. If

the number of lesion slices is less than eight, then all slices of data

are kept as input. The images are then resized to 299 × 299 pixels to

satisfy the input requirements of the CNN model. The data are

randomly stratified into training and validation sets in a 7:3 ratio.
2.7 Deep learning model training
and validation

This network was obtained from an open-access library (Keras

Applications, https://keras.io/applications/). The deep learning

network platform was Python keras. PET/CT images were used to

construct three models: CT, PET, and CT combined with PET (PET

+ CT). All three models underwent training using Keras version

2.3.1 with TensorFlow 2.3.0 as the supporting backend.

Initially, the network’s weights were set using the pretrained

weights from the ImageNet model. Subsequently, a Global Average

Pooling 2D layer was added, averaging the pooling across each

feature map to transform it into a fixed-size vector for processing by

subsequent fully connected layers. Following this, a fully connected

layer with 256 neurons was incorporated, utilizing the rectified

linear unit (ReLU) activation function to introduce non-linearity. A

dropout layer was then added after this layer to mitigate the risk of

overfitting. The final step involved adding an output layer with a

softmax activation function, designed for multiclass classification.

The loss function chosen was “binary_crossentropy,” which is

appropriate for binary classification tasks. For optimization, the

Adam optimizer was selected with a learning rate set at 0.0001,

regulating the speed of weight updates.

Process diagram for training and testing deep learning models

are shown in Figure 2. The models were trained with separate inputs

of CT data, PET data, and combined PET + CT data, resulting in the

development of three deep learning models based on the Inception

V3 architecture.
2.8 Model interpretation

In order to visualize the prediction of EGFR mutation status by

deep learning models, we applied Gradient weighted Class

Activation Mapping (Grad-CAM) technology (23), which can

help us understand how the model classifies based on the features

of the input image. We chose the last convolutional layer of the

network because it contains both advanced features and spatial

information. Then, we propagated the image forward to obtain a

score for a specific category, calculated this score relative to the
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gradient output of the selected convolutional layer, weighted each

channel using the global average of these gradients, and finally

obtained a weighted heatmap with the same spatial dimension as

the convolutional layer.
2.9 Statistical analysis

All data were statistically analyzed using R software (version

4.1.3). The significance level used throughout this study was 0.05.

For clinical and imaging features, univariate and multivariate

regression analyses were used to screen for independent risk

factors associated with EGFR mutations, and a clinical model was

established. Student’s t-tests or Mann–Whitney U tests were used

for continuous variables, and chi-square or Fisher’s exact tests were

employed for categorical variables. Receiver operating characteristic

(ROC) curve analysis, along with the AUC value, accuracy,

sensitivity, specificity, recall, and F1 values, was used to assess the

predictive performance of various models. The DeLong test was

used to compare the differences in ROC curves between the

various models.
3 Results

3.1 Clinical characteristics

This study included 430 patients with NSCLC in the final

analysis, comprising 229 men (53.3%) and 201 women (46.7%),

with an average age of 60.56 ± 10.72 years, their ages varied from 27

to 85 years. The cohort consisted of 215 wild-type and 215 EGFR

mutations. We employed stratified sampling, dividing to the study

cohort into training (n = 302) and validation (n = 128) cohorts in a

7:3 ratio for model building and validation, respectively. Table 1

presents the clinical characteristics of the training and

testing datasets.
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3.2 Predictive performance of
different models

In the univariate logistic regression analysis, sex, age, smoking

history, margin definition, longest diameter, short diameter,

speculation, pleural retraction, bubble-like lucency, air

bronchogram, vascular convergence, texture, calcification, and

lymphadenopathy (all P < 0.05) were associated with EGFR

mutations. In the multivariate logistic regression analysis, the

longest diameter, pleural retraction, air bronchogram, and

calcification were the independent predictors of EGFR mutations

(Table 2). The clinical model formula is 0.182–0.027 × longest

diameter + 0.885 ×pleural retraction + 1.52 × air bronchogram + 1

× calcification. The AUC, accuracy, sensitivity, specificity, recall,

and F1 values of the different models on the training and validation

sets are listed in Table 3. Among the four models, the deep learning

model based on CT images had the highest predictive performance,

followed by the PET + CT, PET, and clinical models. In the training

set, the AUC for CT, PET, PET + CT, and clinical models were

0.933 (95% CI, 0.922–0.943), 0.895 (95% CI, 0.882–0.907), 0.931

(95% CI, 0.921–0.942), and 0.740 (95% CI, 0.685–0.796),

respectively, whereas, in the testing set, they were 0.921 (95% CI,

0.904–0.938), 0.876 (95% CI, 0.855–0.897), 0.921 (95% CI, 0.904–

0.937), and 0.721 (95% CI, 0.629–0.814), respectively. ROC curves

of the different models in training and validation cohorts are shown

in Figure 3.
3.3 Comparison of the efficiency of
different models

Efficiency comparison of different models using the DeLong test

revealed significant statistical differences in the performance of

different models. The results indicated that the CT-based deep

learning model had notable statistical differences compared to the

PET model and clinical models in the training set. However, there
FIGURE 2

Process diagram for training and testing deep learning models.
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was no observed statistical difference in performance compared to

the PET + CT model. A significant statistical difference was present

between the PET, PET + CT, and clinical models. Similar statistical

results were obtained in the test sets, as shown in Table 4.
3.4 Model visualization

