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Introduction: Immune checkpoint inhibitors (ICIs) are important systemic

therapeutic agents for hepatocellular carcinoma (HCC), among which T-cell

immunoglobulin and mucin-domain containing protein 3 (Tim-3) is considered

an emerging target for ICI therapy. This study aims to evaluate the prognostic

value of Tim-3 expression and develop a predictive model for Tim-3 infiltration

in HCC.

Methods:We collected data from 424 HCC patients in The Cancer Genome Atlas

(TCGA) and data from 102 pathologically confirmed HCC patients from our

center for prognostic analysis. Multivariate Cox regression analyses were

performed on both datasets to determine the prognostic significance of Tim-3

expression. In radiomics analysis, we used the K-means algorithm to cluster

regions of interest in arterial phase enhancement and venous phase

enhancement images from patients at our center. Radiomic features were

extracted from three subregions as well as the entire tumor using pyradiomics.

Five machine learning methods were employed to construct Habitat models

based on habitat features and Rad models based on traditional radiomic features.

The predictive performance of the models was compared using ROC curves,

DCA curves, and calibration curves.

Results: Multivariate Cox analyses from both our center and the TCGA database

indicated that high Tim-3 expression is an independent risk factor for poor

prognosis in HCC patients. Higher levels of Tim-3 expression were significantly

associated with worse prognosis. Among the ten models evaluated, the Habitat

model constructed using the LightGBM algorithm showed the best performance

in predicting Tim-3 expression status (training set vs. test set AUC 0.866

vs. 0.824).
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Discussion: This study confirmed the importance of Tim-3 as a prognostic

marker in HCC. The habitat radiomics model we developed effectively

predicted intratumoral Tim-3 infiltration, providing valuable insights for the

evaluation of ICI therapy in HCC patients.
KEYWORDS

hepatocellular carcinoma, Tim-3 expression, habitat radiomics, immunotherapy,
bioanalysis
1 Introduction

Hepatocellular carcinoma (HCC) is the third leading cause of

cancer-related deaths worldwide, posing a significant health

problem globally (1). Chronic damage caused by viral infections

or alcohol is the primary cause of HCC development (2, 3).

Currently, the lack of effective predictors for antitumor efficacy

and therapeutic approaches often limits the prognosis of HCC

patients (4). Immune checkpoint therapy (ICI) has been developed

for various advanced solid tumors to block signals that inhibit T cell

activation and to reactivate the body’s antitumor immune response

(5). Similar to PD-1/PD-L1 and CTLA-4, T-cell immunoglobulin

and mucin domain-3 (Tim-3) is also an important member of the

immune checkpoint family. Immunotherapies targeting Tim-3 have

been widely applied in various solid tumors, including triple-

negative breast cancer (6), lung cancer (7), and glioblastoma (8).

Tim-3 belongs to the TIM family and was initially identified as a co-

inhibitory receptor on T-helper 1 cells that regulates type I immune

responses (9, 10). Subsequent studies found that Tim-3 is expressed

on various cell types, including NK cells (11), macrophages (12),

and mast cells (13), and plays a regulatory role in the tumor

microenvironment (TME). A pan-cancer analysis (14) showed

that upregulated Tim-3 is a risk factor associated with the overall

survival (OS) of various tumors, suggesting that Tim-3 has potential

as a prognostic biomarker. Recent studies have found that the

number of Tim-3 positive cells in HCC tissues is a negative

prognostic factor affecting overall survival (15). Tim-3 expression

on tumor-associated macrophages is associated with poor prognosis

(12). Therefore, Tim-3 has been identified in studies as a potential

prognostic biomarker for HCC (16). Multiple preclinical studies

have shown that Tim-3 can enhance antitumor immunity and

inhibit the progression of HCC through various methods. These

methods include using neoantigen immunotherapy gel combined

with Tim-3 blockade (17), co-delivering Tim-3 siRNA and

sorafenib via nanoparticles (18), and blocking Tim-3 signaling to

prevent CD8+ T cell apoptosis (19), thereby enhancing the anti-

HCC effect. This indicates that Tim-3 not only has prognostic

predictive value but also potential therapeutic predictive value.

