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Li–Fraumeni syndrome (LFS) is a hereditary disorder characterized by an

increased risk of developing multiple early-onset cancers, primarily due to

germline TP53 mutations. Women and men with this mutation face lifetime

cancer risks of 90% and 70%, respectively. This report describes the first

documented case of LFS with clinical information in Vietnam involving a 9-

year-old child diagnosed with osteosarcoma who had multiple first- and

second-degree relatives with cancer. Whole-genome sequencing (WGS)

revealed a heterozygous, pathogenic, autosomal dominant TP53 variant

NM_000546.6:c.733G>A (p.Gly245Ser) and a translocation in the 3’UTR of the

ATMIN gene with unknown pathogenicity in both the patient and her mother.

Sanger sequencing confirmed the presence of the TP53 c.733G>A mutation,

which was subsequently detected in extended family members. Of the 17 family

members invited for testing, only 8, none of whom currently have cancer, agreed

to participate: all tested negative for the mutation. This case highlights the

importance of genetic testing for the early detection and management of

cancers in LFS patients. It also underscores significant barriers to genetic

screening in Vietnam, including limited access and the psychosocial

consequences of testing, which emphasize the need for improved genetic

counseling and surveillance strategies that are tailored to local contexts.
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Introduction

Li–Fraumeni syndrome (LFS) is a complex inherited genetic

disorder characterized by a high predisposition to various types of

cancer from an early age. The syndrome follows an autosomal

dominant pattern of inheritance and predominantly manifests as

five core cancer types: breast, adrenocortical, central nervous system

(CNS), bone, and soft tissues (1). Individuals with LFS face a

markedly earlier onset of cancer, with a 50% incidence for

females under 31 years of age and males under 46 years of age

and a higher lifetime cumulative risk, at 90% for females and 70%

for males (2). Survivors of their first cancer have a 49% chance of

developing another cancer after ten years (3), with the risk being

even higher among survivors of childhood cancers (4).

The advent of next-generation sequencing (NGS) has further

consolidated that TP53 germline mutations is the leading molecular

cause of LFS, occurring in approximately 75% of LFS patients (5).

Among these, 77% are missense mutations that often result in a loss

of function in TP53 (6). The TP53 gene encodes the protein p53, a

transcriptional regulator known as the “guardian of the genome”

(7). As a tumor suppressor, p53 maintains cell integrity by

controlling essential functions such as DNA repair, growth arrest,

autophagy, senescence, and apoptosis (8). When p53 surveillance

activity is disrupted, genomic alterations accumulate, leading to

cancer. Indeed, TP53 mutations are found in 38% to 50% of almost

all types of cancer, further highlighting the crucial role of this gene

in tumor progression (6).

Despite the severe implications of LFS, the latest IARC Tp53

database (version R20) reports only approximately 1500 affected

families, with potentially tens of thousands of cases remaining

undetected (9, 10). NGS is vital for identifying TP53 and

expanding LFS screening. Gene panels targeting TP53 exons are

commercially available for patients suspected of having LFS.

However, the adoption of this technology remains slow, especially

in lower-middle-income countries such as Vietnam, where genetic

screening for heritable cancers is not commonly practiced. Despite

the notable prevalence of inherited cancer in Vietnam (11, 12), only

one prior study has reported a germline TP53 mutation,

NM_000546.5:c.799C>T (p.Arg267Trp), without providing details

on the associated clinical phenotype (13). This gap underscores the

urgent need to investigate TP53 mutation patterns in Vietnamese

patients suspected of having LFS to characterize LFS in this

underexplored population. Such research would provide valuable

data to policymakers and the public, underscoring the importance

of early screening for high-risk patients, which could lead to timely

diagnoses and potentially improve survival rates.