Figure 4 showed the predictive process of our deep learning

model using Grad-CAM algorithm. In Figure 4A, the results

showed that CT models tended to highlight the areas near the

edge of the tumor and PET models frequently annotated a more

diffuse region around the center of the lesion as EGFR mutant type,

whereas in Figure 4B, CT models based on the pattern of central

areas and PET models based on the pattern of the surrounding area

of the tumor explain these tumors as wild-type ones.
4 Discussion

In this study, we employed traditional methods to construct

clinical models and utilized the Inception V3 deep learning

framework to build multiple models of CT, PET, and PET + CT

for predicting EGFR mutation status in LUAD. Our study revealed

that CNNs trained with FDG-PET/CT data performed well in

predicting EGFR mutation status in lung cancer. The results

indicated that the deep learning model based on CT images

outperformed PET-only and clinical-only models significantly and

performed similarly to PET + CT. CT and PET predictive

performances showed statistical differences compared to clinical

model, highlighting the efficacy that deep learning methods are

superior to traditional clinical predicting EGFR. The AUC and

accuracy of CT-based models exceed 90%, whereas PET-based

models achieve an AUC of over 85% and an accuracy of over 80%.

Our model’s superior predictive performance surpasses that of some

previous studies (17, 24); this can be attributed to the following
Frontiers in Oncology 06
reasons. Firstly, we chose the advanced network architecture

Inception V3 for medical image classification. ResNet, VGG,

DenseNet, and Inception V3 are well-known CNN architectures in

the field of deep learning, each with unique design concepts and

application scenarios. VGG is known for its simplicity and depth,

ResNet solves the problem of deep network training through residual

connections, DenseNet improves parameter efficiency and gradient

propagation through dense connections, and Inception V3 improves

performance by capturing information at multiple scales. Each

architecture has its own advantages and applicable scenarios. There

are studies indicating that Inception V3 has high accuracy and

practicality in medical image classification tasks, and our research

also belongs to the field of medical image classification.

Currently, in the field of medical image analysis, CNNs are

recognized as the most prominent deep learning architectures (25).

A CNN comprises of using three key components: an input layer,

multiple, hidden layers, and an output layer. The hidden layers

typically include convolutional, pooling, and fully connected layers,

which collectively process the data.

Inception V3 belongs to the GoogLeNet family, which is based on

the idea that most activations in deep CNNs are either unnecessary or

redundant because of the high correlations between them. Therefore,

reducing the connections between network layers, resulting in sparse

weight/activation, makes it more efficient. GoogLeNet thus proposed

a module called “inception” that approximates a sparse CNN with a

normal dense construction. As the GoogLeNet family evolves,

additional well-tuned features are incorporated into the network

such as stacked 3 × 3 kernels (Inception V2), the Batch

Normalization layer (Inception V3), and a combination of

“residual” and “Inception” modules (Inception-ResNet V2).

Another reason why our deep learning model has high

predictive performance may be that we used manual tumor

segmentation. Research reports have shown that the use of

manual segmentation can improve diagnostic accuracy (26).

Previous deep learning studies suggest that combining CT and

PET images can enhance the model’s predictive performance,
TABLE 1 Patient information in the training dataset and the testing dataset.

Characteristics
Training dataset
(N = 302)

Testing dataset
(N = 128)

P-value

Gender(%) 0.972

Female 141 (46.7%) 60 (46.9%)

Male 161 (53.3%) 68 (53.1%)

Age (years) 60.39 ± 10.74 60.96 ± 10.70 0.614

Range 27–84 34–85

Smoking history 0.737

Smoker 97 (32.1%) 39 (30.5%)

Non-smoker 205 (67.9%) 89 (69.5%)

EGFR 1.000

Mutant 151 (50.0%) 64 (50.0%)

Wild type 151 (50.0%) 64 (50.0%)
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TABLE 2 The relationship between clinical variables of patients and EGFR mutation status (wild-type vs. mutation) in the training set.

