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Comprehensive analysis of
splicing factor SRs-related gene
characteristics: predicting
osteosarcoma prognosis and
immune regulation status
Changhai Long, Biao Ma, Kai Li* and Sijing Liu*

Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University,
Zhanjiang, Guangdong, China
Objective: To investigate the impact of SRs-related genes on the overall survival

and prognosis of osteosarcoma patients through bulk and single-cell RNA-seq

transcriptome analysis.

Methods: In this study, we constructed a prognosis model based on serine/

arginine-rich splicing factors (SRs) and predicted the survival of osteosarcoma

patients. By analyzing single-cell RNA sequencing data and applying AUCell

enrichment analysis, we revealed oncogenic pathways of SRs in osteosarcoma

immune cells. Additionally, we described the regulatory role of SRSF7 in

pan-cancer.

Results: Lasso regression analysis identified 6 key SRs-related genes, and a

prognosis prediction model was established. The upregulation of these

pathways revealed that SRs promote tumor cell proliferation and survival by

regulating related signaling pathways and help tumor cells evade host immune

surveillance. Additionally, by grouping single-cell data using AUCell, we found

significant differences in T cell expression between high and low-risk groups. The

analysis results indicated that the regulatory activity of SRs is closely related to T

cell function, particularly in regulating immune responses and promoting

immune evasion. Furthermore, SRSF7 regulates cell proliferation and apoptosis.

Conclusion: SRs-related genes play a critical regulatory role in osteosarcoma. T

cells are key in regulating immune responses and promoting immune evasion

through SRs genes. SRSF7 is a significant gene influencing the occurrence and

development of osteosarcoma.
KEYWORDS

serine/arginine-rich splicing factor (SRs) related genes, osteosarcoma, SRSF7, T cell,
immune microenvironment
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1 Introduction

Osteosarcoma (OS) is the most common primary malignant

bone tumor in children and adolescents (1). It is characterized by

rapid cell proliferation, high aggressiveness, propensity for

metastasis, and pathological bone destruction. In recent years, the

application of combined treatment methods, such as preoperative

and postoperative chemotherapy and extensive resection, has

significantly improved the survival rate (about 60-70%) of

patients with osteosarcoma (1–4). However, for patients who

develop distant metastases, their five-year survival rate is only 20-

28% (5–7). The abnormal regulat ion of the immune

microenvironment within osteosarcoma is closely associated with

tumor cell immune evasion, chemotherapy resistance, and

metastasis (8, 9). To improve the treatment outcomes of

osteosarcoma, it is crucial to identify new therapeutic targets and

biomarkers, and to modulate the immune status of osteosarcoma.

Serine/arginine-rich (SR) proteins, members of the RNA-binding

protein family, play a key role in the assembly and selective splicing of

precursor mRNA (10). Members of the SRSF family control the

selective splicing of multiple target genes (11), thereby regulating

nearly all critical aspects of tumorigenesis such as cell cycle regulation,

apoptosis, genomic stability, cell adhesion and metastasis (12, 13), as

well as angiogenesis (14). With the advancement of transcriptome

sequencing technology, an increasing number of studies have shown

that SR members are overexpressed in cancer tissues. The abnormal

alternative splicing events associated with SR overexpression are

considered to be one of the important factors leading to the

occurrence and development of cancer (15).

The immune microenvironment refers to a complex network

surrounding the tumor, which includes immune cells, inflammatory

mediators, and other immune-related molecules (16–18). The

interaction between the immune system and tumor cells

undergoes different stages, including immune elimination,

equilibrium, and escape (19–21). In osteosarcoma, tumor cells

release new antigens or tumor-associated antigens, which are

captured and presented to activate cytotoxic T cells (CTLs),

thereby initiating immune attack to clear tumor cells. Activated

CTLs enter the tumor microenvironment, eliminate tumor cells,

and lead to the release of more antigens, further activating the

immune response. Several immune escape mechanisms have been

discovered so far, including antigen loss, tumor-induced immune

suppression, tumor cell evasion, lack of co-stimulatory signals on

the surface of tumor cells, and tumor cell resistance to apoptosis.

Specifically, tumors establish complex negative feedback loops by

releasing immune inhibitory factors and activating immune

checkpoint molecules (such as PD-L1, CTLA-4, etc.), thereby

effectively evading T cell-mediated immune attacks (22). An

increasing number of studies have revealed that RNA splicing and

modifications affect the formation of the tumor immune

microenvironment and the immune evasion ability of tumor cells.

For example, METTL3 promotes the formation of circ-IGF2BP3 in

a YTHDC1-dependent manner, protecting PD-L1 from

proteasome-mediated degradation, thereby reducing CD8+ T cell

infiltration and promoting immune evasion of non-small cell lung
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cancer (NSCLC) cells. Additionally, N6-methyladenosine (m6A)

modification is positively correlated with the number of CD8+ T

cells in the immune microenvironment of pancreatic cancer,

suggesting that m6A modification may play an important role in

promoting the aggregation and activation of CD8+ T cells.

Therefore, the regulation of key molecules in RNA splicing and

modification processes plays an important role in the immune

microenvironment of osteosarcoma.

In this study, osteosarcoma patients were divided into two

subtypes based on the expression of Serine/Arginine-Rich Splicing

Factor (SR) related genes. The differences in patient prognosis and

tumor immune microenvironment between these two subtypes

were investigated using Lasso machine learning. Additionally, this

study subgrouped osteosarcoma single-cell samples based on SR-

related genes to explore the regulatory patterns of transcription

factors and immune-infiltrating cells. Finally, the genes of interest

in SRs were validated through in vitro functional experiments and

pan-cancer analysis.
2 Materials and methods

2.1 Data download

We downloaded TARGET data from the UCSC XENA

database, acquiring RNA-seq data and associated clinical

characteristics for 84 osteosarcoma tissue samples. We obtained

data for 12 SR splicing factor-related genes (SRSF1, SRSF2, SRSF3,

SRSF4, SRSF5, SRSF6, SRSF7, SRSF8, SRSF9, SRSF10, SRSF11, and

SRSF12). Additionally, single-cell RNA sequencing (scRNA-seq)

data from 6 osteosarcoma patients in the GEO dataset were utilized

(GSE162454). Expression and clinical data from TCGA Pan-Cancer

and GTEx were downloaded from the UCSC XENA database

(https://xenabrowser.net/datapages/).
2.2 Construction of the prognostic model
for the SRSF family

The iterative Least Absolute Shrinkage and Selection Operator

(LASSO) Cox regression model was used to identify the optimal

gene features of the SR family in osteosarcoma (OS). An SR-related

score was then constructed using the coefficients of the identified

gene features. The median SR-related score was used as a cutoff to

divide patients into high SR score and low SRSF score groups. The

SR-related score was calculated using the following formula: SRSF

score = S (Coef_i × Exp_i), where Coef_i represents the coefficient

and Exp_i represents the expression level of each gene in the

signature. Kaplan-Meier analysis was performed to compare

survival differences between the high and low SRSF score groups.

