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Predicting the risk of colorectal
cancer among diabetes patients
using a random survival forest-
guided approach
Sarah Tsz Yui Yau, Chi Tim Hung, Eman Yee Man Leung*,
Ka Chun Chong, Albert Lee and Eng Kiong Yeoh*

JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong
Kong, Hong Kong SAR, China
Background: Colorectal cancer (CRC) is the third most frequently diagnosed

cancer worldwide. Diabetes and CRC sharemany overlapping lifestyle risk factors

such as obesity, heavy alcohol use, and diet. This study aims to develop a risk

scoring system for CRC prediction among diabetes patients using routine

medical records.

Methods: A retrospective cohort study was conducted using electronic health

records of Hong Kong. Patients who received diabetes care in public general

outpatient clinics between 2010 and 2019 and had no cancer history were

identified, and followed up until December 2019. The outcome was diagnosis of

CRC during follow-up. For model building, predictors were first selected using

random survival forest, and weights were subsequently assigned to selected

predictors using Cox regression.

Results:Of the 386,325 patients identified, 4,199 patients developed CRC during

a median follow-up of 6.2 years. The overall incidence rate of CRC was 1.93 per

1000 person-years. In the final scoring system, age, waist-to-hip ratio, and serum

creatinine were included as predictors. The C-index on test set was 0.651 (95%CI:

0.631-0.669). Elevated serum creatinine (≥127 µmol/L) could be a potential

important predictor of increased CRC risk.

Conclusion: While obesity is a well-known risk factor for CRC, renal dysfunction

could be potentially linked to an elevated risk of CRC among diabetes patients.

Further studies are warranted to explore whether renal function could be a

potential parameter to guide screening recommendation for diabetes patients.
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Introduction

Globally, colorectal cancer (CRC) ranks third in cancer

incidence and second in cancer mortality (1). At the ecological

level, CRC incidence is positively correlated with socioeconomic

development, as indicated by human development index (2, 3).

Prior research has shown that CRC is associated with a number

of lifestyle factors (3). Obesity (4), heavy alcohol use (5), Western

dietary pattern (6), and processed meat (7) are established risk

factors for CRC. On the other hand, physical activity (8) and long-

term aspirin use (9) have been found to be protective against CRC.

Some evidence also suggests that whole grain and calcium

supplement are associated with a lower risk of CRC (3).

Numerous prediction or risk scoring models for CRC in the

general population exist (10). Variables in these models included

demographics (age and sex), behavioral factors (smoking and

alcohol use), body mass index (BMI), medical history

(cardiovascular disease, diabetes, and hypertension), medication

use (aspirin and non-steroidal anti-inflammatory drugs),

biomarkers (fasting glucose, cholesterol, and triglycerides), and

dietary factors (10).

Nevertheless, CRC is linked to many lifestyle factors which may

not be available in routinely collected data (10). Moreover,

increasing the number of variables or model complexity may not

necessarily improve performance (10). Furthermore, reliance on

traditional univariate regression in variable selection may omit

potential influential predictors (11). In addition, diabetes and

CRC share many over lapping r isk factors . Previous

epidemiological studies have shown that patients with obesity

(12), heavy alcohol use (13), or poor diet (14) are more likely to

develop diabetes. Heavy alcohol use or poor diet is often linked to

excess caloric intake, which in turn potentially promotes obesity.

One potential underlying pathophysiological mechanism linking

diabetes and CRC is adipose tissue dysfunction in obesity leading to

insulin resistance, diabetes, and metabolic dysfunction (15),

characterized by a chronic state of low-grade inflammation,

which in turn promotes carcinogenesis (16). Given many

common risk factors shared between diabetes and CRC, patients

with diabetes are more likely to be diagnosed with CRC than the

general population (17). However, there is a lack of risk prediction

models for CRC among diabetes patients.

