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metastasis in cN0 papillary
thyroid cancer based on
clinicopathological and
elastography radiomics features
Xiaohua Yao1†, Mingming Tang2†, Min Lu1, Jie Zhou1*

and Debin Yang1*

1Departments of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of
Medicine &Health Sciences, Shanghai, China, 2Department of Endocrinology, Jiading District Central
Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
Background: Skip lymph node metastasis (SLNM) in papillary thyroid cancer

(PTC) involves cancer cells bypassing central nodes to directly metastasize to

lateral nodes, often undetected by standard preoperative ultrasonography.

Although multiple models exist to identify SLNM, they are inadequate for

clinically node-negative (cN0) patients, resulting in underestimated metastatic

risks and compromised treatment effectiveness. Our study aims to develop and

validate a machine learning (ML) model that combines elastography radiomics

with clinicopathological data to predict pre-surgical SLNM risk in cN0 PTC

patients with increased risk of lymph node metastasis (LNM), improving their

treatment strategies.

Methods: Our study conducted a retrospective analysis of 485 newly diagnosed

primary PTC patients, divided into training and external validation cohorts.

Patients were categorized into SLNM and non-SLNM groups based on follow-

up outcomes and postoperative pathology. We collected preoperative

clinicopathological data and extracted, standardized radiomics features from

elastography imaging to develop various ML models. These models were

internally validated using radiomics and clinicopathological data, with the

optimal model’s feature importance analyzed through the Shapley Additive

Explanations (SHAP) approach and subsequently externally validated.

Results: In our study of 485 patients, 67 (13.8%) exhibited SLNM. The extreme

gradient boosting (XGBoost) model, integrating elastography radiomics with

clinicopathological data, demonstrated superior performance in both internal

and external validations. SHAP analysis identified five key determinants of SLNM:

three radiomics features from elastography images, one clinical variable, and one

pathological variable.

Conclusion: Our evaluation highlights the XGBoost model, which integrates

elastography radiomics and clinicopathological data, as the most effective ML
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approach for the prediction of SLNM in cN0 PTC patients with increased risk of

LNM. This innovative model significantly enhances the accuracy of risk

assessments for SLNM, enabling personalized treatments that could reduce

postoperative metastases in these patients.
KEYWORDS

papillary thyroid cancer, machine learning, clinically node-negative (cN0), skip lymph
node metastasis, radiomics
Introduction

Lymph node metastasis (LNM) significantly influences surgical

approaches and recurrence risk stratification in papillary thyroid

cancer (PTC) (1, 2). PTC cells spread through the lymphatic system

in a sequential manner, initially involving the central compartment,

then progressing to the ipsilateral lateral compartment, and

ultimately metastasizing to the contralateral, lateral or mediastinal

compartments (3). Skip lymph node metastasis (SLNM) is a rare

phenomenon where cancer bypasses the central lymph nodes

(CLN) and directly metastasizes to the lateral lymph nodes (LLN)

(4). The sensitivity of preoperative ultrasound in detecting CLN is

relatively low, with an estimated accuracy of only 30–55% (5, 6).

Moreover, ultrasound often fails to identify abnormal lymph nodes

smaller than 5 mm in diameter (7). Despite undergoing central

lymph node dissection (CLND), there may be an insufficient

number of CLN sampled. Due to these limitations, patients may

still be inaccurately diagnosed as clinically node-negative (cN0), a

false-negative diagnosis, despite the presence of SLNM. This

underestimation of their metastatic risk can impact treatment

strategies. Prophylactic lateral neck dissection is not the standard

treatment for PTC patients with cN0 status (2). While mortality for

patients who experience lymph node recurrence remains low, it is

indeed the case that LNM after surgery might necessitate additional

interventions, including further surgery (8–10) and selectively

applied radiotherapy (11, 12). Several models have been

developed to distinguish patients with SLNM from those with

typical LNM (13–15). However, these models have limited clinical

applicability as they are only suitable for evaluating the likelihood of

SLNM in clinically node-positive (cN+) PTC, not in cN0 cases.

Studies indicate that the surgical and treatment approaches for cN+

PTC patients remain the same, regardless of the presence of SLNM.

While accurately identifying SLNM in cN0 PTC patients could

facilitate more personalized treatment strategies, like prophylactic

lymph node dissection, existing models struggle to predict SLNM

reliably in the preoperative setting.

Previous research has linked clinicopathological factors like age,

tumor location and Ki-67 to LNM in PTC (13–16). Although these

indicators are useful, they do not encompass all the predictive data

available from patients. Recent research underscores that fine needle

aspiration with thyroglobulin (FNA-Tg) measurement from eluates is
02
a reliable method for detecting cervical LNM, demonstrating

significant diagnostic accuracy (17, 18). However, it is important to

note that the optimal cutoff value for FNA-Tg remains a subject of

debate, with suggested values ranging widely from 0.2 to 36 ng/mL,

and the method is an invasive (19). The standardization of the FNA-

Tg procedure has yet to be achieved. While ultrasound is an

accessible, cost-effective, and non-invasive diagnostic tool, its

sensitivity varies significantly across different anatomical

compartments-approximately 62–94% for the lateral compartment

and 30–55% for the central compartment (5, 6), and its effectiveness

is limited for micrometastases (7). Elastography, a novel ultrasound-

based technique, assesses tissue elasticity primarily for the non-

invasive assessment of lesions. It enhances conventional ultrasound

examinations by introducing stiffness as an additional measurable

property (20, 21). However, elastography parameters lack high-

dimensional characteristics across various frequency scales.