A stratified analysis was conducted to assess whether SRs-related

scores are independent prognostic factors for OS. The performance

of the classifier was evaluated using the area under the curve (AUC)

from the “timeROC” package in R. Additionally, the prognostic

value of the genes in the model was assessed.
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2.3 Functional and pathway
enrichment analysis

To identify differentially expressed genes (DEGs), we analyzed

RNA-seq data from both high-risk and low-risk osteosarcoma

patient groups. DEGs were determined using the DESeq2 package

in R. The criteria for DEGs were set with a false discovery rate

(FDR) < 0.05 and a log2 fold change (log2FC) > 1 or < -1. The total

number of samples used for this analysis included 84 osteosarcoma

tissue samples from the TARGET database. To explore the

functional enrichment differences between high and low-risk

groups, we conducted Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis on the identified DEGs. This analysis

was performed using the Gene Set Enrichment Analysis (GSEA)

function of the clusterProfiler R package. The network diagram was

constructed using the aPEAR R package. We downloaded the

Hallmark gene set, C2.CP.KEGG_Legacy.v2023.2.Hs.symbols, and

C5.all.v2023.2.Hs.symbols from the Molecular Signatures Database

(MSigDB). Immune pathway analysis was conducted using datasets

collected with the IOBR R package. Correlation heatmaps and dot

plots were generated using the ggplot2 package.
2.4 Single-cell RNA sequencing data
processing and analysis

The single-cell RNA sequencing (scRNA-Seq) data from GEO

database accession GSE162454 includes samples from 6 primary

osteosarcoma tumors. Subsequently, we performed preprocessing of

the normalized scRNA-Seq data using the R software package

“Seurat”. To obtain high-quality single-cell data, we filtered out

genes expressed in fewer than three cells, cells with detected gene

counts fewer than 500 or more than 6000, and cells with

mitochondrial content exceeding 10%. Before removing batch effects

and performing dimensionality reduction using Principal Component

Analysis (PCA) and Uniform Manifold Approximation and

Projection (UMAP), single-cell RNA sequencing data were

standardized using LogNormalize. The cell clustering was performed

using the “FindClusters” function from the R package “Seurat”. Cell

annotations were derived from previous studies. For visual

representation of the results, we utilized t-distributed Stochastic

Neighbor Embedding (t-SNE) to reduce the complexity of the data.

The RunTSNE function was employed to generate a two-dimensional

t-SNE plot based on the top 30 principal components. Subsequently,

the t-SNE plot was generated using the scCustomize R package. The

“FindAllMarkers” function was utilized to identify differentially

expressed genes (DEGs) between subgroups, with thresholds set at

log2 fold change (|FC|) > 0.5 and P value < 0.05. The differential gene

expression data from time-series analysis were clustered and visualized

using the fuzzy c-means algorithm in the R package ClusterGVis.

Additionally, we presented the top 5 marker genes and utilized the

enrichCluster R package to demonstrate the biological process

pathways for each cell cluster.
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2.5 SRs modify activity scores

We evaluated the SRs modification activity scores for six

significantly identified candidate splicing factor genes (SRSF1,

SRSF4, SRSF5, SRSF7, SRSF8, and SRSF10) using the AUCell R

package. We computed the area AUC values using AUCell for the

set of six genes. This metric ranks gene expression within each cell,

reflecting the proportion of highly expressed genes in the gene set

for that cell. To distinguish active gene sets, we utilized the

“AUCell_exploreThresholds” function to determine a threshold

(0.04). Finally, we employed t-distributed stochastic neighbor

embedding (t-SNE) to visualize the AUC scores of each cell,

depicting which cells are in an active state.
2.6 Subtype analysis and
feature enrichment

To comprehensively assess the regulatory network activity of

transcription factors (TFs) in single-cell RNA sequencing (scRNA-

seq) data, we utilized the PySCENIC framework for integrated

enhancer analysis (23). Specifically, we employed the PySCENIC

Conda environment and utilized log-transformed expression counts

of osteosarcoma cells as input data for initial regulatory network

construction. The identification of transcription factors (TFs) was

based on the human TF list compiled by Lambert et al. and was

performed using the default parameters of PySCENIC. To refine the

TF-target gene interactions within the regulons, we integrated the

CisTARGET database (24). This database identifies potential TF

binding sites by analyzing DNA sequences within 500 base pairs of

transcription start sites, as well as within 5Kb and 10Kb intervals. The

purpose of this step is to utilize known human TF motif information

to further elucidate the regulatory relationships between TFs and

their target genes. During this process, we also employed a Drop-out

masking strategy to mitigate the impact of common data loss in

single-cell data on the analysis results. Finally, utilizing the

FindAllMarkers function provided by R language, we identified

differentially expressed genes across various groups and cell types.

Subsequently, we performed enrichment analysis on these genes to

elucidate the functional significance of TF regulatory networks in

different cellular states and biological processes.
2.7 Reference mapping

The reference atlas of tumor-infiltrating T lymphocytes was

loaded from the ProjecTILs Git repository. Additionally, the

ProjecTILs R package (version 3.0.0) was used to map the

scRNA-seq data onto the reference CD4+ T cell and CD8+ T cell

atlases (25, 26). This reference-based analytical approach facilitated

the classification and comparison of T cell state distributions.

Furthermore, stacked bar plots were employed to illustrate the

changes in different cell type states.
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2.8 Trajectory analysis in Monocle3

To understand the potential pseudotemporal relationships

between different cell types, we performed trajectory analysis

using Monocle3 (27). The Seurat object was split into Active and

Inactive states from the integrated data, followed by subset analysis

of all cell types. The Seurat object was converted to a Monocle3

object using the ‘as.cell_data_set’ function from SeuratWrappers.