While traditional regression approach has been adopted in

building CRC prediction models, machine learning approach such

as tree-structured algorithms (18) and neural network (19) have

also been applied (20). Nevertheless, the lack of interpretability may

hinder its application (20). Recently, an interpretable machine

learning framework to develop clinical scoring system has been

proposed (21), where variable selection is guided by random

survival forest, and weight assignment is performed using

conventional Cox regression. The advantages of the framework

include: i) tree-structured algorithms are more suitable for handling

non-linear relationships between covariates and an outcome as well

as capturing interactions among covariates on an outcome; ii) an

ensemble tree algorithm reduces variance in prediction; iii) a less
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predictors; iv) Cox regression remains the most widely accepted

approach in developing risk scoring models for time-to-event

outcomes; and v) clinical expert knowledge is incorporated in risk

score development.

To fill the gaps in the literature on i) the lack of CRC prediction

models among asymptomatic general population based on solely

routine medical records; ii) the lack of individualized prediction

models among diabetes population; and iii) the lack of interpretability

in machine learning approach, this study aims to i) develop a

parsimonious scoring system for CRC prediction among diabetes

patients based on electronic health records; and ii) identify potential

parameters to guide CRC screening recommendation for diabetes

patients using a random survival forest-guided approach.
Methods

Study design and study population

This is a retrospective cohort study based on territory-wide

electronic health records of Hong Kong’s public healthcare system.

The Hospital Authority (HA) is a statutory body managing 43

public hospitals, 49 specialist outpatient clinics, and 74 general

outpatient clinics. The Hong Kong population are largely

homogenous ethnic Chinese (over 95%). The HA maintains a

centralized clinical data repository to store information on

patients’ demographics, prescription records, disease diagnoses,

inpatient admissions, outpatient attendances, and laboratory

results. Disease diagnoses were coded according to the

International Classification of Disease 9th or 10th revision (ICD-9

or ICD-10), or the International Classification of Primary Care 2nd

edition (ICPC-2). Data were accessed via HA Data Collaboration

Lab. Ethics approval for secondary data analysis was provided by

the Joint Chinese University of Hong Kong-New Territories East

Cluster Clinical Research Ethics Committee.
Patients

Patients who received diabetes care at any of the general

outpatient clinics between 2010 and 2019 were initially included.

Those who i) were diagnosed with non-type 2 diabetes; ii) were

diagnosed with diabetes below the age of 18 years; iii) had a history

of malignancy prior to a baseline Diabetes Mellitus Complication

Screening (DMCS) assessment; or iv) had a follow-up period of less

than six months were excluded. Patients were followed up until a

CRC diagnosis, death, or December 2019, whichever was earlier.
Outcome

The outcome of interest was diagnosis of CRC (ICD-9: 153-154;

ICD-10: C18-21) during follow-up.
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Input variables

Input variables were information ascertained during a baseline

DMCS assessment. Variables included demographics (sex and age),

duration of diabetes, medical history (ischemic heart disease,

cerebrovascular disease, heart failure, hypertension, chronic

kidney disease, liver cirrhosis, chronic obstructive pulmonary

disease, pneumonia, and family history of diabetes), medication

use (anti-diabetic drugs: metformin, sulfonylurea, insulin, and

dipeptidyl peptidase-4 inhibitors, aspirin, nonsteroidal anti-

inflammatory drugs, anti-coagulants, anti-platelets, anti-

hypertensive drugs, and statins), behavioral factors (alcohol use

and smoking), anthropometric measurements (BMI and waist-to-

hip ratio), and laboratory measurements (serum creatinine, HbA1c,

fasting glucose, low-density lipoprotein cholesterol, high-density

lipoprotein cholesterol, and triglycerides). Medication use was

coded as dichotomous variables indicating whether patients had

been prescribed a drug at the time of the assessment. Laboratory

measurements were taken from latest results to the date

of assessment.
Data analysis

To balance class distribution and maintain a sufficient sample

size, patients who developed CRC (n=4,199) and a random subset

of patients who did not develop CRC during follow-up (n=41,990)