Multimodal studies can identify new prognostic biomarkers to

help select patients who are more suitable for ICI therapy. However,
02
rapidly obtaining high-throughput molecular data from tumors

remains a challenge (20). Radiomics, as a rapid and non-invasive

technique, can extract and quantify high-throughput information

from images (21) It has been widely applied in predicting the

prognosis of HCC (22), drug treatment response (23), pathological

classification and immune status (24), and has also been used to

predict the expression of PD-1 (25) and CTLA-4 (26). Habitat

analysis, a product of radiomics development, is a method that uses

tumor images to further classify and quantitatively analyze

subregions within the tumor tissue that have different metabolic

characteristics (27). This method has been applied to studies of breast

cancer (28) and prostate cancer (29), demonstrating its unique

advantages in analyzing the tumor TME. In brain tumors, it has

been used to predict prognosis and metabolic pathways (30, 31). For

example, Niha et al. used habitat analysis technology to construct a

prognostic model for glioblastoma and successfully identified 192

clinically significant differentially expressed genes in the high and

low-risk groups (32). Habitat analysis has also been used to predict

HCC recurrence (33), demonstrating excellent predictive

performance. This study validates the feasibility of Tim-3

expression as a potential prognostic biomarker and compares the

utility of traditional radiomics methods and habitat radiomics

methods for non-invasive preoperative prediction of the immune

checkpoint Tim-3 expression. Our findings provide valuable insights

into the non-invasive prediction of tissue biomarkers using

habitat radiomics.
2 Materials and methods

2.1 Bioinformatics analysis

We used the Aclbi platform (https://www.aclbi.com/) to

evaluate the differential expression of Tim-3 between HCC and

normal tissues, and downloaded and organized RNAseq data from

the TCGA-LIHC project through the Cancer Genome Atlas

(TCGA) data portal (https://portal.gdc.cancer.gov/). After

screening, 424 data samples were retained for analysis. In the data

preprocessing, we converted the Tim-3 expression data to

transcripts per million format. Spearman correlation analysis was
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used to evaluate the impact of Tim-3 on the immune TME, and the

linkET package was used to visualize the correlation of tumor

immune cycle scores. Prognostic data referenced a Cell article

(34), using the survival package to perform proportional hazards

assumption tests and Cox regression analysis. In univariate analysis,

variables with p<0.05 were included in the multivariate Cox

regression model, and the results were visualized using the

forestplot package. Finally, we used the Kaplan-Meier Plotter

(https://kmplot.com/analysis/index.php?p=background) to analyze

the relationship between Tim-3 expression and OS in the Asian

population. All the analyses mentioned above were conducted using

TCGA data.
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2.2 Local dataset

This study adopted a retrospective design, with informed consent

obtained from all participants. Approval was granted by the local ethics

committee (Ethics Approval No.: 2021 LUN Review No.: 663), and all

methods were conducted in accordance with relevant guidelines. We

included 150 patients who underwent R0 hepatic resection in the

Department of Hepatobiliary Surgery at our hospital from January

2015 to November 2018. The inclusion criteria for this study were:
1. Patients who underwent CECT of the upper abdomen

within one month before surgery;
FIGURE 1

(A) Workflow of inclusion and exclusion criteria. (B) Habitat radiomics workflow.
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2. Patients who had not received any antitumor treatment

before surgery; if postoperative CT indicated signs

of recurrence, the patient received radiofrequency

ablation therapy;

3. Patients with pathology reports confirming primary HCC.
tiers in Oncology 04
Patients were excluded from this study if they met any of the

following criteria:
1. Patients with missing or incomplete imaging data or

clinical information;
FIGURE 2

IHC-P results: (A) High positive. (B) Positive. (C) Low positive. (D) Negative. HE results: (E) Trabecular-micro. (F) Trabecular-macro.
(G) Pseudoglandular. (H) Compact.
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2. Patients who did not reach the follow-up endpoint;

3. Patients with other types of malignancies;

4. Patients whose immunohistochemical results showed no

malignant tumor cells.
The inclusion and exclusion criteria are illustrated in Figure 1A.
2.3 Histopathological evaluation of Tim-3
infiltration status in HCC

Paraffin-embedded tissue from surgical resection specimens was

cut into 5 mm thick sections, deparaffinized, hydrated, and subjected to

antigen retrieval. The sections were then incubated with a primary

antibody against Tim-3 overnight. After incubation with a secondary

antibody, the specimens were stained using DAB and counterstained

with hematoxylin, followed by dehydration and mounting.