Subsequently, pseudotime analysis was conducted on the Monocle3

object utilizing the ‘learn_graph’ and ‘order_cells’ functions.
2.9 Immune infiltration analysis

Immune infiltration analysis was performed using the “IOBR”

package (28), employing the EPIC algorithm to compare differences

between high-risk and low-risk groups. Additionally, immune

infiltration was assessed using the CIBERSORT and Estimate

algorithms, followed by correlation analysis.
2.10 Cell culture

The MG63 and SJSA-1 cell lines were obtained from Procell

(Wuhan, China). These cells were cultured in DMEM medium

supplemented with 10% fetal bovine serum and antibiotics (100 U/

mL penicillin and 10 mg/L streptomycin). The cells were

maintained in an incubator at 37°C with 5% CO2.
2.11 SiRNA transfection

SRSF7 siRNA and the corresponding si-control were purchased

fromGuangzhou RiboBio Co., Ltd. MG63 and SJSA-1 were transfected

using Lipo8000 (Beyotime, Shanghai) following the manufacturer’s

instructions. After 24 hours post-transfection, cells were used for

protein quantification. The sequence of SRSF7 siRNA is as follows:

Sense (sense strand): 5’-GUGCAAGUCCUGAAAGAAU-3’,

Antisense (antisense strand): 5’-AUUCUUUCAGGACUUGCACT-3’.
2.12 Cell viability assay

Transfected cells were cultured in 96-well plates at a density of

5000 cells per well. Cells were treated with Cell Counting Kit-8 (CCK-

8) reagent (Beyotime, Shanghai) and incubated at 37°C before

detection. The absorbance at 450 nm was measured using a

microplate reader at 24, 36, and 72 hours. To assess the colony-

forming ability of osteosarcoma cells, a plate colony formation assay

was performed. Transfected cells were evenly seeded in six-well plates,

cultured for 12 days with regular medium changes. Fixed and stained

using paraformaldehyde and crystal violet staining solution. Cell

images were captured using a digital camera and data were recorded.
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2.13 Detection of cell apoptosis

The Annexin V-FITC apoptosis detection kit was purchased

from Beijing Solaibao Technology Co., Ltd. Human osteosarcoma

cells (MG63 and SJSA-1 cell lines) in logarithmic growth phase were

seeded into 6 cm culture plates. After 24 hours of culture, cells were

treated with si-SRSF7 for 24 hours. Cells were digested with trypsin

without EDTA and collected. After washing twice with 4°C PBS,

cells were resuspended in 1x binding buffer and then suspended at a

density of 10^6 cells/mL in 100 mL of binding buffer. Subsequently,

5 mL of Annexin V/FITC (Beyotime, Shanghai) was added and

gently mixed. Cells were incubated at 4°C in the dark for 5 minutes.

After incubation, 5 mL of PI was added, gently mixed, followed by

the addition of 400 mL of PBS. Cell apoptosis analysis was

performed using a flow cytometer.
2.14 Western blotting

In brief, proteins were first separated using SDS-PAGE

(Epizyme, Shanghai). Subsequently, proteins from the gel were

transferred onto a PVDF membrane and blocked. Primary

antibodies were incubated overnight at 4°C. The following day,

the membrane was incubated with secondary antibodies. After

washing three times with TBST, the membrane was incubated

with enhanced chemiluminescence (ECL) substrate for detection

(Biosharp, Beijing).
2.15 Statistical analysis

We used the Wilcoxon rank sum test or the KruskalWallis test

to determine differences between groups. A two-sided P value of <

0.05 was considered statistically significant.
3 Results

3.1 Construction and validation of a SRs
prognostic signature for OS

In osteosarcoma data, we found that 12 splicing factor genes

were associated with multiple pathways in the Hallmark gene set,

including the EF2, G2M, WNT, DNA repair, and MYC pathways

(Figure 1A). Subsequently, we further screened out the most

significant candidate genes using LASSO regression and

constructed a prognostic model to predict the prognosis of

osteosarcoma patients (Figures 1B, C). We identified 6 splicing

factor genes associated with the prognosis of osteosarcoma patients,

namely SRSF1, SRSF4, SRSF5, SRSF7, SRSF8, and SRSF10. Next, we

divided the training cohort into two groups based on the risk score.

The risk score was calculated as follows:
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RiskScore=0.165×SRSF1−0.665×MYC+1.111×SRSF5 +

0.022×SRSF7−0.381×SRSF8−0.685×SRSF10. Additionally, we

analyzed the distribution of risk scores and survival status based

on the candidate gene expression pattern (Figures 1D, E, G). The

Kaplan-Meier curve showed that with an increase in the risk score,

the survival time of patients in the training set significantly

decreased. Additionally, patients in the high-risk group had
Frontiers in Oncology 05
significantly worse prognosis compared to those in the low-risk

group (P=0.019, Figure 1F). Furthermore, we conducted ROC curve

analysis to evaluate the performance of the prognostic model. The

AUC for the first year, third year, and fifth year were 71%, 76%, and

72%, respectively. These results indicate that the prognostic model

we constructed has a certain accuracy and reliability in predicting

the survival of osteosarcoma patients.
FIGURE 1

Heatmap of SRs expression in Hallmark pathways, LASSO regression model analysis, and prognosis feature evaluation. (A) The heatmap displayed the
enriched expression of SRs (relevant receptors) in Hallmark pathways along with the correlation analysis. Pearson correlation analysis was used to
evaluate the correlation between pathway and gene expression. The heatmap colors transition from blue (indicating low correlation, r = -1) to red
(indicating high correlation, r = 1). (B) The LASSO regression model was used to determine the optimal regularization parameter g. (C) Variations in
LASSO coefficients of SRs under different regularization parameters. (D) The bar graph depicting the coefficients (Coef) values of six features
significantly associated with prognosis. (E) The scatter plot divided patients into high and low-risk subgroups based on the median, highlighting that
death events predominantly occurred in the high-risk group. (F) he survival analysis plot revealed that patients in the high-risk group exhibited
poorer prognosis compared to those in the low-risk group, as reflected in overall survival rates. (G) Using the TARGET dataset, time-dependent ROC
curves were plotted to demonstrate the accuracy of survival prediction at 1 year, 3 years, and 5 years, with survival rates of 71.25%, 76.19%, and
72.86%, respectively.
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3.2 Enrichment analysis and immune
infiltration in high and low-risk groups

To further understand the roles of high and low-risk groups in

osteosarcoma, we conducted enrichment analyses of differentially

expressed genes between these groups using various gene sets. In the

enrichment analysis of the Hallmark gene set (Supplementary

Table 1), we observed upregulation in pathways such as

MYC_TARGETS_V1, TNFA_SIGNALING_VIA_NFKB,

HYPOXIA, and MTORC1_SIGNALING in the high-risk group

(29) (Figure 2C). These findings indicate an active state of tumor

cells in biological processes such as proliferation, metabolism,

angiogenesis, and metastasis (30–32). Additionally, we observed

downregulation of immune response-related pathways in the high-

r i sk group , such as INFLAMMATORY_RESPONSE,

INTER FERON_GAMMA_RE SPONSE , I L 2 _ S TAT5

_SIGNALING, COMPLEMENT, and ALLOGRAFT_

REJECTION. These results suggest impaired immune system

function and reduced immune responses in the high-risk group,

enabling tumor cells to evade immune surveillance more easily. In

the KEGG results (Figures 2A, D; Supplementary Table 2), we

observed upregulation of the REACTOME_RNA_POLYMERASE_

I_TRANSCRIPTION pathway in the high-risk group. Excessive

activity of RNA polymerase I may lead to increased synthesis of

rRNA, thereby promoting the growth and proliferation of tumor

cells (33, 34). Additionally, we observed downregulation of the

NABA_CORE_MATRISOME pathway in the high-risk group. This

pathway includes genes encoding core extracellular matrix

components such as ECM glycoproteins, collagens, and

proteoglycans (35, 36). Downregulation of this pathway may

affect the structural and functional integrity of the extracellular

matrix, potentially influencing the adhesion, migration, and

invasion capabilities of tumor cells. GO enrichment results

(Figures 2B, E; Supplementary Table 3) indicate upregulation of

pathways such as POSITIVE_REGULATION_OF_RNA

_METABOLIC_PROCESS, REGULATION_OF_ORGANELLE

_ORGANIZATION , and POSIT IVE_REGULATION

_OF_TRANSCRIPTION_BY_RNA_POLYMERASE_II in the

high-risk group. These may reflect the tumor cells’ enhanced

control over gene expression and organelle function, providing

the necessary materials and energy for tumor growth and survival.
3.3 SRs are associated with
cancer immunity