Radiomics, a method that extracts medical image features through

high-throughput techniques, provides a quantitative and objective

basis for standardized analysis (22). This approach has recently been

applied to ultrasound images of fibrosis (23–25). However, the

relationships between the diverse and detailed features identified by

radiomics and their clinical outcomes are intricate and often

nonlinear, presenting significant analytical challenges. This

complexity renders traditional linear predictive models, like logistic

regression (Logit), less effective in achieving precise predictions.

Consequently, the use of machine learning (ML), a branch of

artificial intelligence known for its ability to decipher complex

patterns in large data sets, is crucial for developing effective

predictive models (26). Common ML classifiers, including support

vector machine (SVM) and extreme gradient boosting (XGBoost),

have shown versatility in predicting the progression of conditions like

liver disease, hypertensive intracerebral hemorrhage, and breast

cancer (27–29). Yet, research remains limited on ML models that

leverage elastography radiomics to predict SLNM preoperatively in

cN0 PTC patients.

With this background, our study seeks to develop and validate

an interpretable ML model that utilizes elastography radiomics

features alongside clinicopathological data. The goal is to predict the

risk of SLNM in cN0 PTC patients with an increased risk of LNM

before surgery, aiming to enhance treatment strategies for

these individuals.
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Materials and methods

Ethics statement

This retrospective study was approved by the ethics committee

of Jiading District Central Hospital Affiliated Shanghai University

of Medicine &Health Sciences (NO. 2021K07). Informed consent

was waived by the Ethics Committee due to the study’s retrospective

design. This study was conducted in accordance with the

Helsinki Declaration.
Study population

This study screened medical records of 816 newly diagnosed

primary PTC patients hospitalized at Jiading District Central

Hospital Affiliated Shanghai University of Medicine &Health

Sciences from January 2017 to December 2021. Inclusion criteria:

1) Age above 18 years; 2) Undergoing thyroidectomy with bilateral

CLND, for cN0 patients who have a potentially increased risk of

LNM characterized by a tumor diameter >4 cm, multifocal disease,

extrathyroidal extension, etc.; 3) Tumor stage: T1–4N0–1bM0; 4)

Received US and elastography examinations; 5) Received US-

guided fine-needle aspirations biopsy (FNAB); 6) Follow-up of at

least 2 years or until diagnosis of LLNM post-surgery. Exclusion

criteria: 1) Presence of central lymph node metastasis (CLNM); 2)

History of neck surgery or radiotherapy; 3) Pregnancy; 4) Poorly

differentiated PTC; 5) History of radio-iodine therapy. Finally, 485

patients were included in this study. Based on the follow-up

outcomes and postoperative pathology reports, 67 cN0 patients
Frontiers in Oncology 03
with postoperative LLNM were assigned to the SLNM group, while

418 without LLNM were categorized as non-SLNM (Figure 1).
Clinical data collection

Preoperative clinical data, including age, gender, and body mass

index (BMI), were obtained from the hospital information system.
US−guided FNAB

Thyroid fine-needle aspirations (FNAs) were conducted under

ultrasound guidance by a radiologist. For the procedure, patients

were placed in a supine position with elevated backs and tilted

heads. A 23-gauge needle (Pajunk, Germany) was used to puncture

each thyroid nodule three times. A part of the aspirate was

analyzed to assess the expression of Ki-67, P53, and CK-19 using

immunocytochemistry. The process involves multiple steps

including fixation, embedding, and dehydration. Antibodies used

included Ki-67 (dilution 1:50, clone MIB-1), P53 (dilution 1:100,

clone DO7), and CK-19 (dilution 1:200, clone RCK108).

Stain interpretations were performed by three experienced

cytopathologists. For accurate analysis, each case selected

contained at least 200 cells to determine the percentage of cells

expressing Ki-67, P53, and CK-19. Supplementary Figure 1 presents

a representative report of these markers. FNAB specimens must be

evaluated by a skilled cytopathologist and reported following the

Bethesda Classification System.
FIGURE 1

Flowchart for PTC patient selection and cohort distribution for developing and validating predictive model. PTC, papillary thyroid cancer; CLND,
central lymph node dissection; cN0, clinically node-negative; LNM, lymph node metastasis; US, ultrasonography; FNAB, fine-needle aspirations
biopsy; LLNM, lateral lymph node metastases; CLNM, central lymph node metastasis; SHAP, Shapley Additive Explanations.
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Acquisition of elastography imaging

B-mode ultrasound and elastography for thyroid nodules were

conducted using the Aplio i800 ultrasound system (Canon, Japan).

Two sonographers, each with over 10 years of experience in thyroid

ultrasound and more than 5 years in elastography, employed a

standardized imaging protocol to conduct the sonographic

examinations, thereby ensuring consistent elastography image

quality. They assessed features like tumor size, distribution, and

shape, unaware of the clinicopathologic findings. Elastography was

initiated by centering the lesion within the image. After the B-mode

ultrasound, the elastography image was captured at the plane

displaying the thyroid nodule’s largest diameter.
Image segmentation and feature extraction

Elastography thyroid images were processed using segmentation

software, 3D Slicer (Version 5.0.2). An experienced ultrasonographer

(U1), lacking access to clinical data, delineated the ROI (Figure 2).

Another ultrasonographer (U2) independently verified these outlines

without clinical data, using the same approach. The consistency

between their delineations was assessed using intraclass correlation

coefficients (ICCs), with values ≥ 0.80 indicating high reproducibility.