To quantify the infiltration level of Tim-3 positive cells in tumor

samples, immunohistochemistry was performed three times for

each patient, and one random field of view (400X) was selected.

The staining intensity and extent were automatically scored using

the IHC Profiler in ImageJ (v1.54). The final H-score was calculated

using the following formula:

H−score = 3�High Positive+2�Positive+1�Low Positive
+0�Negative

The scores ranged from 0 to 300, with 300 indicating that 100% of

tumor cells in the field were strongly stained (Figures 2A–D). The

expression levels were classified based on the optimal cut-off value for

OS determined by X-tile software (35): low (H-score ≤ 92.3) or high

(H-score > 92.3).
2.4 Histopathological evaluation of HCC
subtypes using HE staining

We combined postoperative pathology reports and used

hematoxylin and eosin (HE) staining to re-evaluate the

histopathological subtypes of HCC. Tissue sections were

deparaffinized, hydrated, and stained with hematoxylin and eosin,

followed by dehydration and mounting. The slides were then

examined under a microscope, with one random field of view

(400X) selected for each patient. For patients with indeterminate

pathology due to the presence of two subtypes, three random fields

of view were selected to assess the proportion of each subtype. The

predominant subtype was used to define mixed pathology patients.

The histological subtypes of HCC are generally classified into

trabecular-micro (Figure 2E), trabecular-macro (Figure 2F),

pseudoglandular (Figure 2G), and compact (Figure 2H) patterns.
2.5 Clinical data processing and correlation
analysis of HCC patients

We used the Barcelona Clinic Liver Cancer (BCLC) staging

system (36), widely employed internationally for treatment
tiers in Oncology 05
guidance, as a reference. We focused on BCLC stage 0, stage A,

and the first subgroup of stage B, where patients in the first subgroup

of stage B underwent liver resection due to the lack of liver donors.

Additionally, we performed univariate and multivariate Cox

regression analyses based on OS and plotted Kaplan-Meier curves.

Finally, to investigate the impact of clinical and pathological variables

on Tim-3 expression, we conducted univariate logistic regression

analysis on all variables (Table 1), and included variables with p-

values less than 0.05 in the multivariate analysis model (Table 2).
2.6 Image acquisition

All participants underwent CECT scans (SOMATOM

Definition AS 128-slice spiral CT scanner) within 4 weeks before

surgery. The scanning parameters were as follows: tube voltage

120KV, tube current 250mA, slice interval 5mm, slice thickness

5.0mm, rotation speed 0.6s, pitch 0.5, collimator 16×0.625mm, and

matrix 512×512. The scans were performed in the supine position,

covering from the glabella to the symphysis pubis. The arterial

phase began 30-35 seconds after injection, the venous phase began

55-60 seconds after injection, and the delayed phase began 90-120

seconds after injection. Images were reconstructed in coronal,

sagittal, and other planes using MultiPlanar Reconstruction

technology and then uploaded to the Picture Archiving and

Communication System for storage.
2.7 Region of interest segmentation and
image preprocessing

A radiologist with over 5 years of experience used ITK-SNAP

3.8.0 to manually delineate regions of interest (ROI) layer by layer

on the arterial phase enhancement (ACE) and portal venous phase

enhancement (VCE) CECT images (Figure 1B). The radiologist was

blinded to the patients’ clinical information and pathological

results. Pixel values were normalized to the range of -200 to 300

to mitigate the impact of extreme pixel values. Resampling to a fixed

resolution of 1mm×1mm×1mm was performed to achieve

consistent voxel spacing.
2.8 Traditional radiomics model and
habitat-based radiomics model

2.8.1 Habitat generation
Figure 1B illustrates the complete workflow of our habitat

analysis. First, we used the Simple Linear Iterative Clustering

method to segment the superpixels within the ROI. Then, we

applied the K-means unsupervised clustering method to divide

the ROI of each sample into three distinct cluster centers, each

corresponding to a habitat region (37). For each subregion, we

extracted shape, texture, and first-order features. Additionally, to

minimize the inefficacy of radiomics feature extraction in

subregions, we balanced color and spatial proximity and filtered

out smaller subregions.
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TABLE 1 Correlation between clinical and pathological characteristics and Tim-3 expression.