In recent years, the intricate relationship between cancer and

immunity has been increasingly recognized. Given the widespread

genomic alterations and expression disorders of SRSFs in various

types of cancer, and their close association with multiple

carcinogenic pathways, particularly those related to immunity, we

are interested in further exploring the potential connections

between SRSFs and cancer immunity. We conducted an Epic

immune infiltration analysis (Figure 2F), which revealed

significant differences in CD8+ T cells between the high-risk and

low-risk groups (P value=0.0302). Additionally, using the
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CIBERSORT algorithm to evaluate various immune cell types, we

found significant differences in T cell gamma delta levels between

groups. However, CD8+ T cells did not show significant variation in

this broader immune profiling. This indicates that T cell gamma

delta may play a distinct or additional role in the osteosarcoma

immune microenvironment (Figure 2G). Further analysis within T

cell immune pathways (Figure 2H) demonstrated a high correlation

of these splice factor genes with the CD8+ T cell immune pathway.

These findings suggest a linkage between high and low risk groups

in terms of immune infiltration, splice factor gene expression, and T

cell immune pathways, which may influence the progression of

osteosarcoma and patient prognosis.
3.4 Single-cell data dimensionality
reduction clustering annotation results

We utilized t-SNE to visualize clustering results, grouping all cells

from six osteosarcoma samples in the database into 26 distinct cell

clusters (Figure 3A). To clarify the type of each cluster, we annotated

each cell subgroup using cell marker genes from published literature.

The results indicated that these 26 cell subclusters were annotated as

ten different cell types: NK/T cells, M2-type tumor-associated

macrophages, osteoclasts, cancer-associated fibroblasts, M1-type

tumor-associated macrophages, monocytes, osteoblasts, B cells,

endothelial cells, and plasma cells. The violin plot displays the

expression of marker genes across different cell types, with each

marker gene showing elevated expression levels in its corresponding

cell type (Figure 3B). Specifically, CD79A and MS4A1 are highly

expressed in B cells; PLVAP and EGFL7 in endothelial cells; MAF

and MRC1 in M2-type tumor-associated macrophages; S100A8 and

VCAN in monocytes; IFIT1 and CXCL10 in M1-type tumor-

associated macrophages; COL3A1 and COL1A1 in cancer-

associated fibroblasts; MZB1 and IGHG1 in plasma cells; CTSK

and ACP5 in osteoclasts; RUNX2 and ALPL in osteoblasts; CD3E

and CD2 in NK/T cells (Figure 3C). Based on the enrichment analysis

of highly expressed genes in each cell cluster, we further validated the

reliability of the cell cluster annotations. The results showed that NK/

T cells were enriched in the T cell receptor signaling pathway; B cells

were enriched in the B cell receptor signaling pathway; osteoclasts

were enriched in osteoclast development (Figure 3D).
3.5 Single-cell data identifies active and
inactive SRSFs shear factor cells
in osteosarcoma

We used AUCell to score the SRSFs set within individual cells to

further understand SRSFs activity. All cells showed two peaks in

AUCell values, with 26,119 cells displaying relatively high AUC

values when the AUC threshold was set to 0.04 (Figure 4A).

Subsequently, we divided the immune cells of osteosarcoma into

two different groups based on splicing factor modification

(Figure 4B): SRs active (AUC value > 0.04) and SRSFs inactive

(AUC value < 0.04). We performed differential gene analysis on

cells with different SRSFs activities and observed 10 upregulated
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FIGURE 2

Enrichment analysis of differential genes in high- and low-risk groups, and their correlation with immune cell infiltration and prognosis
characteristics. (A) The enrichment network diagram reveals clustering analysis results of differential genes between high and low risk groups in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) dataset. (B) The enrichment network diagram provides detailed clustering analysis results of
differential genes between high and low risk groups in the Gene Ontology (GO) dataset. (C-E) The bar charts were used to compare and illustrate
enrichment analysis results of differential genes between high and low risk groups across Hallmark, Gene Ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) datasets. (F) The box plots illustrate the distribution differences in immune cell infiltration between high- and low-risk
groups. (G, H) The correlation between six prognostically significant features (SRs) and immune cells, as well as their associated immune pathways.
*p < 0.05, ** p < 0.01.
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genes and 4 downregulated genes (|logFC| > 0.5 and P value < 1e-

100, Figure 4E).

In our study, the upregulated genes observed mainly included

members of the splicing factor family such as SRSF7, SRSF5, SRSF10,
Frontiers in Oncology 08
SRSF4, and SRSF2, as well as key marker genes of T cells such as CD52,

TRAC, CD3D, CD3E, and TRBC2. The enhanced expression of these

upregulated genes may reflect the activation of splicing regulatory

mechanisms and the enhancement of T cell activity. In contrast, the
FIGURE 3

Multidimensional analysis of cellular heterogeneity and functional characteristics. (A) The t-distributed stochastic neighbor embedding (t-SNE) plot
illustrates clustering results based on transcriptomic data and annotates cellular populations, revealing cellular heterogeneity within the samples.
Different colors represent distinct cellular populations, displaying the distribution and interrelationships of cell types. (B) The violin plot provides
detailed expression profiles of cell type-specific marker genes. (C) The t-SNE plot shows spatial expression distributions of key markers (CD79A,
MS4A1, PLVAP, EGFL7, MAF, MRC1, S100A8, VCAN, IFIT1, CXCL10, COL3A1, COL1A1, MZB1, IGHG1, CTSK, ACP5, RUNX2, ALPL, CD3E, CD2) across all
cells. (D) The heatmap reveals gene expression patterns associated with various biological processes and pathways across different cellular
populations. The color gradient represents the z-score of gene expression, with the sidebar indicating enrichment pathways for specific
cellular populations.
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FIGURE 4