Radiomic signatures were extracted from each ROI using

PyRadiomics (Version 3.7), resulting in 6 image types and 6

feature classes.
Frontiers in Oncology 04
Data preprocessing

Before developing a prediction model, data preprocessing was

crucial to eliminate biases. This step standardized all data, including

extracted radiomics features and clinicopathological information.

Continuous variables were normalized using Z-scores to have a

mean of zero and a standard deviation of one, while categorical

variables were binarized, assigned values of “0” or “1.”
Selection of radiomics features

The consistency of feature extraction across different observers

was assessed using interclass correlation coefficients (ICCs), with a

threshold of 0.80 for acceptable agreement. Then, the Student’s t-

test was conducted to identify significant features, considering those

with false discovery rate (FDR)-corrected P values below 0.05.

Subsequently, a least absolute shrinkage and selection operator

(LASSO) logistic regression model was employed to further refine

feature selection.
Derivation and internal validation of
ML models

To evaluate the risk of SLNM in cN0 PTC patients, we

employed four established ML classifiers: Logit, Random Forest
FIGURE 2

Elastography images were acquired and subsequently segmented.
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(RF), SVM, and XGBoost. We developed distinct prediction models

based on clinicopathological data, radiomics features, and their

combinations. During model training, we utilized a triply-repeated

five-fold cross-validation to maximize data utilization, dividing the

training set into inner training and testing subsets for sequential

assessments. For the RF model, we configured it with 500 trees and

determined the number of features for node splitting using the

square root of the total feature count. The SVM employed a radial

basis function (RBF) kernel, effective for non-linear data, with

hyperparameters fine-tuned via grid search. The cost parameters

were set at [0.1, 1, 10], and gamma parameters for the RBF kernel at

[0.001, 0.01, 0.1]. XGBoost was optimized using grid search with

parameters including a learning rate of 0.02, a maximum tree depth

of 4, and an ensemble of 600 trees, ensuring a balance between

model complexity and prediction accuracy, thereby streamlining

model development.

After developing each model, we conducted a rigorous

internal validation to assess their discrimination, calibration, and

clinical applicability. The optimal predictive model was selected

based on its superior discriminatory power, robust calibration, and

clinical utility.
Interpretability and external validation of
ML models

After identifying the best predictive models, we explored the

individual contributions of each variable to the predictions using

the SHAP (Shapley Additive Explanations) methodology. This

approach enabled a detailed understanding of feature importance,

emphasizing the variables with the most significant impact.

Features were ranked by their SHAP values in descending order

to identify the key predictors in our patient cohort. The SHAP force

plot is crafted to analyze and interpret prediction results for

individual samples. To ensure the reliability of our models, we

conducted external validation. This thorough assessment confirmed

their discriminative power, calibration, and clinical relevance,

offering a clear view of their predictive strength.
Statistical analysis

Statistical analyses were conducted using R (Version 4.2.1) and

Python (Version 3.7.1). Skewed continuous variables were

described as median [interquartile range (IQR)] and assessed

using the Mann–Whitney U-test. Categorical variables were

presented as number (percentage) and analyzed with the c2 test.

Model performance was evaluated through receiver operating

characteristic (ROC) curve analysis, specifically focusing on the

area under the curve (AUC), and additional metrics like Precision,

Recall, and F1 Score to assess discriminative ability. AUC

comparisons were made using Delong’s test. Model calibration

was evaluated using calibration curves and the Brier Score to

measure probability prediction accuracy. For assessing clinical

utility, decision curve analysis (DCA) calculated net benefits at

various threshold probabilities.
Frontiers in Oncology 05
Results

Patient characteristics

Data from 816 newly diagnosed primary PTC patients were

extracted from the inpatient management system. After rigorous

screening according to inclusion and exclusion criteria, 485 patients

were selected and split into two cohorts: 339 in the training cohort

and 146 in the external verification cohort (Figure 1). All enrolled

patients were followed regularly for a minimum of two years or

until a diagnosis of LLNM post-surgery was confirmed. The follow-

up period concluded on December 31, 2023, with a median

duration of 51.5 months. Among all patients, 67 (13.8%) were

diagnosed with SLNM. The distributions of SLNM are shown in

Table 1. The prevalence of SLNM was similar in both cohorts—

14.5% (49/339) in the training cohort and 12.3% (18/146) in the

external verification cohort, with no significant statistical difference

(c2 = 0.229, P = 0.632). Table 2 corroborates these results, showing

consistent clinicopathological characteristics across both cohorts

without significant differences (all P > 0.05).
Comparative clinicopathological
characteristics of patients with and without
SLNM in the training cohort

Table 3 presents a comparison of clinicopathological

characteristics between patients with and without SLNM in the

training cohort, identifying associations between SLNM risk and

factors such as age, tumor location, number of lesions, tumor size,
TABLE 1 Distribution of skip lymph node metastasis.

Distribution n=67

Single level, n (%)

II 11 (16.4)

III 20 (29.9)

IV 7 (10.4)

Two levels, n (%)

II+III 5 (7.5)

II+IV 4 (6.0)

III+IV 6 (9.0)

III+V 2 (3.0)

IV+V 2 (3.0)

Three levels, n (%)

II+III+IV 5 (7.5)

III+IV+V 4 (6.0)

Four levels, n (%)

II+III+IV+V 1 (1.5)
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TABLE 2 Comparisons of the clinicopathological characteristics between the training and externally verification cohorts.