Characteristics Low Expression (n=52) High Expression (n=50) Z/x2 P-value

Gender 2.152 0.142

Male 40 44

Female 12 6

Age 54.810 ± 14.059 58.740 ± 13.638 -1.433 0.155*

BMI 23.204 ± 3.251 22.388 ± 3.284 1.261 0.210*

Family history 0.161

Negative 45 48

Positive 7 2

Viral hepatitis 0.314 0.575

Negative 17 19

Positive 35 31

Cirrhosis 0.810 0.368

Negative 12 8

Positive 40 42

Tumor number 0.005 0.942

1 46 44

≤3 6 6

Tumor size 3.175 0.075

<5 36 26

≥5 16 24

AFP (ng/mL) 0.118 0.731

<200 39 36

≥200 13 14

Child-Pugh score 2.761 0.097

A 41 32

B 11 18

BCLC score -2.352 0.019

0 24 10

A 23 35

B 5 5

TNM stage(I/II,III) 0.942 0.332

I 34 28

II,III 18 22

Pathological grading 1.095 0.613

Well 2 4

Moderately 47 42

Poorly 3 4

MVI 0.343 0.558

Negative 42 38

(Continued)
F
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2.8.2 Feature extraction
The handcrafted features in this study were categorized into

geometric, intensity, and texture features. Geometric features

depicted the three-dimensional shape of the tumor. Intensity

features provided statistical analysis of voxel intensities. Various

methods were employed to extract these texture features, including

Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length

Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), and

Neighboring Gray Tone Difference Matrix (NGTDM). For habitat

analysis, specific features for each identified subregion

were extracted.

Since the clustering algorithm we used is unsupervised, the

labels for each subregion after clustering are not guaranteed to be

consistent. To ensure that different habitat regions maintained the

same or similar physical significance, we used the ReMap technique

to redraw similar regions, detailed in Supplementary Figure 1A. All

features were extracted using the pyradiomics library (http://

pyradiomics.readthedocs.io), with most features following the

definitions specified by the Imaging Biomarker Standardization

Initiative (IBSI).In our experiments, we extracted features at two

different phases: arterial phase enhancement ACE and VCE.

Subsequently, the extracted features were combined using an

early fusion method to obtain a unified feature set. This

integrated feature set effectively represents the characteristics of

the habitat regions across both modalities.

2.8.3 Feature selection
To assess the robustness of image features, we performed retest

analysis and inter-rater reliability assessment: the retest analysis

involved the original rater re-segmenting the ROI for a randomly

selected group of 30 patients, while the inter-rater reliability

assessment involved two raters independently segmenting the

ROI subregions for another randomly selected group of 30

patients. The ICC was used to evaluate the features extracted

from the subregions, with features having an ICC ≥ 0.85

considered robust against segmentation uncertainty.
Frontiers in Oncology 07
Features fitting a t-distribution were selected, and highly

reproducible features were further analyzed using Pearson

correlation coefficients to identify strong correlations. The

optimal l value for the Lasso (Least Absolute Shrinkage and

Selection Operator) regression model was determined using 10-

fold cross-validation, selecting the value corresponding to the

lowest mean standard error (Supplementary Figures 1B–E).
2.9 Radiomics labels

In this study, we focused on evaluating the effectiveness of

different tumor region analyses in predicting Tim-3 expression.

These analyses included two approaches: considering the tumor

region as a whole (Rad) and analyzing specific tumor habitats

(Habitat). When developing the Rad risk model, we treated the ROI

as a single entity and extracted radiomic features. The development of

the Habitat model was based on the K-means unsupervised clustering

algorithm. Due to this unsupervised approach, clusters with the same

centers might not convey the same physical meaning. To address this

challenge, we averaged these features.