The modification activity of SRs influences cellular epigenetic characteristics and functions. (A) The scores of modification activity for 6 SRs. The
threshold is chosen such that SRs modification scores above the threshold (represented by dashed lines fitting Gaussian distributions for each
distribution). (B) The t-SNE plot illustrates cellular grouping based on SRs modification activity, categorizing cells into Active and Inactive groups.
(C) The scatter plot displays enrichment of Hallmark pathways between cells with active SRs modification and those with inactive SRs modification.
(D) The scatter plot describes enrichment of KEGG pathways between cells with active SRs modification and those with inactive SRs modification.
(E) The volcano plot displays significant differences in gene expression between cells with active SRs modification and cells with inactive SRs
modification. In the volcano plot, each point represents a gene, with the x-axis indicating the magnitude of gene expression difference and the y-
axis representing statistical significance. (F) The volcano plot illustrates significant differences in transcription factor expression between cells with
active SRs modification and those with inactive SRs modification. (G) Stacked bar chart showing the proportion changes of different cell populations
between Active and Inactive states. (H) The volcano plot illustrates significant differences in transcription factor expression between cells with active
SRs modification and those with inactive SRs modification. (I) The bar volcano plot displays genes with high and low expression across various
cellular populations. Each bar represents a gene, with its height indicating its expression level within that cellular population.
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downregulated genes included FTL, CST3, CTSB, and NPC2. The

decreased expression of these genes may indicate abnormalities in iron

metabolism, weakened lysosomal function, or inadequate intracellular

cholesterol transport. Moreover, analysis of different cell clusters

showed frequent occurrences of SRSF7, SRSF5, and SRSF10 in

multiple clusters (Figure 4H). To fully understand the complexity of

SRSFs (splicing regulatory proteins) modifications, it is necessary to

complement gene expression analysis by understanding potential gene

regulatory networks. In this regard, we performed transcription factor

differential analysis between cell types with different SRSFs activities

and non-activities using the transcription factor-based gene regulatory

network PySCENIC (Figures 4F, I). For instance, the transcription

factor SOX2 may play a regulatory role in tumor immunity,

particularly in association with T cell immunity. Antibodies against

SOX2 have been detected in some small cell lung cancer patients, which

may be associated with better prognosis. STAT4 is considered a key

molecule that drives optimal antigen-specific responses and can

overcome STAT1-dependent inhibition, thereby promoting cell

proliferation. Furthermore, pathway enrichment analysis of

differentially expressed genes was performed to reveal the potential

roles of these genes in cellular biological processes. The analysis results

(Figure 4C) showed enhanced activity in the E2F TARGETS, MYC

TARGETS, and G2M CHECKPOINT pathways, suggesting that these

pathways may play a key role in promoting cell cycle progression and

increasing cell proliferation and division activities. In addition,

pathways such as ANGIOGENESIS, COAGULATION, Epithelial-

Mesenchymal Transition (EMT), TNF-a signaling (TNFA), and

response to hypoxia exhibited a downregulation trend. Although the

downregulation of these pathways theoretically may inhibit tumor

growth, the robust cell cycle-promoting signals under the activation

status of splicing factors may have overridden these inhibitory effects.

This indicates that even in the suppression of biological processes such

as angiogenesis and inflammatory response, signals promoting cell

cycle and proliferation may still be the major driving force behind

tumor growth. Through KEGG enrichment analysis (Figure 4D), our

study revealed that the T_CELL_RECEPTOR_SIGNALING_

PATHWAY, SPLICEOSOME, and CELL_CYCLE were upregulated,

while LYSOME and COMPLEMENT_AND_COAGULATION_

CASCADES were downregulated. This further confirms the crucial

role of the SR protein family in immune cells by regulating cell

proliferation and alternative splicing processes. Particularly, the

significant enrichment of the T cell receptor pathway not only

emphasizes the central role of T cells in the SRSFs regulatory

network but also underscores the importance of SRs in cellular

immune responses.
3.6 NK/T cell re-annotation

In both the Active and Inactive groups, we found that NK/T

cells and B cells were the most activated; thus, we conducted further

analysis on NK/T cells (Figure 4G). Using TSNE dimensionality

reduction analysis, NK/T cells were re-clustered into 5 cell clusters

(Figure 5A). Based on this analysis, we further annotated NK/T cells

accurately, delineating specific cell subtypes. Specifically, CD4,

IL2RA, and FOXP3 were identified as marker genes for CD4+ T
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cells, while CD8A, CD8B, and GZMB served as markers for CD8+ T

cells (Figure 5B). Through this approach, NK/T cells were

ultimately classified into two major categories: CD4+ T cells and

CD8+ T cells (Figure 5C). Cell state annotation was automatically

performed using the ProjecTILs method with a reference projection.

Upon further annotation analysis of CD8+ T cells, we found that

cells in an inactive state were mainly concentrated in subtypes such

as GZMK+ early Tem, GZMK+ Tem, Temra, ZNF683+ CXCR6+

Trm, and others. In contrast, CD8+ T cells in an active state tended

to be classified as GZMK+ Tex, terminal TEX, ISG+CD8+ T cells,

and similar types (Figures 5F, G). Similarly, in the annotation of

CD4+ T cells, cells in an inactive state were mainly distributed in

subtypes such as Tn, AREG+ Tm, TNFRSF9+ Treg, and others. In

the Active group, we observed a relatively decreased proportion of

CD4+ T cell types compared to the Inactive group (Figures 5H, I).

Meanwhile, there was an increased proportion of subtypes such as

ISG+ Treg and GZMK+ Tem. In CD8+ T cells, the Active group was

enriched in pathways associated with inflammation suppression.

Through transcription factor regulation prediction, we found that

transcription factors such as TBX15 (+), STAT2 (+), and FOSL1 (+)

were involved in regulating this pathway (Figures 5D, E).
3.7 Monocle3 analyzes active and inactive

In our study, we performed pseudotime analysis starting from

the Inactive group to reveal the dynamic changes of different cell

types during differentiation. We found that NK/T cells, osteoblasts,

and CAFs were in the early stages of differentiation, while over time,

osteoclasts, M1_TAMs, M2_TAMs, and monocytes gradually

transitioned to late-stage differentiation (Figures 6A-C).

Particularly, the study of the expression and evolutionary status

of six SRs splicing factors (SRSF1, SRSF4, SRSF7, SRSF8, SRSF5,

SRSF10) during this differentiation process revealed that the

expression levels of these splicing factors were higher in the NK/T

cell stage, mainly concentrated in the early stages of differentiation.