were selected for model building in a 1:10 ratio. Patients were

randomly split into training, validation, and test set in a 7:1:2 ratio

by default. The set of input variables was ranked by their relative

variable importance to CRC prediction on training set by random

survival forest algorithm. Each variable was then sequentially added

to the scoring model according to the ranking until no further

model improvement on validation set was shown. A final set of

predictors of the scoring model was then selected using model

improvement and model parsimony as criteria. A weight was

assigned to each predictor with reference to the lowest beta

coefficient of all variables in the scoring model using Cox

regression. The number of trees in the random survival forest

model was set as 30. For continuous variables, the cutoffs were set

by default quantiles. The CRC-free survival probability of patients

by score was assessed using Kaplan–Meier method. Model

performance was evaluated using Harrell’s concordance (C-)

index or area under the curve (AUC) as metrics. Data analyses

were conducted using R software (version 4.2.3; R Foundation for

Statistical Computing, Vienna, Austria).
Results

Of the 386,325 diabetes patients identified, 4,199 patients

developed CRC during a median follow-up of 6.2 years. Overall,

the incidence rate of CRC among patients of both sexes was 1.93 per

1000 person-years, whereas the incidence rates among females and
Frontiers in Oncology 03
males were 1.58 and 2.30 per 1000 person-years respectively.

Patients who were assigned a score of 80 to 100 tended to be

older (mean: 72.9 vs 57.4 years, p<0.001), male (56.22 vs 48.49%,

p<0.001), have an elevated waist-to-hip ratio (0.95 vs 0.93, p<0.001)

and a higher serum creatinine (101.79 vs 72.17 µmol/L, p<0.001),

when compared to those assigned a score below 80 (Supplementary

Table S1).
Final scoring system

Age, waist-to-ratio, and serum creatinine were identified as

variables of highest importance to predict the risk of CRC. Sex was

not identified among the top ten important variables.

In the final 100-point time-to-event scoring system, age, waist-

to-hip ratio, and serum creatinine were assigned up to 76, 10, and 14

points respectively. In general, the risk of CRC started to increase

from the age of 44 years onwards. The risk would almost double

when patients reaching 53 years, and continue to rise until 82 years.

On the other hand, waist-to-hip ratio appeared to be approximately

positively associated with the risk of CRC. The risk of CRC rose

noticeably from the ratio of 0.89 onwards, and continued to increase

up to the ratio of 1.04 (Table 1). The increasing trend remained

similar when controlling for sex (Supplementary Table S2). In

addition, serum creatinine demonstrated a potential non-linear

relationship with the risk of CRC. Serum creatinine appeared to

be an important predictor of CRC risk, in particular when the level

reaching 127 µmol/L or above (Table 1). The steep increase in

weight from the level of 127 µmol/L or above was more obvious

when controlled for sex (Supplementary Table S2). In the model

with the addition of sex, waist-to-hip ratio ≥1.04, serum creatinine

≥127 µmol/L, and male sex carried similar weights in predicting

CRC risk (Supplementary Table S2).
CRC-free survival during follow-up

Among the entire cohort, for patients with score 0 to 79 and 80

to 100, the CRC-free survival probability at 5 years ranged from

0.994 to 0.985, and the corresponding probability at 7 years

dropped to 0.990 and 0.978 (Table 2). The proportion of patients

with highest score (90 to 100) who developed CRC was 2.08%

(Table 3). Figure 1 shows the CRC-free survival among patients on

test set.
Model performance

The C-index of the final model on validation set was 0.644. When

the model was applied to test set, the C-index was 0.651 (95%

confidence interval [CI]: 0.631-0.669) At 2, 5, and 7 years, the AUCs

were 0.622 (95%CI: 0.545-0.708), 0.588 (95%CI: 0.51-0.66), and 0.711

(95%CI: 0.577-0.834) respectively. When the model was applied to the

full cohort, the C-index was 0.663 (95%CI: 0.655-0.671).
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Discussion