The feature selection process for habitat signatures differs from

standard methods as it excludes the ICC assessment. In developing

Rad and Habitat risk models, we employed widely recognized

machine learning models, including Logistic Regression (LR) for

linear models, Random Forest, Extra Trees, XGBoost, and

LightGBM. We used the receiver operating characteristic (ROC)

curve in the test cohort to compare and evaluate each model.

Additionally, calibration curves were generated to assess the

accuracy of model calibration, supplemented by the Hosmer-

Lemeshow goodness-of-fit test to further evaluate calibration

capability. Decision curve analysis (DCA) was also employed to

evaluate the clinical utility of the models. Finally, to better mitigate

the potential impact of insufficient sample size in the test set, we

used 5-fold cross-validation with features selected by the Rad and

Habitat models to test model stability.
TABLE 1 Continued

Characteristics Low Expression (n=52) High Expression (n=50) Z/x2 P-value

Positive 10 12

Satellite nodules 0.211 0.646

Negative 43 43

Positive 9 7

Histological morphology 35.751 0.000

Trabecular-micro 36 11

Trabecular-macro 4 20

Pseudoglandular 10 5

Compact types 2 14

ALT 29.850(21.325-46.050) 41.950(29.308-58.568) -1.951 0.051

AST 30.150(24.575-40.125) 44.700(27.575-72.950) -2.775 0.006
Data marked with an asterisk (*) were analyzed using the student’s T-test.
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2.10 Statistical analysis

Comparisons between categorical variables were performed using

the c² or Fisher’s Exact test. Comparisons between continuous variables

that were normally distributed and met the homogeneity of variance

were performed using the t-test, while comparisons between continuous

variables that were not normally distributed were performed using the

Mann-Whitney U test. A two-sided p-value < 0.05 was considered

statistically significant. Data analysis was conducted using IBM SPSS

Statistics (v.26.0; IBMCorporation, Armonk, NY). Survival analysis was

estimated using Kaplan-Meier curves, and OS was evaluated using the

log-rank test. Additionally, data visualization and some statistical

analyses were performed using R (version 4.0.0; R Foundation for

Statistical Computing, Vienna, Austria). Specifically, the “survival”

package was used for Cox regression analysis and Kaplan-Meier curve

plotting, and the “ggplot2” package was used for data visualization.
3 Results

3.1 Analysis of Tim-3 expression and
prognosis based on the TCGA database

The analysis results showed that Tim-3 was significantly

overexpressed in HCC tissues compared to normal tissues

(Figure 3A). Using the TIP database to analyze the scores of
Frontiers in Oncology 08
various cancer immune cycle steps, it was found that the Tim-3

gene performed better in step 1 (cancer cell antigen release) and step

4 (immune cell transport to the tumor) (Figure 3B). Univariate Cox

regression analysis showed that Tim-3 (p=0.047) and stage

(p<0.001) were significant risk factors (Figure 3C). Subsequent

multivariate Cox regression analysis included Tim-3 (p=0.035)

and stage (p<0.001) in the model (Figure 3D). The Kaplan-Meier

curve showed that high expression of Tim-3 in the Asian population

was significantly associated with poorer overall survival (OS) in

patients with early resectable HCC (p=0.035) (Figure 3G).
3.2 Analysis of Tim-3 expression and
prognosis based on single-center data

As of December 2023, 104 cases had reached the five-year follow-

up endpoint. One case was excluded due to the lack of tumor cells in

the IHC-P results, and another was omitted during model fitting.

Among the remaining 102 cases, 61 patients experienced recurrence,

and 47 patients died of HCC during the follow-up period. The

recurrence rates at one, three, and five years were 29.4%, 51.0%, and

59.8%, respectively; the overall survival rates at one, three, and five

years were 90.1%, 70.6%, and 53.9%, respectively. Consistent with the

trend of the external validation results, univariate Cox regression

analysis showed that Tim-3 (p=0.022) and stage (p=0.009) were

significant risk factors (Figure 3E). Subsequent multivariate Cox
TABLE 2 Univariate and multifactorial regression of Tim-3 with clinicopathological data.