In this report, we described the case of a 9-year-old Vietnamese

girl who presented with left distal femur pain and was later

diagnosed with osteosarcoma. The patient had an extensive

familial history of cancer, including 2nd- and 3rd-degree relatives

with multiple malignancies. Whole-genome sequencing (WGS)
Abbreviations: LFS, Li -Fraumeni syndrome; CNS, Central nervous system;

NGS, Next-generation sequencing; DNA, Deoxyribonucleic Acid; SPECT/CT,

Single Photon Emission Computed Tomography and Computed Tomography;

MRI, Magnetic resonance imaging.
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conducted on the patient and her immediate family identified a

TP53 missense mutation, and a novel translocation mutation

inherited from her mother. Further genetic screening using

Sanger sequencing was offered to the patient’s extended family to

assess their risk. This study represents the first reported case of LFS

in Vietnam, underscoring the vital role of genetic testing in

managing heritable cancers such as LFS.
Methods

Study population

The patient (proband) was referred to Vinmec International

Hospital (Hanoi, Vietnam) for surgery as part of her osteosarcoma

treatment. Surgical excision of her tumor was performed according

to a routine protocol. During the evaluation, a significant family

history of cancer was uncovered. Post-recovery, upon gaining

mobility, we approached her legal guardian (mother) for consent

to include her in our genetic study. Following the discovery of a

heritable mutation, extended genetic testing was offered to her

broader family.
Whole-genome sequencing

WGS was conducted at no cost by Inocras (San Diego, USA) as

part of their Clinical Excellence Program. DNA was extracted from

blood samples using a Qiagen DNA Blood Kit (Qiagen, Maryland,

USA). The DNA concentration was measured with a Qubit

instrument (Thermo Fisher, Massachusetts, USA). The samples

were then sent to Inocras for sequencing. The RareVision™ system

(Inocras, San Diego, USA) was used for library preparation, genome

sequencing, analysis, and interpretation. In brief, DNA library

preparation was performed using Watchmaker DNA Library Kits

(Watchmaker Genomics, Boulder, USA), and the DNA was

subsequently sequenced on an Illumina NovaSeq 6000 platform

(Illumina, San Diego, USA). The raw sequences were subjected to

quality control and aligned to the GRCh38 human reference

genome using BWA-MEM (14). Single-base substitutions and

short indels were called using HaplotypeCaller2 (15) and Strelka2

(16). For complex structural variations, mutation calling was

performed using Manta (17).
PCR and Sanger sequencing

Based on the WGS results, we designed PCR primers targeting

regions 350 bases upstream and downstream of the point mutation

using Primer Blast (18). Primers were checked for GC content,

annealing temperature, and self-complementarity using Primer

Stats (19). The PCR primers used were PCR Forward –

CCATCCTGGCTAACGGTGAA and PCR Rever se –

AGAGGTCCCAAAGCCAGAGA. To ensure accurate Sanger

results, we designed another forward primer used in Sanger

sequencing to avoid poly-A regions upstream of the point
frontiersin.org
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mutation: Sanger Forward – CTCCCCTGCTTGCCACAGGT. After

purification, the PCR products were sent to PhuSa Genomics for

Sanger sequencing using Sanger forward and reverse PCR primers.

The Sanger results were aligned using Unipro UGENE (20).
Case presentation

Clinical information

A 9-year-old female was clinically diagnosed with osteosarcoma

in September 2022 at a local hospital following a bone biopsy that
Frontiers in Oncology 03
identified conventional osteosarcoma. She underwent two cycles of

combination chemotherapy, methotrexate, doxorubicin, and

cisplatin (MAP), at Vietnam National Cancer Hospital before

being referred to Vinmec International Hospital for further

treatment in January 2023 (Figure 1A). Clinical examination

revealed a firm, swollen mass in her left distal femur. The tumor,

measuring 7x4.5x3.5 cm on MRI, was located in the distal femur

within the medullary canal, broke through the bone cortex, and

invaded the surrounding soft tissues without affecting the nearby

neurovascular bundle (Figure 1B). No distant metastasis was

detected via lung SPECT/CT. The final diagnosis was stage IIB

osteosarcoma of the left distal femur. Her surgery was conducted in
FIGURE 1

Clinical information, including MRI and H&E images of the proband’s tumor. (A) Timeline of relevant episodes of care; (B) MRI showed the presence
of the tumor in the left distal femur (from left to right: 2 cross sections coronal view of the femur, axial view of the femur; (C) On gross examination,
a tan-white, irregular tumor was found intramedullary in the metaphysis region, suspicious for cortical destruction (red arrow); (D, E) Representative
sections of the gross tumor revealed good response to chemotherapy on microscopic examination characterized by cell dropout, densely sclerotic
bony trabeculae and sclerosing reaction; (F) A small portion of the tumor are non-responsive, shown by viable tumor cells (blue arrows) surrounded
by eosinophilic osteoid (green arrow). Black scale bars denote 200 µm.
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February 2023 and involved wide resection of the tumor and