Clinicopathological characteristics
Training cohort

(N=339)
Externally verification cohort

(N=146)
P value

Age, year, median (IQR) 44.00 (35.50, 51.00) 44.00 (36.00, 53.00) 0.232*

Gender, n (%) 0.905#

Male 101 (29.8) 42 (28.8)

Female 238 (70.2) 104 (71.2)

BMI, kg/m2, median (IQR) 23.90 (20.90, 27.25) 24.30 (21.85, 27.20) 0.369*

Diabetes, n (%) 0.586#

Yes 41 (12.1) 21 (14.4)

No 298 (87.9) 125 (85.6)

Graves’ disease, n (%) 0.744#

Yes 4 (1.2) 3 (2.1)

No 355 (98.8) 143 (97.9)

Family history of thyroid cancer, n (%) 0.729#

Yes 28 (8.3) 10 (6.8)

No 311 (91.7) 136 (93.2)

History of Hashimoto’s thyroiditis, n (%) 0.563#

Yes 45 (13.3) 23 (15.8)

No 294 (86.7) 123 (84.2)

T stage of tumor, n (%) 0.573#

T1 17 (5.0) 6 (4.1)

T2 192 (56.6) 88 (60.3)

T3 101 (29.8) 36 (24.7)

T4 29 (8.6) 16 (11.0)

Tumor location, n (%) 0.912#

Upper pole 123 (36.3) 50 (34.2)

Middle 106 (31.3) 47 (32.2)

Lower pole 110 (32.4) 49 (33.6)

Number of lesions, n (%) 0.766#

Single 197 (58.1) 82 (56.2)

Multiple 142 (41.9) 64 (43.8)

Distribution of lesions, n (%) 0.630#

Unilateral 230 (67.8) 103 (70.5)

Bilateral 109 (32.2) 43 (29.5)

Tumor size, cm, median (IQR) 1.60 (1.10, 2.30) 1.60 (1.20, 2.10) 0.987*

Irregular shape, n (%) 0.598#

Yes 79 (23.3) 38 (26.0)

No 260 (76.7) 108 (74.0)

Capsular invasion, n (%) 0.148#

Yes 146 (43.1) 74 (50.7)

(Continued)
F
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capsular and extraglandular invasions, Ki-67, and P53 (all P < 0.05).

Key clinicopathological parameters were standardized to a mean of

zero and a standard deviation of one using Z-score normalization.

These standardized metrics were then utilized to develop

clinicopathological ML prediction models.
Frontiers in Oncology 07
Radiomics analysis

In the training cohort, 1115 radiomics features were extracted

and normalized from each elastography image, with ICCs ranging

from 0.5 to 0.99. Notably, 981 features (88.0%) demonstrated an
TABLE 2 Continued

Clinicopathological characteristics
Training cohort

(N=339)
Externally verification cohort

(N=146)
P value

Capsular invasion, n (%) 0.148#

No 193 (56.9) 72 (49.3)

Extraglandular invasion, n (%) 0.453#

Yes 105 (31.0) 51 (34.9)

No 234 (69.0) 95 (65.1)

Hypoechoic mass, n (%) 0.574#

Yes 285 (84.1) 119 (81.5)

No 54 (15.9) 27 (18.5)

Calcified foci, n (%) 0.696#

Yes 106 (31.3) 49 (33.6)

No 233 (68.7) 97 (66.4)

Doppler blood flow, n (%) 0.847#

Rich 71 (20.9) 34 (23.3)

Little 191 (56.3) 80 (54.8)

None 77 (22.7) 32 (21.9)

Ki-67, n (%) 0.982#

<5% 264 (77.9) 113 (77.4)

5-10% 71 (20.9) 31 (21.2)

>10% 4 (1.2) 2 (1.4)

P53, n (%) 0.890#

<5% 236 (69.6) 100 (68.5)

≥5% 103 (30.4) 46 (31.5)

CK-19, n (%) 0.862#

<25% 71 (20.9) 27 (18.5)

25-50% 219 (64.6) 95 (65.1)

50-75% 31 (9.1) 14 (9.6)

>75% 18 (5.3) 10 (6.8)

Harvested number of CLN, mean ± SD 8.23 ± 3.28 8.58 ± 3.21 0.280$

Metastatic number of CLN, mean ± SD 0 0 NA

Pathological subtype 0.935

C-PTC 312 (92.0) 133 (91.1)

FV-PTC 14 (4.1) 7 (4.8)

Other a 13 (3.8) 6 (4.1)
#For Chi-square; $for independent sample t-test; *For Mann–Whitney U test; IQR, inter-quartile range; SD, standard deviation; BMI, body mass index; CLN, central lymph nodes; NA, not
applicable; C-PTC, classic PTC; FV-PTC, follicular variant PTC; PTC, papillary thyroid cancer; aOther: including tall cell, columnar cell, and hobnail variant subtypes.
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TABLE 3 Comparisons of the clinicopathological characteristics
between the non-SLNM and SLNM groups.