Characteristics
Univariate regression multifactorial regression

OR (95% CI) P-value OR (95% CI) P-value

Gender 0.455(0.156-1.324) 0.148

Age 1.021(0.992-1.051) 0.156

BMI 0.925(0.820-1.044) 0.209

Family history 0.268(0.053-1.358) 0.112

Viral hepatitis 1.262(0.559-2.847) 0.575

Cirrhosis 1.575(0.583-4.255) 0.370

Tumor number 1.045(0.313-3.487) 0.942

Tumor size 2.077(0.925-4.664) 0.077

AFP (ng/mL) 1.161(0.499-2.701) 0.729

Child-Pugh score 2.097(0.869-5.060) 0.100

BCLC score 2.083(1.064-4.075) 0.032 2.240(1.065-4.712) 0.033

TNM Stage(I/IIIII) 1.484(0.668-3.299) 0.333

Pathological grading 0.860(0.289-2.559) 0.786

MVI 1.326(0.514-3.419) 0.559

Satellite nodules 0.778(0.266-2.277) 0.647

Histological morphology 2.183(1.442-3.304) <0.001 2.241(1.456-3.448) <0.001

ALT 1.003(0.997-1.008) 0.321

AST 1.005(0.998-1.013) 0.163
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regression analysis included Tim-3 (p=0.034) and stage (p=0.015) in

the model (Figure 3F).
3.3 Correlation analysis between Tim-3
expression and
clinicopathological characteristics

Using X-tile to determine the optimal cutoff value based on

patients’ OS, we divided the patients into high Tim-3 (≥92.3) and
Frontiers in Oncology 09
low Tim-3 (<92.3) groups. We examined the correlation between

Tim-3 immunohistochemical variables and clinicopathological

characteristics. The results showed that Tim-3 was correlated with

patients’ BCLC stage (p=0.019) and AST levels (p=0.006), but not

with other clinical characteristics. Additionally, high Tim-3

expression was associated with the macrotrabecular-massive and

compact subtypes (p<0.001), but not with microvascular invasion,

satellite nodules, or other factors (p>0.05) (Table 1). Univariate and

multivariate analyses indicated that BCLC stage (p=0.033),

macrotrabecular-massive, and compact subtypes (p<0.001) were
FIGURE 3

(A) Differences in Tim-3 expression between tumor cells and normal liver tissue (p<0.001). (B) Bioinformatics analysis reveals the relationship
between Tim-3 and the liver cancer immune cycle. (C) Univariate Cox regression analysis of bioinformatics datasets. (D) Multivariate Cox regression
analysis of bioinformatics datasets. (E) Univariate Cox regression analysis of local datasets. (F) Multivariate Cox regression analysis of local datasets.
(G, H) Kaplan-Meier curves for overall survival (OS) from bioinformatics and local datasets.
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independent risk factors for high Tim-3 expression (Table 2).

Kaplan-Meier survival analysis revealed that high Tim-3

expression was associated with poorer OS (p=0.022) (Figure 3H).
3.4 Feature statistics

In this study, for the Rad model, we extracted 1,834 handcrafted

radiomic features from each case’s arterial and venous phases. In

contrast, for the Habitat model, we extracted features from three

regions in the arterial and venous phases, resulting in a total of

11,004 features per patient. These features include 360 first-order

features, 14 shape-based features, and various texture features such

as the gray-level co-occurrence matrix (GLCM), gray-level run

length matrix (GLRLM), gray-level size zone matrix (GLSZM),

and neighboring gray-tone difference matrix (NGTDM). The

proportions of the extracted features are shown in Figure 4A, and

the comparison of feature counts between the Rad and Habitat

models is depicted in Figure 4B.
3.5 Lasso-based radiomics
feature selection

We implemented a multitask Lasso CV method, which is

suitable for multitask learning in a single model, to accommodate

our data. This method, combined with 10-fold cross-validation, was
Frontiers in Oncology 10
used for the selection of Rad features and Habitat features