reconstruction using an expandable prosthesis. Pathological

examination of the resected tissue indicated 98% necrosis, with

the margins free of tumor cells and minimal viable tumor cells

remaining (Figures 1C–F). Postsurgery, the patient resumed

chemotherapy with the MAP regimen, completing a total of 29

weeks of treatment by June 2023. She responded favorably to the

treatment, regaining the ability to walk.
Genetic counseling and testing

The patient presented with a significant family history of cancer,

including a brother who died from medulloblastoma at the age of 7,

a mother with breast cancer at 34, and various other malignancies

among relatives (Figure 2), fitting the classical criteria of LFS. While

osteosarcoma is prevalent in LFS, accounting for 3-16% of cases, the

proband developed cancer at a much earlier age than the median

age of 14 among LFS individuals (21). Consequently, she was

referred for genetic testing in August 2023 to evaluate for

hereditary cancer syndromes. WGS was performed on the

proband (III.12), her brother without any present signs of cancer

(III.11), and her mother with breast cancer (II.6).

The patients’ genomes were sequenced with an average

coverage of 20x. WGS analysis detected a heterozygous,

pathogenic, autosomal dominant variant, NM_000546.6:

c.733G>A (p.Gly245Ser), in the TP53 gene (Figure 3A), present in

both the proband and her mother but absent in her brother. The

read alignment showed a heterozygous C>T mutation on the

forward strand, translating to a G>A mutation on the reverse

strand, where the TP53 gene is located (Figure 3B). Located in

exon 7, this G>A mutation substitutes the amino acid glycine

(GGC) for serine (AGC) - p.(Gly245Ser), altering the protein

structure. This change results in a loss of wild-type TP53

transcriptional activity and a gain of function, enhancing Akt
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signaling and transformation in cell cultures (22–24). This

dominant-negative missense TP53 variant, known for its high

penetrance and frequent occurrence in families with childhood

cancers, was first reported by Srivastava et al. in 1990 as being linked

to LFS (25). It is classified as pathogenic or likely pathogenic in the

ClinVar database (26–29).

Additionally, the proband and her mother were found to carry

another heterozygous variant, NC_000004.12:g.pter_32612806delins

[NC_000016.10:g.81046385_qter], which involves a 3’-to-5’

translocation between chr4:32,612,806 and chr16:81,046,385

(Figure 3A). The breakpoint at chr16:81,046,385 lies within the

3’UTR of the ataxia telangiectasia mutated interactor (ATMIN)

gene. This particular mutation has not been previously reported,

and its pathogenicity remains uncertain; hence, it was not further

validated in this study.

Sanger sequencing was employed to confirm the WGS findings.

Amplification of the relevant TP53 gene region yielded the correct

band size (Figure 4A). Sequencing revealed a double G-A peak at

the mutation site, indicative of a heterozygous mutation in both the

proband and her mother but not in her brother (Figure 4B). We

then invited the entire extended family to join the study for free

screening with Sanger sequencing. Of the 17 members invited, 8

healthy individuals with no first-degree relative with cancer agreed

to enroll (Figure 2). Analysis of the TP53 c.733G>A mutation in

these extended family members revealed that none were carriers of

the mutation, as indicated by a single G peak at the expected

location (Figure 4C).
Discussions

Clinical and genetic manifestations

Our case study marks the first reported instance of LFS in

Vietnam with comprehensive clinical and familial documentation.
FIGURE 2

Pedigree of the family suspected of Li-Fraumeni syndrome. The red arrow indicates the proband, the gray filling indicates individuals with cancer,
and the red outline indicates individuals enrolled in this study. Disease names are followed by age at diagnosis. LC, Lung cancer; OS, Osteosarcoma;
CM, Cerebrovascular Malformation; BC, Breast Cancer; AC, Astrocytoma; MB, Medulloblastoma.
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FIGURE 4

Genetic result validation and extended testing for the studied family. (A) Gel electrophoresis of PCR products showed the expected fragment size of
about 584 bp; (B) Sanger sequencing of the proband’s immediate family showed a heterozygous G>A mutation in III.12 and II.6; (C) Sanger
sequencing for the extended family showed no other G>A mutation carrier among those who consented to the test.
FIGURE 3