Clinicopathological
characteristics

Non-SLNM
group
(n=290)

SLNM
group
(n=49)

P value

Age, year, median (IQR)
43.00

(35.00, 49.00)

51.00
(41.00,
59.00)

<0.001*

Gender, n (%) 0.973#

Male 87 (30.0) 14 (28.6)

Female 203 (70.0) 35 (71.4)

BMI, kg/m2, median (IQR)
24.00

(20.90, 27.28)

22.70
(21.40,
26.80)

0.798*

Diabetes, n (%) 0.223#

Yes 32 (11.0) 9 (18.4)

No 258 (89.0) 40 (81.6)

Graves’ disease, n (%) 0.187#

Yes 2 (0.7) 2 (4.1)

No 288 (99.3) 47 (95.9)

Family history of thyroid
cancer, n (%)

0.759#

Yes 25 (8.6) 3 (6.1)

No 265 (91.4) 46 (93.9)

History of Hashimoto’s
thyroiditis, n (%)

0.650#

Yes 37 (12.8) 8 (16.3)

No 253 (87.2) 41 (83.7)

T stage of tumor, n (%) 0.445#

T1 14 (4.8) 3 (6.1)

T2 166 (57.2) 26 (53.1)

T3 88 (30.3) 13 (26.5)

T4 22 (7.6) 7 (14.3)

Tumor location, n (%) <0.001#

Upper pole 93 (32.1) 30 (61.2)

Middle 93 (32.1) 13 (26.5)

Lower pole 104 (35.9) 6 (12.2)

Number of lesions, n (%) 0.002#

Single 158 (54.5) 39 (79.6)

Multiple 132 (45.5) 10 (20.4)

Distribution of lesions,
n (%)

0.282#

Unilateral 193 (66.6) 37 (75.5)

Bilateral 97 (33.4) 12 (24.5)

(Continued)
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TABLE 3 Continued

Clinicopathological
characteristics

Non-SLNM
group
(n=290)

SLNM
group
(n=49)

P value

Distribution of lesions,
n (%)

0.282#

Tumor size, cm, median (IQR) 1.60 (1.10, 2.20)
2.60

(1.52, 3.00)
<0.001*

Irregular shape, n (%) 0.260#

Yes 64 (22.1) 15 (30.6)

No 226 (77.9) 34 (69.4)

Capsular invasion, n (%) <0.001#

Yes 111 (38.3) 35 (71.4)

No 179 (61.7) 14 (28.6)

Extraglandular invasion,
n (%)

0.002#

Yes 80 (27.6) 25 (51.0)

No 210 (72.4) 24 (49.0)

Hypoechoic mass, n (%) 0.897#

Yes 243 (83.8) 42 (85.7)

No 47 (16.2) 7 (14.3)

Calcified foci, n (%) 0.695#

Yes 89 (30.7) 17 (34.7)

No 201 (69.3) 32 (65.3)

Doppler blood flow,
n (%)

0.342#

Rich 57 (19.7) 14 (28.6)

Little 167 (57.6) 24 (49.0)

None 66 (22.8) 11 (22.4)

Ki-67, n (%) 0.004#

<5% 234 (80.7) 30 (61.2)

5-10% 54 (18.6) 17 (34.7)

>10% 2 (0.7) 2 (4.1)

P53, n (%) 0.026#

<5% 209 (72.1) 27 (55.1)

≥5% 81 (27.9) 22 (44.9)

CK-19 (%) 0.184#

<25% 66 (22.8) 5 (10.2)

25-50% 185 (63.8) 34 (69.4)

50-75% 25 (8.6) 6 (12.2)

>75% 14 (4.8) 4 (8.2)

Harvested number of CLN,
mean ± SD

8.19 ± 3.28 8.49 ± 3.29
0.554$

(Continued)
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intra-observer ICC of ≥ 0.8 and were selected initially. Through a

Student’s t-test, this set was refined to 22 potential predictors.

Subsequently, a LASSO logistic regression model identified 16

optimal features correlated with SLNM, each distinguished by

non-zero coefficients (Figures 3A, B).
Model comparison for SLNM
risk prediction

In our study, we assessed the efficacy of predictive models for

evaluating SLNM risk in cN0 PTC patients using four ML

classifiers: Logit, SVM, RF, and XGBoost. These models were

applied to three datasets: clinicopathological, radiomics, and a

combined dataset. Table 4 systematically compares these models,

and Figures 4–6 depict their performance metrics, including ROC,

calibration, and DCA curves. The results demonstrated that the

clinicopathological-radiomics models, which integrate both

clinicopathological and radiomics data, significantly outperformed
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the models based solely on clinicopathological data (AUC: 0.744–

0.769) or radiomics data (AUC: 0.809–0.847), achieving AUCs

between 0.861 and 0.934. This superiority was statistically

confirmed by Delong’s test (all P < 0.05).

In our evaluation of clinicopathological-radiomics models,

XGBoost excelled, achieving the highest AUC score of 0.934 and

showing superior calibration, particularly near the 60% threshold.

Performance across all models was consistently demonstrated in

DCA. XGBoost consistently outperformed in key metrics such as

Precision, Recall, F1 Score, and Brier Score, highlighting its

effectiveness. These findings establish XGBoost as the most

suitable model for preoperative prediction of SLNM risk.
Assessing ML model with the external
verification cohort

The external verification cohort was employed to assess the

predictive accuracy of the XGBoost model against actual SLNM

outcomes using ROC, calibration, and DCA analyses (Figure 7).

Although the model exhibited a slight performance dip compared

to the training cohort, it maintained significant discriminative

ability with an AUC of 0.907 (Figure 7A). The calibration curve

showed strong alignment between predicted risks and observed

frequencies, particularly for values above the 40% threshold

(Figure 7B). Additionally, the DCA curve confirmed the model’s

effectiveness by demonstrating substantial net benefits (Figure 7C).