(Supplementary Figures 1B-E). In the Rad model, a total of six

imaging features were incorporated, with GLSZM contributing the

most (Figure 4C). In contrast, the Habitat model incorporated five

imaging features, including three arterial-phase features and two

venous-phase features, with the arterial-phase features from habitat

regions 1 and 3 contributing most to model fitting. These features

include GLCM and NGTDM (Figure 4D).
3.6 Radiomics model fitting

In the Rad model, the AUC values generated by five methods for

the training set ranged from 0.770 to 0.938 (Figure 5A), while in the

Habitat model, the training set AUC values ranged from 0.828 to

0.949 (Figure 5B). In the test set, the Rad model’s AUC values

ranged from 0.704 to 0.792 (Figure 5C), and the Habitat model’s

AUC values ranged from 0.647 to 0.824 (Figure 5D). Based on the

best AUC values, we selected the Random Forest algorithm for the

Rad model, achieving AUCs of 0.938 in the training set and 0.792 in

the test set (Figure 5E). For the Habitat model, we selected the Light

GBM algorithm, achieving AUCs of 0.866 in the training set and

0.824 in the test set (Figure 5F). A comparison of the models

revealed that while the Rad model (Figure 6A) demonstrated a

higher AUC in the training set (Rad vs. Habitat: 0.928 vs. 0.866), its

performance in the test set (Rad vs. Habitat: 0.792 vs. 0.826) was

inferior to that of the Habitat model (Figure 6B).
FIGURE 4

Comparison of feature distribution and weights between Rad and Habitat models. (A) Doughnut plot showing the proportion of local features. (B) Bar
chart comparing the number of features in Rad and Habitat models. (C) Feature weights in the Rad model. (D) Feature weights in the Habitat model.
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3.7 Model performance evaluation
and comparison

HL test (Figures 6C, D) showed that the Habitat model exhibited

the highest calibration performance. Decision curve analysis evaluated

the performance of these models (Figures 6E, F), and the results

indicated that the Habitat model showed higher net benefits across

most threshold ranges. We used five-fold cross-validation to validate

both models, with the average AUCs in the validation set being Rad
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(0.71) and Habitat (0.77) (Figures 7A, B). This suggests that compared

to the Rad model, the Habitat model has superior decision-making

performance in predicting Tim-3 expression status, especially within

clinically relevant threshold ranges. The DCA curves from five-fold

cross-validation demonstrate that the Rad model (Figure 7C) offers less

clinical benefit compared to the Habitat model (Figure 7D). Further

validation analysis revealed that the Rad model (Figure 7E) was not

well-calibrated, whereas the Habitat (Figure 7F) model demonstrated

better performance.
FIGURE 5

Performance evaluation of Rad and Habitat models. The figure illustrates the performance of Rad and Habitat models using algorithms such as LR,
RandomForest, ExtraTrees, XGBoost, and LightGBM on the training dataset (A, B) and testing dataset (C, D). (E, F) specifically highlight the
performance of the most effective algorithms, which are RandomForest (Rad) and LightGBM (Habitat), respectively.
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4 Discussion

Radiogenomics is an important method for predicting

immunotherapy biomarkers. In our study, we first identified the

potential of Tim-3 as a prognostic biomarker for HCC. Subsequently,

we constructed two classification models (Rad and Habitat) based on

radiomic features from CECT. We developed an HCC Tim-3

expression model using the better-performing Habitat model.

Our study showed that Tim-3 is significantly elevated in HCC

tissues compared to normal liver tissues (p<0.001). COX regression

analysis indicated that high Tim-3 expression and tumor stage are
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independent risk factors for OS in HCC patients. This result is