Whole Genome Sequencing revealed two germline mutations in II.6 and III.12. (A) Table summarizing germline variants found from WGS analysis.
(B) Reads alignment view using Integrative Genomics Viewer (Thorvaldsdóttir et al., 2013) of patient III.12.
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Although the recognition of LFS and other inherited cancer

syndromes is increasing in Vietnam, genetic testing remains

underutilized (12). We identified a pathogenic TP53 mutation,

c.733G>A, a well-documented hotspot within the DNA binding

domain of the p53 protein. This mutation is associated with various

types of cancer, including breast cancer, osteosarcoma,

adrenocortical carcinoma, and CNS cancers, according to the

ClinVar database. Breast cancer, representing 27% to 31% of LFS-

associated cancers, has a median age at diagnosis of 33 years (21); in

our study, two patients were diagnosed at ages 29 and 34.

Osteosarcoma, which accounts for 3%-16% of LFS cancers,

typically presents at a median age of 16 (10); however, in our

studied family, members were diagnosed at ages 9 and 12. For CNS

tumors, which are reported in 9%-14% of LFS patients with a

median onset age of 16 years, our findings included a patient who

was diagnosed with astrocytoma at 22 years of age and another

patient who was diagnosed with medulloblastoma at 7 years of

age (Figure 2).

We also detected a translocation in the 3’UTR of the ATMIN

gene. ATMIN was initially identified as a DNA damage response

protein involved in DNA repair processes, particularly through

non-homologous end joining and base excision repair, functioning

in conjunction with the ataxia telangiectasia mutated (ATM)

protein (30–32). Under stress conditions, ATMIN and ATM

kinase act as cell cycle checkpoint regulators, helping to mitigate

the accumulation of DNA damage (31, 33, 34). Cells lacking

ATMIN exhibit reduced ATM activation, and conversely, cells

deficient in ATM show diminished ATMIN expression (33, 35).

Despite this reciprocal interaction, while ATM germline mutations

are well-established as a genetic modifier in LFS and other cancer

predisposition syndromes (36, 37), much less is known about the

role of its cofactor ATMIN in human cancer.

According to the ClinVar database, there are 130 reported cases

of ATMIN germline mutations, with most classified as variants of

uncertain significance. In lung adenocarcinoma patients, ATMIN is

frequently lost, and its low expression is associated with poorer

prognosis (38). In preclinical models, mice lacking ATMIN develop

B-cell lymphomas (32), or exhibit a higher tumor burden and grade

in lung cancer (38). Patients with mutated TP53 and ATMIN

signaling, both of which are vital for maintaining genetic

integrity, could potentially accelerate the accumulation of DNA

damage and contribute to the observed earlier onset of cancer.

However, the exact implications of ATMIN mutations in cancer

predisposition still require further investigation to be

fully understood.

Our findings underscore the significant advantages of WGS in

capturing genetic variants, offering a notable benefit over targeted

panel testing, which may miss novel mutations linked to heritable

cancers. Indeed, the heterogeneity of LFS (9), which suggests it is an

oligogenic disease influenced by multiple genes, further supports

the use of WGS in these cases. However, WGS is not without its

limitations. While it excels at providing a broad genetic overview,

WGS is more costly than panel testing and may not detect complex

rearrangements or mosaic variants due to the inherent limitations

of short-read sequencing technologies. Additionally, the complexity
Frontiers in Oncology 06
of analyzing multiple variants, especially in patients with

compromised DNA repair mechanisms like those with LFS, adds

another layer of difficulty. Instead, a targeted gene panel approach

might be more practical for large-scale screening, especially in

resource-limited settings like Vietnam. Consequently, careful

consideration is needed when selecting screening methods,

balancing their capabilities against their limitations.
Possible early-onset cancer and screening

A possible trend in the studied family is that cancer diagnoses

appear at progressively earlier ages in successive generations.

Specifically, the age at diagnosis was 47 for the first generation;

34, 29, 22, 12 for the second generation; and 9, 7 for the third

generation. This trend, sometimes observed in LFS family (39–41),

is concerning since survivors of childhood cancers have a

substantially greater risk of developing a second cancer (3.2

incidences per 100 person-years) than their older counterparts

(2.0-2.7 incidences per 100 person-years) (4). Such data highlight

the critical need for proactive and early screening measures for

TP53 carriers to lessen the impact of cancer on families.