As differentiation progressed, the expression levels of these splicing

factors gradually decreased, with a significant decrease observed in

SRSF7, SRSF5, and SRSF10 (Figure 6D).
3.8 Pan-cancer analysis of SRSF7

To further analyze the role of SRSF7 in other malignant tumors,

we conducted a pan-cancer analysis of SRSF7. In this study, we first

calculated the expression level of SRSF7 in cancer cells using the

TCGA pan-cancer database (Figure 7A). The results showed that

SRSF7 was universally overexpressed in various tissues and cancer cell

lines, especially in bonemarrow tissue. Subsequently, we evaluated the

differential expression of SRSF7 between cancer and non-cancer tissue

samples in the TCGA database (Figure 7B). Considering the limited

number of normal samples in the TCGA database, we combined the

GTEx and TCGA databases to conduct an in-depth study of SRSF7

expression in 27 types of tumors, revealing differential expression of

SRSF7 in numerous cancers (Figure 7C). Furthermore, to explore the

association between SRSF7 and the clinical prognosis of 33 types of
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cancer patients, we performed univariate analysis using the TCGA

dataset. The forest plot revealed that SRSF7 significantly influenced

the overall survival (OS) of several specific tumor types among 28

cancer types (Figure 7F), including UVM, READ,MESO, LGG, LIHC,

and ACC. Through Hallmark gene set enrichment analysis, we found

that SRSF7 significantly affected pathways such as DNA_REPAIR,
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G2M_CHECKPOINT, MITOTIC_SPINDLE, E2F_TARGETS, and

MYC_TARGETS in the aforementioned cancers (Figure 7E). The

regulation of these pathways is essential for the occurrence,

development, and cell cycle regulation of cancer. Immune cell

infiltration is crucial for the occurrence, development, and immune

escapemechanisms of tumors. SRSF7 expression was highly correlated
FIGURE 5

Re-distribution and mechanisms of CD4+ and CD8+ T cells. (A) t-SNE plot showing the clustering results based on NK/T cell transcriptome data. (B)
t-SNE plot showing the spatial expression distribution of key markers (CD4, IL2RA, FOXP3) in all cells. (C) t-SNE plot showing CD8+ T cell and CD4+

T cell clusters. (D) Scatter plot showing the enrichment of Hallmark pathways in Active and Inactive CD8+ T cells. (E) Scatter plot showing the GRN
transcription factor enrichment analysis for the EMT pathway. (F-I) ProjecTIL analysis of CD8+ T cells and CD4+ T cells, illustrating the projection of
Active and Inactive cell types onto the reference atlas and the stacked bar plots depicting the cell subtype distribution within each CD8+ T cell and
CD4+ T cell subtype.
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with pathways such as T_Cells_CD4_Memory_resting,

T_Cells_CD4_Memory_activated, and T_cells_follicular_helper

(Figure 7D). Additionally, we used the R package “Estimate” to

evaluate the stromal score of each tumor sample. The top three

cancers with the most significant positive correlation between SRSF7

expression levels and stromal score, immune score were KICH, KIRC,

and PAAG. The positive correlation with tumor purity was observed

in CESC, ESCA, TGCT, among others.
3.9 In vitro functional verification of SRSF7

In our previous study, we found that SRSF7 plays a significant

regulatory role in osteosarcoma. Therefore, SRSF7 is expected to be a

promising new therapeutic target in osteosarcoma treatment. si-

SRSF7 was transfected into MG63 and SJSA-1 cell lines to investigate

the effect of SRSF7 on the growth of osteosarcoma cell lines. The

siRNA downregulation efficiency for SRSF7 was confirmed by

Western blotting, with a knockdown efficiency of approximately

80% (Figure 8D). PCNA (Proliferating Cell Nuclear Antigen) was

reported as a marker of cell proliferation, reflecting the proliferative

capacity of the cells. b- Tubulin was used as the normalization

reference gene for all Western blot analyses to ensure accurate

quantification of protein levels. Each experiment was conducted in

triplicate to ensure reproducibility and statistical significance.

According to the CCK-8 assay results, downregulation of SRSF7

inhibited the viability of MG63 and SJSA-1 cell lines (Figure 8A).

The colony formation assay results showed that downregulation of

SRSF7 expression inhibited the colony-forming ability of MG63 and
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SJSA-1 cell lines (Figure 8E). Additionally, we performed flow

cytometry apoptosis assays and PI staining to assess cell apoptosis

and necrosis. We found that si-SRSF7 promoted apoptosis in these

cells, with the majority of the cell population in the late apoptosis

stage (Annexin V+ PI+). This suggests that SRSF7 knockdown leads

to significant cell death, likely through both apoptotic and necrotic

pathways (Figures 8B, C).
4 Discussion

Osteosarcoma is the most common malignant bone tumor.

Serine/arginine-rich splicing factors (SRs) are an important class of

splicing regulatory factors, typically comprising 12 members (SRSF1-

12). They play crucial roles in post-transcriptional regulation of

mRNA, affecting biological processes such as alternative splicing

patterns, mRNA stability, and output. Aberrant expression of SRs

can lead to changes in gene splicing patterns within tumor cells,

thereby impacting various critical biological processes, including cell

proliferation, metastasis, invasion, angiogenesis, and immune evasion

(37–39). Therefore, by investigating the role of SRs in osteosarcoma

development, we can better understand the importance of splicing

regulation in osteosarcoma biology. In this study, we constructed a

prognostic model based on serine/arginine-rich splicing factors (SRs)

and predicted the survival of osteosarcoma patients. Through analysis

of single-cell RNA sequencing data and application of AUCell

enrichment analysis, we revealed the oncogenic pathways of SRs in

osteosarcoma immune cells. Additionally, we described the

regulatory role of SRSF7 in human pan-cancer.
FIGURE 6

Trajectory reconstruction reveals differential activation between Active and Inactive states in osteosarcoma. (A) UMAP plot showing trajectory
reconstruction with colors ranging from purple to yellow representing different pseudotime cell states, reflecting temporal progression. (B) UMAP
plot indicating cell states with yellow denoting Inactive and blue denoting Active states. (C) UMAP plot distinguishing various cell types with different
colors. (D) Pseudotime representation of SRs between Active and Inactive cell states. The x-axis represents cell state progression over the trajectory,
while the y-axis displays gene expression values, highlighting the differences in SR and prognostic gene activation between Active and
Inactive states.
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In our study on the construction of a prognostic model for

osteosarcoma, we found a correlation between six serine/arginine-

rich splicing factors (SRs) and patient prognosis. Patients classified

into the high-risk SRs group showed a significant decrease in

survival rate, highlighting the crucial role of these SRs in the

progression of osteosarcoma. Early research results also

confirmed the role of SRs family members in tumor development.