Characteristics
EGFR wild-
type
N = 151

EGFRmutant
N = 151

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Gender, % 0.26 (0.16,0.42) <0.001

Male 105 (69.5) 56 (37.1)

Female 46 (30.5) 95 (62.9)

Age (years) 63.0 [54.5; 70.0] 58.0 [52.0; 66.0] 0.97 (0.95, 0.99) 0.007

Smoking history, % 0.56 (0.34, 0.91) 0.020

Yes 58 (38.4) 39 (25.8)

No 93 (61.6) 112 (74.2)

Distribution, % 0.81 (0.39, 1.68) 0.580

Central 15 (9.93) 18 (11.9)

Peripheral 136 (90.1) 133 (88.1%)

Lobe location, % 0.91(0.78,1.05) 0.192

Right upper 46 (30.5) 56 (37.1)

Right middle 3 (1.99) 7 (4.64)

Right lower 33 (21.9) 25 (16.6)

Left upper 38 (25.2) 37 (24.5)

Left lower 31(20.5) 26(17.2)

Shape, % 1.18 (0.74, 1.87) 0.481

Regular 94 (62.3) 88 (58.3)

Irregular 57 (37.7) 63 (41.7)

Margin, % 0.47 (0.23, 0.97) 0.040

Well-defined 126 (83.4) 138 (91.4)

Poor-defined 25 (16.6) 13 (8.61)

Longest diameter 34.0 [25.5; 47.5] 31.0 [24.5; 39.0] 0.98 (0.97, 1) 0.011 0.97 (0.96, 0.99) <0.001

Short diameter 25.0 [17.0; 33.5] 23.0 [17.5; 28.5] 0.98 (0.96, 1) 0.018

Spiculation, % 2.3(1.45,3.65) <0.001

Yes 63 (41.7) 94 (62.3)

No 88 (58.3) 57 (37.7)

Lobulation, % 1.08 (0.63, 1.85) 0.783

Yes 115 (76.2) 119 (78.8)

No 36 (23.8) 32 (21.2)

Pleural retraction, % 2.92(1.81, 4.72) <0.001 2.42 (1.46, 4.02) <0.001

Yes 42 (27.8) 80 (53.0)

No 109 (72.2) 71 (47.0)

Bubble-like lucency, % 2.01 (1.17, 3.46) 0.011

Yes 27 (17.9) 46 (30.5)

No 124 (82.1) 105 (69.5)

Air bronchogram, % 3.79 (2.06, 6.96) <0.001 4.57 (2.31, 9.06) <0.001

Yes 17 (11.3) 49 (32.5)

(Continued)
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TABLE 2 Continued

Characteristics

EGFR wild-
type
N = 151

EGFRmutant
N = 151

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

No 134 (88.7) 102 (67.5)

Vascular
convergence, %

1.75 (1.1, 2.78) 0.019

Yes 81 (53.6) 101 (66.9)

No 70 (46.4) 50 (33.1)

Texture, % 2.99 (1.47, 6.08) 0.002

Solid 139 (92.1) 120 (79.5)

Non-solid 12 (7.95) 31 (20.5)

Necrosis, % 0.76(0.41,1.38) 0.361

Yes 29 (19.2) 23 (15.2)

No 122 (80.8) 128 (84.8)

Cavitation, % 1.37 (0.63, 3.01) 0.429

Yes 12 (7.9) 16 (10.6)

No 139 (92.1) 135 (89.4)

Calcification, % 2.19 (1.05, 4.56) 0.036 2.72 (1.23, 6) 0.011

Yes 12 (7.95) 24 (15.9)

No 139 (92.1) 127 (84.1)

Pleural effusion, % 1.23 (0.7, 2.16) 0.474

Yes 28 (18.5) 33 (21.9)

No 123 (81.5) 118 (78.1)

Lymphadenopath, % 0.54 (0.34, 0.86) 0.010

Yes 71 (47.0) 49 (32.5)

No 80 (53.0) 102 (67.5)
F
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CI, confidence interval; EGFR, epidermal growth factor receptor; OR, odds ratio; SD, standard deviation; vs., versus.
TABLE 3 Predictive performance of different models in the training and testing datasets.

Modality AUC Accuracy Sensitivity Specificity Recall F1-value

Training set

CT 0.933 (0.922–0.943) 0.874 0.911 0.844 0.911 0.869

PET 0.895 (0.882–0.907) 0.815 0.862 0.775 0.862 0.811

PET + CT 0.931 (0.921–0.942) 0.880 0.908 0.856 0.908 0.873

Clinical 0.740 (0.685–0.796) 0.685 0.609 0.762 0.609 0.659

Testing set

CT 0.921 (0.904–0.938) 0.959 0.908 0.814 0.908 0.856

PET 0.876 (0.855–0.897) 0.803 0.862 0.754 0.862 0.800

PET + CT 0.921 (0.904–0.937) 0.852 0.894 0.814 0.894 0.850

Clinical 0.721 (0.629–0.814) 0.719 0.625 0.812 0.625 0.690
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indicating that the PET model outperforms the CT model in