These results highlight the XGBoost model’s utility as an effective

predictive tool for SLNM risk in clinical settings.
Interpretation of the model

The SHAP analysis was used to decode the XGBoost model by

quantifying the impact of each feature. This involved computing the

absolute mean SHAP values, which helped prioritize features by

importance. Notably, three radiomics features from elastography
FIGURE 3

Radiomics feature selection via LASSO logistic regression. (A) LASSO coefficient profiles were plotted against the lambda values. (B) Repeat the 10-
fold cross-validation process 50 times to identify the optimal penalization coefficient, lambda, in the LASSO model, yielding 16 nonzero coefficients.
The red dots indicate the mean value of the target parameters. LASSO, least absolute shrinkage and selection operator.
TABLE 3 Continued

Clinicopathological
characteristics

Non-SLNM
group
(n=290)

SLNM
group
(n=49)

P value

CK-19 (%) 0.184#

Metastatic number of CLN,
mean ± SD

0 0
NA

Pathological subtype 0.995

C-PTC 267 (92.1) 45 (91.8)

FV-PTC 12 (4.1) 2 (4.1)

Other a 11 (3.8) 2 (4.1)
#For Chi-square; $for independent sample t-test; *For Mann–Whitney U test; SLNM, skip
lymph node metastasis; IQR, inter-quartile range; SD, standard deviation; BMI, body mass
index; CLN, central lymph nodes; NA, not applicable; C-PTC, classic PTC; FV-PTC, follicular
variant PTC; PTC, papillary thyroid cancer; a Other: including tall cell, columnar cell, and
hobnail variant subtypes.
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images, one clinical variable, and one pathological variable were

identified as the most influential in the model (Figure 8A). A

summary plot displayed the collective impact of these features

through their SHAP values (Figure 8B). This visualization offered

comprehensive insights into the contribution of each feature to

individual patient predictions. Crucially, higher values of these top

five features were associated with an increased risk of SLNM in cN0

PTC patients.

In predictive modeling, the SHAP force plot effectively

illustrates how specific features influence individual patient

outcomes (Figure 9). Yellow areas represent features that increase

the likelihood of SLNM in cN0 PTC patients, while red areas

represent features that decrease it. A wider color region indicates

a more substantial impact. The value f(x) aggregates the SHAP
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values for each patient, with the base value reflecting the average

SHAP value across all patients. The top panel shows an accurate

SLNM prediction due to factors like Ki-67 >10% (Figure 9A).

Conversely, the bottom panel accurately predicts a non-SLNM

case, considering features such as Ki-67 <5% and age 25 years

(Figure 9B). Utilizing XGBoost, this methodology effectively

differentiates between patients at risk for SLNM or non-SLNM,

facilitating personalized risk assessments.
Discussion

In CLNM-negative cN0 patients, SLNM influences clinical

staging and recurrence risk, underscoring the need for accurate
FIGURE 4

Comparative analysis of ML classifiers (Logit, SVM, RF, and XGBoost) using clinicopathological data: performance metrics including (A) ROC curves,
(B) calibration plots, and (C) DCA. They achieved ROC-AUCs of 0.744, 0.769, 0.752, and 0.760, respectively. ML, machine learning; ROC, receiver
operating characteristic; AUC, area under the curve; DCA, decision curve analysis; Logit, logistic regression; SVM, support vector machine; RF,
random forest; XGBoost, extreme gradient boosting.
TABLE 4 Performance of ML classifiers for predicting SLNM risk in cN0 PTC patients using clinicopathological data, radiomics features, and
combined datasets.

Data Type ML classifier AUC Precision Recall F1 Score Brier Score

Clinicopathological data

Logit 0.744 0.750 0.250 0.375 0.028

SVM 0.769 0.651 0.451 0.622 0.026

RF 0.752 0.667 0.333 0.444 0.047

XGBoost 0.76 0.771 0.701 0.699 0.004

Radiomics feature

Logit 0.844 0.511 0.183 0.154 0.005

SVM 0.809 0.512 0.233 0.412 0.034

RF 0.818 0.655 0.333 0.500 0.052

XGBoost 0.847 0.801 0.633 0.502 0.043

Combined clinicopathological and
radiomics data

Logit 0.922 0.833 0.817 0.846 0.012

SVM 0.861 0.800 0.813 0.801 0.007

RF 0.872 0.812 0.803 0.799 0.040

XGBoost 0.934 0.833 0.817 0.856 0.001
ML, machine learning; SLNM, skip lymph node metastasis; cN0, clinically node-negative; PTC, papillary thyroid cancer; AUC, area under the curve; Logit, logistic regression; SVM, support
vector machine; RF, random forest; XGBoost, extreme gradient boosting.
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preoperative prediction methods. This study aimed to meet this

requirement by developing predictive models using four different

ML classifiers based on clinicopathological data or elastography

radiomics features. Our extensive evaluation, which included

assessments of discriminative ability, calibration, and clinical

utility, demonstrated that the XGBoost model combining both

data types was most effective in predicting SLNM risk. Notably,

integrating SHAP analysis enhanced the interpretability of the

XGBoost model, pinpointing key clinicopathological and

elastography radiomics features impacting SLNM risk. This

research marks a significant advancement in the preoperative

prediction of SLNM risk by merging clinicopathological data with

elastography radiomics through ML models, paving the way for

more accurate individual risk assessments.

In 2020, the American Association of Endocrine Surgeons

updated the “Guidelines for the Definitive Surgical Management
Frontiers in Oncology 11
of Thyroid Disease in Adults,” advising against preventive neck

lymph-node dissection for patients in T1, T2, and cN0 stages (30).