Specifically, studies have shown that SRSF1 influences the
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migration, invasion, proliferation, and apoptosis of osteosarcoma

cells, while SRSF3 regulates ILF3 RNA splicing to control

osteosarcoma growth (40, 41). Additionally, a significant increase

in SRSF1 levels was observed in cervical cancer cells (42), revealing a

correlation between the increased cytoplasmic levels of SRSF1 and

early tumor progression (43). Overexpression of SRSF2 promoted

proliferation in colorectal cancer cells, while inhibition of its

expression prevented tumor formation (44). Similarly, the
FIGURE 7

SRSF7 in pan-cancer analysis. (A) Pan-cancer SRSF7 mRNA expression in the TCGA dataset. The vertical axis represents the log2-transformed
expression levels (log2(TPM+0.001)). (B) SRSF7 mRNA expression in normal and tumor samples from the TCGA dataset. The vertical axis represents
the log2-transformed expression levels (log2(TPM+0.001)). (C) SRSF7 mRNA expression in normal samples from GTEx and tumor samples from the
TCGA dataset. The vertical axis represents the log2-transformed expression levels (log2(TPM+0.001)). (D) Correlation analysis between pan-cancer
SRSF7 expression and immune cell infiltration. (E) Correlation analysis between pan-cancer SRSF7 expression and Hallmark and immune infiltration
pathways. (F) Forest plot showing the prognostic significance of SRSF7 across different tumors. *p < 0.05, **p < 0.01,***p < 0.001, ****p < 0.0001.
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synergistic effect of SRSF4 with platinum-based drugs induced

apoptosis in cancer cells (45). Overexpression of SRSF5 and

SRSF7 in lung cancer and colorectal cancer tissues, and

knockdown of SRSF7 induced apoptosis in colorectal and lung

cancer cells (46, 47). Additionally, the interaction between c-Myc

and SRSF10 has been shown to promote proliferation of breast

cancer cells. Furthermore, in our enrichment analysis results, we
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found that inhibition of SRs was associated with the suppression of

immune-related pathways such as Inflammatory response,

Interferon GAMMA response, IL2/STAT5 signaling, and

complement system. Previous studies have also suggested that SRs

may promote cancer immune evasion by increasing the levels of

immune checkpoint molecules (48). Moreover, through GO and

KEGG enrichment analysis methods, we also observed the
FIGURE 8

Regulation of osteosarcoma cell proliferation and apoptosis by SRSF7 (A) Absorbance at 450 nm wavelength after CCK8 treatment in different SRSF7
treatment groups at different time nodes. The more absorbance increased, the more cell proliferation. (B) DAPI & PI staining was performed on
different SRSF7 treatment groups. Top to bottom were all cells in the field of view, apoptosing cells, and the composite of the above two images.
The more pink cells, the more apoptosing cells. (C) Apoptosis levels in different SRSF7 treatment groups. (D) Protein expression levels of SRSF7 and
PCNA in MG63 and SJSA-1 cells in SRSF7 knockdown groups (si-SRSF7) and Control group (NC). (E) Plate cloning was performed on different SRSF7
treatment groups.
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activation of RNA metabolism processes, organelle organization

regulation, and transcriptional regulation pathways dependent on

RNA polymerase II (33). The upregulation of these pathways

revealed that SRs promote tumor cell proliferation, survival, and

facilitate tumor evasion of host immune surveillance by regulating

relevant signaling pathways.

It is increasingly recognized that enhancing host immunity may

be an effective strategy for cancer treatment (49, 50). Regrettably,

our understanding of the local immune characteristics within the

tumor microenvironment remains quite limited. To gain a clearer

understanding of the role of SRs in immune regulation, single-cell

technologies have provided a method for characterizing the

phenotype and function of tumor-infiltrating immune cells. We

performed enrichment analysis of SRs activity using AUCell,

successfully stratifying cells into Active and Inactive groups,

facilitating a more comprehensive exploration of the regulatory

functions of SRs. Differential analysis unveiled a strong

concordance between the enrichment outcomes of these two

groups and transcriptomic data. Specifically, we observed an

upregulation of pathways involved in promoting cellular

proliferation and growth, including E2F TARGETS, MYC

TARGETS, and G2M CHECKPOINT, in the enrichment results

(30, 51). Conversely, pathways related to angiogenesis, coagulation,

epithelial-mesenchymal transition, TNF-a signaling, and response

to hypoxic environments showed a downregulation trend. Research

suggests that SRSF1 is commonly upregulated in cancer and serves

as a direct target of Myc (52) .Additionally, enrichment analyses of

pathways such as T_CELL_RECEPTOR_SIGNALING_

PATHWAY, SPLICEOSOME, and CELL_CYCLE highlight their

significant involvement in regulating critical biological processes

including cellular immune response, splicing mechanisms, and cell

cycle dynamics. Particularly noteworthy is the pronounced

enrichment observed in T cells, underscoring the pivotal role of

SRs in T cell regulation. Our analysis also identified significant

differences in T cell behavior between the two groups stratified

based on high and low-risk SRSF expression. Therefore, we can

conclude that T cells exert significant regulatory effects within the

context of SRs.

Therefore, with the aid of these significant findings, we have

advanced our understanding of NK/T cell classification,

categorizing them into two major subsets: CD8+ T cells and

CD4+ T cells. Through enrichment analysis, we have further

confirmed the involvement of SRSFs in suppressing immune

response pathways. In order to elucidate the critical transcription

factors underlying immune regulation, we identified transcription

factors such as STAT2, TBX15, ETS1, and FOSL1, which exhibit

significant regulatory roles. In particular, the STAT family,

identified as potential therapeutic targets or immune checkpoint

inhibitors, has shown importance in the treatment of various

cancers (53, 54). Research by Govender highlights that STAT2

regulates IL-10 expression in CD4+ T cells in response to type I

interferon (55). Additionally, TNF-a induced activation of NF-kB
enhances the expression of TBX15 mRNA in cancer cells (56).

Moreover, TBX15 also contributes to immune escape and

metastasis by upregulating PD-L1 and enhancing the interaction

between PTBP1 and FOSL1 (57).
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To investigate immune regulatory changes in CD4+ and CD8+

T cells, we utilized the reference projection automated method of

ProjecTILs. Through detailed annotation analysis of CD8+ T cells,

we identified that those in an active state are primarily classified as

GZMK+ Tex, terminal TEX, ISG+CD8+ T cells, and other subtypes.

Similarly, in the analysis of CD4+ T cells, we observed an increase in

the number of TNFRSF9+ Tregs CD4+ T cells in the Active state.

These findings are consistent with previous research. Specifically,

terminal exhausted T cells (TEX) are known to be enriched with

tumor antigens, making them a key factor in tumor immune

evasion (58). ISG+ dendritic cells (DCs) can activate CD8+ T

cells and promote protective anti-tumor immune responses, even

in the absence of conventional dendritic cell 1 (cDC1) (59).

Additionally, the presence of Tn antigen in the tumor

microenvironment (TME) has been found to suppress Th1 cell

responses and induce T cells to produce interleukin-17 (IL-17),

potentially contributing to immune evasion by tumor cells (60). The

increased ratio of regulatory T cells (Tregs) to cytotoxic CD8+ T

cells has been widely recognized as associated with poor prognosis.

The immunosuppressive function of Tregs may hinder the attack of

CD8+ T cells against tumor cells, thereby promoting tumor growth

and dissemination (61). Further research indicates that an increase

in the immunosuppressive subset of CD4+ T cells known as

TNFRSF9+ Tregs contributes to immune evasion and T cell

dysfunction in late-stage renal cell carcinoma (KIRC) (62).