The current study applied random survival forest in variable

selection to inform the subsequent development of CRC risk

scoring among diabetes patients based on an earlier proposed

framework (21). While variable ranking in random survival forest

incorporates the aggregate results of the multidimensional

relationships among covariates associated with CRC in individual

survival trees, the subsequent scoring reduces the number of

dimensions in representing both the main and interaction effects

of important variables and condenses information into a simple

score to potentially guide decision-making. Findings of the study

demonstrated that obesity remained a strong predictor of CRC

among the more homogeneous diabetes population. On the other

hand, renal dysfunction, a potential complication of diabetes, could

be a potential parameter to guide CRC screening among diabetes

patients, who are at greater risk of developing CRC than the general

population (17). Nevertheless, male sex and smoking were ranked

as less important predictors in this study.
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Among the risk scoring models for CRC prediction among

asymptomatic general population, BMI has been incorporated as a

predictor in several existing models. For example, Betes et al. (22)

developed a simple score with only three predictors, namely age,

sex, and BMI, to predict the risk of advanced adenomas among

individuals aged 40 years or above in the absence of family history of

CRC who underwent a colonoscopy. On the other hand, several

studies (23–26) demonstrated that incorporating BMI as an

additional predictor to the original Asia-Pacific Colorectal

Screening (APCS) score (27), which included age, sex, family

history of CRC, and smoking as predictors of colorectal advanced

neoplasia among adults who received a colonoscopy, may

potentially improve model performance.

The current study showed that waist-to-hip ratio could be a

potential alternative predictor of CRC over BMI among diabetes

patients who receive routine care in primary care clinics. While

obesity is associated with an elevated risk of CRC, obesity is mainly

measured by overall obesity (BMI) but less commonly by

abdominal obesity indicators, such as waist-to-hip ratio and waist

circumference (4). However, emerging evidence suggests that

abdominal obesity could be more predictive of cancer risk than

overall obesity (28). While BMI is a more practically convenient

measure, waist circumference can be incorporated as an alternative

measure when available.

The present study also found that serum creatinine 127 µmol/L

or above could be a potential important indicator of elevated CRC

risk among diabetes patients. In a multi-center retrospective cohort

study performed in China, serum creatinine demonstrated a non-

linear association with the risk of all-cause mortality among CRC

patients (29). Patients with high serum creatinine level (>104 µmol/

L for male or >85 µmol/L for female) had a shorter survival than

those with serum creatinine falling within normal range (29). In

another study performed in theWestern population, elevated serum

creatinine was only shown to be linked to a higher risk of all-cause

mortality among patients with rectal cancer but not colon cancer

(30). Nevertheless, despite serum creatinine being a potential

prognostic marker of CRC (29, 30), existing literature on whether

serum creatinine is a predictor of CRC development remains

limited. Moreover, although serum creatinine is linked to both

total muscle mass and dietary meat intake (31), dietary information

was not available in the above two studies (29, 30). However, the

latter study (30) investigated the associations between a large

number of metabolites and mortality among CRC patients, where

metabolites could be a reflection of dietary patterns (32), and found

that only serum creatinine was associated with all-cause mortality

after accounting for multiple comparisons. Furthermore, the

changes in serum creatinine among patients who subsequently

developed CRC could be due to disrupted intestinal microbial

flora and altered creatinine metabolism over the course of CRC

carcinogenesis (29, 33, 34).

On the other hand, elevated serum creatinine could be an

indicator of renal dysfunction or severity of diabetes condition.

While the relationship between renal dysfunction and CRC remains

less conclusive, emerging studies suggest that renal dysfunction

could be linked to an elevated risk of CRC (35–38). Possible

mechanisms linking renal dysfunction to CRC could be chronic
TABLE 2 Colorectal cancer-free survival probability of diabetes patients
in the entire cohort at different follow-up time points by score interval.

Time

Score interval

[0, 79) [80, 100]

t= 2 years 0.998 0.995

t= 5 years 0.994 0.985

t= 7 years 0.990 0.978

t= 9 years 0.986 0.972
TABLE 1 Final scoring system for colorectal cancer prediction among
diabetes patients.

Variable Value Point

Age, years <44 0

[44, 53) 33

[53, 73) 59

[73, 82) 73

≥82 76

Waist-to-hip ratio <0.84 0

[0.84, 0.89) 2

[0.89, 0.99) 6

[0.99, 1.04) 8

≥1.04 10

Serum creatinine,
µmol/L

<51 6

[51, 62) 0

[62, 94) 10

[94, 127) 12

≥127 14
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inflammation and oxidative stress (39). Nevertheless, different

markers for renal function exist. Lees et al. (38) previously

reported that cystatin C could be a more sensitive renal function

indicator for cancer risk prediction. Future studies are warranted to

examine the association between renal function and CRC risk, and

whether serum creatinine is the most feasible and sensitive renal

function indicator among diabetes population.