supported by several studies (12, 16). We found no significant

difference in TNM stage between the high Tim-3 expression group

and the low Tim-3 expression group, which contrasts with the

findings of Li et al. (15). This discrepancy may be due to Li et al.’s

focus on HBV-HCC, suggesting potential selection bias in our

study. Analysis of Tim-3 expression status revealed that Tim-3 is

expressed in a significant number of intrinsic tumor cells and tumor

stroma in HCC. The liver cancer immune cycle results also show

that Tim-3 performs better in the steps of cancer cell antigen release

and immune cell tumor chemotaxis. This indicates that Tim-3 may
FIGURE 6

Comparative analysis of Rad and Habitat models on training and testing datasets. It sequentially displays the ROC curves (AUC values) (A, B),
calibration curves (C, D), and decision curves (E, F) for both models.
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play a role in promoting liver cancer cell antigen release and

affecting the function of T cells, NK cells, macrophages, and

dendritic cells. This suggests that Tim-3 may promote tumor

progression by affecting both intrinsic liver cancer cells (38) and

immune cell function (39, 40) in multiple ways. Anti-Tim-3 is

becoming an important target for cancer immunotherapy. Studies

have shown that the use of nanoparticles to enhance the co-delivery

of Tim-3 siRNA and sorafenib can improve anti-HCC effects (18).

Zhang et al. (38) found that anti-Tim-3 antibodies can reverse the

tumor-promoting effects of endogenous Tim-3 in hepatocytes.

Combined with previous liver cancer immune cycle results, this
Frontiers in Oncology 13
evidence demonstrates that anti-Tim-3 therapy may achieve

stronger anti-tumor effects by acting on both intrinsic malignant

cells and immune cells, further supporting its potential as a targeted

therapeutic marker.

In this study, we analyzed ACE and VCE images from preoperative

enhanced CT scans of HCC patients and constructed two models (Rad

andHabitat) to predict Tim-3 expression. The AUCs in the training and

test sets were (0.938 vs 0.866) and (0.792 vs 0.824), respectively. We

found that using habitat radiomics to predict the expression of the

immune checkpoint Tim-3 in HCC showed a more significant

advantage compared to traditional radiomics. This may be due to
FIGURE 7

Comparative analysis of Rad and Habitat models in five-fold cross-validation. The left panel showing the performance of the Rad model on the
RandomForest testing dataset for each fold, and the right panel showing the performance of the Habitat model on the LightGBM testing dataset for
each fold. It sequentially presents the ROC curves (AUC values) (A, B) decision curves (C, D) and calibration curves (E, F) for both models.
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traditional radiomics focusing on analyzing the entire tumor or

peritumoral area as a whole (41), whereas habitat analysis emphasizes

subregions with different metabolic characteristics, providing a better

explanation for Tim-3’s impact on the tumor TME (27).

Compared to general machine learning studies (42, 43), ourmodels

implemented multiple measures to ensure feature extraction stability

and avoid overfitting. First, we used repeatability analysis and inter-

rater reliability assessments to select stable features. Second, we

compared the performance of models fitted using methods such as

Random Forest, Logistic Regression, Extra Trees, Light GBM, and XG

Boost, selecting the Light GBM with the best AUC to build the Habitat

model. During model fitting, the GLCM and NGTDM contributed the

most, both extracted from arterial phase images, describing image

texture features based on pixel contrast. Gong et al. (25) also

demonstrated that the main features in fitting PD-1/PD-L1 models

came from GLCM, suggesting that pixel contrast features may aid in

TME analysis and further help stratify HCC patients for

immunotherapy (26). Finally, we comprehensively evaluated model

performance using DCA and calibration curves, and used five-fold

cross-validation to mitigate potential impacts from insufficient data

volume. The results indicate that our models performed well in

assessing Tim-3 expression status, potentially aiding clinicians in

making timely clinical decisions.

This study has certain limitations. First, although we used a

non-invasive method to attempt predicting Tim-3 expression and

prognosis in resectable HCC patients, the sample size was small,

limiting the generalizability of the results. Second, the findings have

not yet been validated in multi-center studies, highlighting the

necessity for further validation. Additionally, we lack prospective

studies to evaluate the effectiveness of radiomics in predicting

prognosis after neoadjuvant therapy. Therefore, more studies are

needed to verify and expand upon these preliminary findings.

In conclusion, the habitat radiomics model based on CECT has

the potential to predict Tim-3 expression status in HCC and could

serve as a biomarker for Tim-3 targeted therapy.
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