Surveillance guidelines, such as those recommended by the

“Toronto Protocol”, suggest rigorous evaluations (42, 43). This

includes comprehensive physical examination and ultrasound

every 3 to 4 months for children under 18 years old; physical

examination every six months, ultrasound and dermatologic

examination annually for individuals 18 years or older; and upper

endoscopy and colonoscopy every 2 to 5 years for individuals 25

years or older. Women are suggested to undergo clinical breast

examination every 6 to 12 months from 20 to 25 years of age, annual

breast MRI from 20 to 30 years of age, and annual mammogram

and breast MRI from 30 to 75 years of age. After cancer has been

diagnosed, an annual neurologic exam and whole-body MRI,

including brain MRI, are recommended.

The effectiveness of the Toronto Protocol in detecting cancer

early and prolonging survival for LFS patients has been well

documented. Villani et al. conducted an observational study of 18

TP53 mutation carriers and found that those adhering to the

protocol had their tumors identified at a lower grade or

premalignant stage, compared to higher-grade and stage tumors

in patients not following the protocol (44). A subsequent 11-year

follow-up study further confirmed that compliance with this

screening strategy leads to better outcomes, with a 5-year survival

rate of 88.8% for those under surveillance, compared to 59.6% for

individuals who were not monitored (43).
Barriers to screening adherence

In our study, despite receiving genetic counseling and

understanding the benefits of genetic screening, some patients

opted not to participate due to health information avoidance.

This behavior, where individuals deliberately avoid information

that could cause them distress, is observed in conditions like LFS
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(45, 46). The anxiety associated with the prospect of lifelong, costly

surveillance after a positive result leads some patients to prefer

remaining uninformed about their genetic risks. This is particularly

true in Vietnam, where such screenings are often considered

elective and are not covered by insurance, making cost a

significant barrier to adherence (47). However, cost is not the

only obstacle, as some patients in our study still refused screening

even when it was offered for free. The social stigma associated with

inherited diseases further exacerbates this avoidance; only healthy

family members agreed to screening, while those with a cancer

diagnosis or close relatives affected by cancer declined participation.

Similar behaviors have been observed in other screening studies

conducted within Vietnamese and comparable Asian cohorts,

where the primary reasons for rejecting screening are

psychological (12, 48, 49). This underscores the necessity for

enhanced education and support systems that address the

psychological and economic challenges associated with genetic

testing in Vietnam, as well as broader public health initiatives

aimed at reducing the stigma linked to genetic conditions.

Countries with advanced genetic care systems, such as those in

North America and Europe, provide successful models for

overcoming these barriers. Initially, these regions faced concerns

about genetic discrimination and privacy (50), but over time, the

public began to recognize the significant benefits of genetic testing

for early cancer detection (51). These countries have integrated

genetic and imaging screenings into routine healthcare, often

covered by insurance, thereby reducing the economic burden on

patients. Additionally, education and social science have been

integral to their screening strategies, making patients more aware

of the benefits of early detection, which can lead to more effective

treatment and improved survival rates. Public education, genetic

counseling, and protective policies have played crucial roles in

changing perceptions and increasing participation (2, 46). These

insights are essential for regions like Vietnam to advance their

genetic screening programs and improve patient outcomes. Thus,

concerted efforts are necessary to raise disease awareness and

develop more cost-effective, less burdensome cancer screening

technologies or strategies to improve public perception and

support for hereditary conditions.

In conclusion, the genetic screening conducted in this study has

been invaluable for the patient’s family by identifying at-risk

members, providing a clear path for disease management, and

alleviating the anxiety of non-carriers. Our case report not only

adds to the global body of knowledge on Li-Fraumeni syndrome but

also emphasizes the existing disparities in genetic screening and the

critical need for tailored cancer prevention and management

strategies in Vietnam. Understanding the patterns of TP53

mutations in this underexplored population could pave the way

for more targeted and cost-effective testing approaches, thereby

improving the accessibility of such screenings. Furthermore, by

integrating genetic counseling and addressing the psychosocial

dynamics within affected families, we can enhance the

effectiveness of surveillance programs and improve overall

outcomes for patients with hereditary cancer syndromes.
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