Compared to a simple score using routine medical data (10, 22)

and (modified) APCS score for Asian population (24, 27), similar as
Frontiers in Oncology 05
the majority of CRC prediction models (10), these three models

(22, 24, 27) targeted at asymptomatic general population who

underwent a colonoscopy, while the current study targeted at

diabetes patients who received routine diabetes care in primary

care. Also, while Betes et al.’s score (22) was developed using routine

medical data, (modified) APCS score was based on information

from questionnaires (24, 27). These three models (22, 24, 27)

yielded an AUC ranging from 0.65 to 0.67. The proposed score

using routine medical data demonstrated a comparable moderate

performance and could be potentially useful to inform risk

stratification strategies and CRC screening guidelines for

diabetes patients.

Findings of the present study imply that consistent with the

current guidelines (40), diabetes patients in the study cohort

demonstrated a mildly elevated risk of CRC starting from the age

of 44 years onwards, and the risk rose markedly from 53 years old.

Obesity remains a key predictor of CRC among the homogeneous

diabetes population, regardless of the indicators used. While

existing literature on the links between serum creatinine and the

risk of CRC remains scarce, it is possible that serum creatinine or

renal dysfunction could be a predictor of CRC among diabetes

population. The potential clinical and public health implications of

the study are i) to explore whether obesity or renal function

indicator should be incorporated as additional parameters to

guide screening recommendation for diabetes patients given that

diabetes is linked to obesity and renal dysfunction; and ii) to

examine whether improved renal function could potentially lower

the risk of CRC among diabetes population.

There are several limitations of the present study. First,

information on family history of CRC or dietary factors was not

available in this study. Nevertheless, the proposed model only
FIGURE 1

Kaplan-Meier colorectal cancer-free survival curves among diabetes patients on test set by risk score.
TABLE 3 Distribution of proportion of diabetes patients in the entire
cohort who developed colorectal cancer during follow-up by
score interval.

Score
interval

Number of
patients, n

Number of patients who
developed colorectal
cancer during follow-up,
n (%)

[0, 10) 1,248 0 (0%)

[10, 20) 6,694 4 (0.06%)

[20, 30) 11,339 9 (0.08%)

[30, 40) 2,424 4 (0.17%)

[40, 50) 16,180 43 (0.27%)

[50, 60) 38,713 147 (0.38%)

[60, 70) 41,820 291 (0.70%)

[70, 80) 142,565 1,523 (1.07%)

[80, 90) 59,274 801 (1.35%)

[90, 100] 66,068 1,377 (2.08%)
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utilized routine medical records and does not require additional

data collection (10). Second, serum creatinine is associated with

dietary meat intake (31), however, dietary information is not

available in routine medical records. The apparent observed

association between serum creatinine and CRC risk could be

confounded by the links between diet and CRC (6, 7).

Nevertheless, only serum creatinine, but not other 147

metabolites, was found to be linked to an increased risk of all-

cause mortality among CRC patients from four European cohorts

(30). Third, renal function could be linked to liver function,

however, liver function was not evaluated in this study. Fourth,

chronic kidney disease was a dichotomous input variable in the

present study. Further research on the severity of kidney disease on

CRC risk would be warranted. Fifth, duration and dosage of

medication use was not captured in the present study. Sixth,

external validation was not available in this study, however,

internal validation was conducted on the unseen test set. Finally,

generalizability of the findings could be limited to Asian

diabetes population.
Conclusions

While abdominal obesity is a well-established risk factor for

CRC, renal dysfunction could also be a potential parameter for CRC

screening among diabetes patients based on routine medical

records. Further studies are warranted to examine whether

obesity or renal function could be potential additional criteria to

guide CRC screening recommendation for diabetes patients.
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