However, the appropriateness of this conservative approach for

Chinese patients remains debated. Yang P et al. argue there is

insufficient evidence to standardize this method in China (31).

Research shows that prophylactic CLND can safely prevent long-

term metastasis and recurrence of thyroid cancer in PTC patients,

even when lymph nodes show no signs of infiltration or metastasis

(32, 33). In our study, we conducted CLND on PTC patients.

Despite this, detecting SLNM with CLND remains challenging and

may escape early ultrasonography due to atypical imaging features,

potentially leading to misclassification of individuals as low-risk

(15). Patients harboring occult SLNM often face increased risks of

postoperative disease progression and potentially adverse outcomes,

such as the need for additional surgeries (34). Accurate preoperative

identification of these patients could significantly reduce the
FIGURE 6

Comparative analysis of ML classifiers (Logit, SVM, RF, and XGBoost) on clinicopathological and radiomics data: performance metrics (A) ROC curves,
(B) calibration plots, and (C) DCA. They achieved ROC-AUCs of 0.922, 0.861, 0.872, and 0.934, respectively. ML, machine learning; ROC, receiver
operating characteristic; AUC, area under the curve; DCA, decision curve analysis; Logit, logistic regression; SVM, support vector machine; RF,
random forest; XGBoost, extreme gradient boosting.
FIGURE 5

Comparative analysis of ML classifiers (Logit, SVM, RF, and XGBoost) using radiomics features: performance metrics including (A) ROC curves,
(B) calibration plots, and (C) DCA. They achieved ROC-AUCs of 0.844, 0.809, 0.818, and 0.847, respectively. ML, machine learning; ROC, receiver
operating characteristic; AUC, area under the curve; DCA, decision curve analysis; Logit, logistic regression; SVM, support vector machine;
RF, random forest; XGBoost, extreme gradient boosting.
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FIGURE 8

SHAP analysis of XGBoost model predicting SLNM risk in cN0 PTC patients: (A) feature significance ranking based on absolute mean SHAP values,
(B) summary plot visualizing cumulative influence. SHAP, Shapley Additive Explanation; XGBoost, extreme gradient boosting; SLNM, skip lymph node
metastasis; cN0, clinically node-negative; PTC, papillary thyroid cancer.
FIGURE 7

Evaluation of optimal ML model’s predictive performance with external verification cohort. (A) ROC curve (AUC = 0.907) indicating significant
discriminative capacity, (B) calibration curve confirming strong agreement between predictions and observations, especially above 40%, and (C) DCA
highlighting net clinical benefit across prediction probabilities. ML, machine learning; ROC, receiver operating characteristic; AUC, area under the
curve; DCA, decision curve analysis.
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incidence of postoperative metastasis in cN0 PTC, thereby

improving prognosis (34, 35). Most studies on SLNM have

focused on cN+ patients, often excluding cN0 PTC patients (13,

15, 36). Although Yang et al. enrolled cN0 PTC patients in their

study, they categorized all as non-SLNM without conducting

postoperative follow-ups, thus overlooking the presence of occult

SLNM in this group (37). Recently, Li et al. (38) enrolled cN0 PTC

patients and conducted postoperative follow-ups. Based on these

outcomes and pathology reports, cN0 patients with postoperative

LLNM were categorized as having SLNM. However, their analysis

was limited to clinical characteristics, omitting pathological

variables and elastography radiomics. Furthermore, they relied on

traditional linear predictive models rather than more effective ML

techniques, compromising the precision of their predictions.

Several factors may contribute to postoperative LLNM in cN0

PTC patients: 1) Occult SLNM might exist prior to surgery, leading

to LLNM through residual tumor cells in the LLNs (39); or 2)

Following CLND, if the lymphatic pathways to CLNs are

obstructed, tumor cells from residual thyroid tissue may

metastasize to LLNs along the lymphatics near the upper pole of

the thyroid vessels (40). Consequently, we posit that postoperative

LLNM in cN0 PTC patients, particularly those who underwent

CLND, is primarily attributed to SLNM. This study aims to detect

occult SLNM through postoperative follow-up, explore risk factors

for SLNM, and develop a predictive model to assess the likelihood

of SLNM. In our study, the distributions of SLNM are focused on

Levels II and III, which may relate to the cancerous nodule being

located at the upper pole of the gland. Therefore, when a PTC
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nodule is located at the upper pole of the thyroid, it is essential to

consider the presence of metastases in Level III of the lateral neck,

while also remaining highly vigilant about the possibility of direct

metastasis to Level II.

In our study, we selected ML models for their proficiency in

handling complex, non-linear relationships between variables,

surpassing traditional linear predictive methods (41). We

evaluated four ML models using both clinicopathological and

radiomics data. All models demonstrated adequate calibration

and clinical utility, but their discriminative abilities varied

significantly. Notably, models integrating clinicopathological

with radiomics data exhibited the most effective prediction of

SLNM, showing enhanced discrimination capabilities. This

advantage likely stems from the comprehensive utilization of both

clinicopathological and radiomics features, providing a broader

analytical base compared to models that rely solely on one data

type. This comprehensive feature integration likely explains the

observed differences in predictive performance.