predictive performance (17, 24). However, our results contradict

this trend. This could be attributed to the following reasons: Firstly,

unlike simple and traditional architecture, deep CNN algorithms

efficiently perform edge detection through multiple convolutional

and hidden layers with hierarchical feature representations,

favoring CT images (27). Second, we found that the main reason

for false positives and false negatives in our models is the

reconstruction algorithm of PET images. Most of these PET

images come from the same institution, and image smoothing

technology was used in PET reconstruction. Although this

technology can reduce image noise and improve the visual effect

of images, it can make important features of the image (such as

tumor boundaries) smooth and blurry, leading to an increase in bias

and a decrease in contrast resolution, which may affect the

extraction of key features by deep learning models. Furthermore,

the features of CT images may be easier for models to recognize and

extract because they are usually directly related to anatomical

structures. PET images may have more abstract features due to

the use of radioactive tracers, as they are related to biochemical

processes, which may require more complex models to understand

and predict. In summary, CT images typically have better data

quality, higher spatial resolution, and clearer identifiable features.

Therefore, our research results indicated that deep learning models

based on CT images have the highest predictive performance. The
Frontiers in Oncology 09
combined efficacy of PET and CT is comparable to CT, possibly due

to the current approach to PET and CT data fusion; we employed an

early fusion strategy, which may have contributed to the suboptimal

fusion performance. In future work, we plan to explore various

fusion strategies, such as mid-level and late fusion and conduct

comparative studies on these approaches to optimize the combined

performance of PET and CT modalities.

Our research applies Grad-CAM to explain the process of

model prediction as Grad-CAM provides clinicians with an

intuitive way to understand the prediction process of deep

learning models, helping them identify and understand the

biological or anatomical features behind model predictions and

thus better utilize these models to assist clinical decision-making in

practice. However, the application of AI decision-making in clinical

processes still faces some challenges. We need to find a balance

between ethics and clinical practice, ensure patient consent, clarify

responsibility attribution, and reduce the risk of misclassification

while effectively integrating it into clinical workflows.

Our study has some limitations. Firstly, the exclusion of most

patients resulted from undetected EGFR gene status, which inevitably

introduces a selection bias. Secondly, owing to the irregular shape of

some tumors, the ROI delineation process is difficult and time-

consuming. Finally, we manually segmented the tumor, although

deep learning offers the advantage of automatic feature extraction of

the tumor without segmenting the tumor. In the future, we would like
FIGURE 3

Receiver operating characteristic (ROC) curves of the different models in training (A) and validation cohorts (B).
TABLE 4 DeLong test for the predictive performance of different models in the training and testing sets.

Models CT deep learning
model

PET deep learning
model

PET + CT deep learning
model

Clinical model

CT deep learning model / 0.001 1 <0.001

PET deep learning model <0.001 / <0.001

PET + CT deep
learning model

0.9 <0.001 / <0.001

Clinical model <0.001 <0.001 <0.001 /
Bold font represents the results of the training set, whereas normal font represents the results of the testing set.
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to compare the performance of deep learning models constructed

with manual tumor delineation to those constructed without manual

tumor delineation. Finally, our study mixed data from two

institutions together for model construction and internal testing,

lacking external data validation. In the future, we will collect more

data from other institutions for external validation to demonstrate the

robustness and generalizability of the model.

In our work, optimized deep learning–based algorithm was

trained to predict the EGFRmutation status in patients with NSCLC

using 18F-fluorodeoxyglucose (18F-FDG) PET/CT images from two

institutions. The outcome suggests that our model approach is a

workable method for predicting EGFR mutations. The model

constructed on the basis of CT images has better performance

than PET and similarly to PET + CT models. The deep learning
Frontiers in Oncology 10
approach outperformed traditional clinical methods. Deep learning

methods have shown great potential in predicting EGFR mutation

status. They not only can improve the accuracy of treatment

decisions, reduce invasive procedures, optimize resource

allocation, and promote the development of precision medicine.

With the further maturity of technology, this method is expected to

play a greater role in future clinical practice.
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FIGURE 4

The predictive process of deep learning models using Grad-CAM algorithm. (A, B) show examples of three representative patients with EGFR mutant
and wild-type, respectively. The first and forth columns are CT and PET raw image of tumor. The second and fifth columns are CT and PET central
segmentation slices of the tumor, respectively. The third and sixth columns are the CAM (class activation map) images of the CT and PET central
segmentation sections of the lesion, respectively. (A) The results showed that CT models tended to highlight the areas near the edge of the tumor
and PET models frequently annotated a more diffuse region around the center of the lesion as EGFR mutant type. (B) CT models based on the
pattern of central areas and PET models based on the pattern of the surrounding area of the tumor to explain these tumors as wild-type ones.
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