We conducted in-depth analysis of the temporal changes of six

serine/arginine-rich splicing factors (SRs) across different cell

populations using the Monocle3 algorithm. Notably, these

splicing factors exhibited higher expression levels during the NK/

T cell stages, particularly concentrated in the early differentiation

stages. Specifically, the increased expression of SRSF7, SRSF5, and

SRSF10 in T cells was particularly notable, indicating their potential

roles in T cell development and function.

To further validate the function of SRSF7, we conducted a series

of in vitro cell experiments. Silencing SRSF7 gene expression

significantly inhibited cell proliferation in osteosarcoma cell lines,

as demonstrated by plate colony formation and CCK-8 assays. Flow

cytometry analysis confirmed that this inhibition was due to the

induction of apoptosis. Additionally, Western Blot analysis revealed

changes in the expression of the proliferation marker PCNA,

further supporting the regulatory role of SRSF7 in tumor

cell proliferation.

Additionally, SRSF7 is not only involved in the progression of

osteosarcoma but is also closely associated with UVM, READ,

MESO, LGG, LIHC, ACC, immune cell infiltration, and immune

pathways across multiple cancers. Our observations indicate that

SRSF7 knockdown leads to a rapid progression to late apoptosis, as

evidenced by Annexin V+ PI+ staining. Our study found that the

enriched pathways in both the high-risk and low-risk SR groups are

associated with TNF-a, hypoxia, and MYC, which are related to

oxidative stress and inflammation (63). TNF-a is a pro-

inflammatory cytokine that, upon binding to its receptors

(TNFR1 and TNFR2), recruits FADD and Caspase-8 to form the

Death-Inducing Signaling Complex (DISC), leading to Caspase-8

activation and apoptosis (64). Additionally, certain conditions, such

as the presence of quercetin, can activate NFkB and COX2,
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resulting in necrotic cell death in the BT-474 cell line (65).

Furthermore, after oxygen-glucose deprivation, the NFkB
signaling pathway induces COX2, promoting cell death in wild-

type astrocytes (66). The sustained activation of these inflammatory

pathways can lead to excessive inflammation and significant stress

or damage, causing cells to primarily die from necrosis and late

apoptosis (67). These findings suggest that the rapid progression to

late apoptosis observed in our study is closely related to the

activation of inflammatory and oxidative stress pathways

following SRSF7 knockdown.

Although our study validated the effectiveness of SRs in

predicting the prognosis of osteosarcoma patients through in

vitro cell experiments and highlighted the oncogenic role of

SRSF7 in osteosarcoma cells, there are still some limitations that

point to directions for future research. Firstly, although the role of

SRSF7 has been validated at the in vitro cellular level, its effects in

human tissue samples have not yet been confirmed. Additionally, in

vivo tumorigenesis experiments in mouse models have not been

conducted to further explore its mechanisms of action in living

organisms. Furthermore, while we observed changes in apoptosis,

the specific mechanisms underlying this process were not further

validated through additional experiments. Lastly, besides SRSF7,

other prognostically relevant genetic features should also be

thoroughly validated at the cellular and molecular levels.

In this study, we constructed a model using Lasso regression to

classify osteosarcoma patients into high and low-risk groups based on

SRs gene expression, revealing significant differences in prognosis and

tumor microenvironment. Single-cell RNA sequencing and AUCell

enrichment analysis further showed that SRs are active in regulating

T cell functions and immune evasion. Experimental results suggest

that SRSF7 is a key factor influencing osteosarcoma proliferation and

apoptosis. These findings provide a new perspective for predicting

patient prognosis and highlight the potential of SRSFs, particularly

SRSF7, as therapeutic targets in osteosarcoma.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

Ethical approval was not required for the studies on humans in

accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.

Ethical approval was not required for the studies on animals in
Frontiers in Oncology 16
accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.
Author contributions

CL: Writing – original draft, Writing – review & editing. BM:

Writing – original draft, Writing – review & editing. KL:

Methodology, Validation, Writing – review & editing. SL:

Funding acquisition, Visualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was funded by the Zhanjiang Science and Technology Plan Project,

application number: 221219174921002; project number: 2022A01144.
Acknowledgments

We would like to express our sincere gratitude to all patients

who participated in this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1456986/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1456986/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1456986/full#supplementary-material
https://doi.org/10.3389/fonc.2024.1456986
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Long et al. 10.3389/fonc.2024.1456986
References
1. Miller BJ, Cram P, CF L, Buckwalter JA. Risk factors for metastatic disease at
presentation with osteosarcoma: an analysis of the SEER database. J Bone Joint Surg
Am. (2013) 95:e89. doi: 10.2106/JBJS.L.01189

2. Lewis IJ, Nooij MA, Whelan J, Sydes MR, Grimer R, Hogendoorn PCW, et al.
Improvement in histologic response but not survival in osteosarcoma patients treated
with intensified chemotherapy: a randomized phase III trial of the European
Osteosarcoma Intergroup. J Natl Cancer Inst. (2007) 99:112–28. doi: 10.1093/jnci/
djk015

3. Whelan J, Seddon B, Perisoglou M. Management of osteosarcoma. Curr Treat
Options Oncol. (2006) 7:444–55. doi: 10.1007/s11864-006-0020-y

4. Hao Y, An R, Xue Y, Li F, Wang H, Zheng J, et al. Prognostic value of tumoral and
peritumoral magnetic resonance parameters in osteosarcoma patients for monitoring
chemotherapy response. Eur Radiol. (2021) 31:3518–29. doi: 10.1007/s00330-020-
07338-y

5. PosthumaDeBoer J, Witlox MA, Kaspers GJL, van Royen BJ. Molecular
alterations as target for therapy in metastatic osteosarcoma: a review of literature.
Clin Exp Metastasis. (2011) 28:493–503. doi: 10.1007/s10585-011-9384-x

6. Bacci G, Briccoli A, Rocca M, Ferrari S, Donati D, Longhi A, et al. Neoadjuvant
chemotherapy for osteosarcoma of the extremities with metastases at presentation:
recent experience at the Rizzoli Institute in 57 patients treated with cisplatin,
doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol. (2003)
14:1126–34. doi: 10.1093/annonc/mdg286

7. Kager L, Zoubek A, Pötschger U, Kastner U, Kempf-Bielack B, Branscheid D, et al.
Primary metastatic osteosarcoma: presentation and outcome of patients treated on
neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. (2003)
21:2011–8. doi: 10.1200/JCO.2003.08.132

8. Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, et al. UBR5 promotes tumor
immune evasion through enhancing IFN-g-induced PDL1 transcription in triple
negative breast cancer. Theranostics. (2022) 12:5086–102. doi: 10.7150/thno.74989

9. Zaaboub R, Vimeux L, Contremoulins V, Cymbalista F, Lévy V, Donnadieu E,
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