In our selection of ML models, XGBoost stood out as the most

effective clinicopathological-radiomics model, maintaining

high accuracy throughout external validation. To address the

interpretability challenges associated with complex ML models,

we employed the SHAP methodology. This approach clarifies the

decision-making process on a cohort basis, complemented by

intuitive visualizations. This allows for a detailed understanding

of how individual variables impact predictions, thereby fostering

trust in AI among clinicians (42, 43). Our study identified five

principal predictors of SLNM risk: three radiomics features derived
FIGURE 9

SHAP force plots illustrating individual prediction results: (A) for a patient with SLNM; (B) for a patient without SLNM. SHAP, Shapley Additive
Explanations; SLNM, skip lymph node metastasis.
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from elastography imaging, one clinical variable, and one

pathological variable. The significance of elastography radiomics

features was anticipated, reflecting their established correlation with

SLNM. The radiomics features offer a more comprehensive and

objective assessment than traditional imaging methods alone.

Although the biological significance of certain texture features

might seem abstract initially, they are crucial for understanding

the complex attributes of thyroid nodules that transcend basic

parameters such as shape and size. Additionally, the location of

the tumor was confirmed as crucial clinical predictors. Notably, in

our study, tumors located in the upper pole of the gland were

present in 61.2% of cases in the SLNM group, a rate significantly

higher than the 32.1% observed in the non-SLNM group. This

finding aligns with the research conducted by Wang et al. (36)

(SLNM group vs. non-SLNM group: 63.6% vs. 19.2%) and Weng

et al. (44) (SLNM group vs. non-SLNM group: 53.0% vs. 24.4%). A

likely explanation is that lymph from the upper pole of the thyroid

primarily drains into the venous system via lateral cervical lymph

nodes, following the lymphatic vessels that run alongside the

superior thyroid artery (40, 45). Consequently, tumor cells in

the upper pole are more prone to spreading to the LLNs through

the ascending lymphatic vessels, increasing the risk of SLNM.

Additionally, FNAB is a safe, cost-effective, and straightforward

procedure that can help avoid invasive and potentially unnecessary

surgeries for patients with thyroid swellings. Achieving an accurate

pre-operative diagnosis of thyroid lesions remains a significant

challenge for clinicians, making FNAB crucial as a diagnostic tool

for thyroid carcinoma. In our study, we confirmed that a Ki-67

index greater than 10% in FNAB samples is associated with an

increased risk of SLNM. Additionally, combining SHAP with

XGBoost provides detailed insights into how variables affect

outcomes, proving invaluable for predicting SLNM. This

integration enhances the role of machine learning in clinical

decision-making and improves patient outcomes. FNAB is a safe,

cost-effective, and straightforward procedure that plays a crucial

role in achieving accurate preoperative diagnoses of thyroid lesions

and serves as an essential diagnostic tool for thyroid carcinoma (46).

Additionally, a meta-analysis indicates that Ki-67 could influence

the prognosis of thyroid cancer patients (47). However, the

association between Ki-67 levels in preoperative settings and

SLNM in PTC remains unclear. Our study confirmed that a

preoperative Ki-67 >10% in FNA samples increases the risk of

SLNM. Utilizing SHAP analysis, the XGBoost model provides

detailed insights into how variables influence outcomes, proving

invaluable for predicting SLNM. This enhances the role of

ML in clinical decision-making and contributes to improved

patient outcomes.

Our study suggests that this ML model can revolutionize

management practices in several key areas. Firstly, it recommends

either prophylactic lateral neck dissections or adjusting imaging

follow-up intervals for patients at high risk of SLNM, enabling more

tailored treatment strategies. Secondly, the model assists novice

clinicians by directing patients likely to have SLNM to more

seasoned specialists, thereby mitigating risks tied to clinical
Frontiers in Oncology 14
inexperience. Lastly, other clinicians can enter clinicopathological

and elastography radiomics data into our XGBoost ML models for

sharp clinical forecasts. Additionally, the model offers a SHAP force

plot that delineates the influence of each variable on the outcomes,

thus boosting both diagnostic precision and insight.

Our study identified three main limitations. Firstly, due to its

retrospective nature and limited sample size, we could not evaluate

lymphatic angioinvasion or conduct external validation to enhance

our model’s performance. Secondly, a brief follow-up period may

have overlooked postoperative metastases in patients with occult

SLNM. Lastly, if applied across more institutions, variations in

elastography settings could impact the extraction of radiomic

features, potentially affecting the effectiveness of our ML models.

Despite these challenges, our research confirmed the potential

of clinicopathological-radiomics ML models for predicting

SLNM in cN0 PTC patients. Future studies should focus on

multi-center, prospective designs with larger cohorts and include

inter-rater reliability tests to improve the model’s reliability

and generalizability.

Micrometastatic lymph nodes in the CLN occur in 20% to 50%

of patients with PTC, and rates can reach as high as 90% (48, 49).

Preoperative ultrasound, however, only detects CLN with 30–55%

accuracy and often misses lymph nodes under 5 mm in diameter

(5–7). Even with CLND, sampling may be inadequate, leading to

potential underdiagnosis (cN0) and underestimation of metastatic

risk, despite the presence of SLNM. This underdiagnosis can

significantly influence treatment decisions. Although prophylactic

lateral neck dissection is not standard for cN0 PTC (2), undetected

LNM may require additional interventions (8–12). Our evaluation

highlights the XGBoost model, which integrates elastography

radiomics and clinicopathological data, as the most effective ML

approach for the prediction of SLNM in cN0 PTC patients with an

increased risk of LNM. This innovative model significantly

enhances the accuracy of risk assessments for SLNM, enabling

personalized treatments that could reduce postoperative metastases

in these patients.
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