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Objectives: To evaluate the diagnostic accuracy of monoexponential,

biexponential and stretched-exponential diffusion-weighted imaging (DWI)

models in the grading of clear cell renal cell carcinoma (ccRCC).

Materials and Methods: Fifty-one patients with pathologically proven ccRCC

underwent DWI with fifteen b factors (0, 10, 30, 50, 70, 100, 150, 200, 300, 400,

600, 800, 1000, 1500, 2000 sec/mm²) on a 3.0T MR scanner. The isotropic

apparent diffusion coefficient (ADC), true diffusion coefficient (ADCslow),

pseudodiffusion coefficient (ADCfast), and fraction of perfusion (f) were derived

from DWI using a biexponential model. The water diffusion heterogeneity index

(a) and distributed diffusion coefficient (DDC) were derived from DWI using a

stretched-exponential model. All values were calculated for the solid area of

tumors and compared between high-grade and low-grade ccRCC. The Mann

−Whitney U test and receiver operating characteristic (ROC) analysis were used

for statistical analysis. The DeLong test was performed to compare the

ROC curves.

Results: The mean ADC, DDC, ADCslow and a values were significantly lower in

high-grade ccRCC than in low-grade ccRCC (P< 0.01). However, the ADCfast and

f were not significantly different between the two groups (P > 0.05). According to

the ROC analyses, the AUC for a was 0.941, which was significantly greater than

those of the other parameters, with a sensitivity of 100% and a specificity of

84.2%. The DeLong test showed that there were significant differences in the

ROCs among ADCfast/ADC, ADCfast/a, f/ADCslow, ADCfast/ADCslow, f/a, DDC/a,
and f/ADC.
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Conclusions: Diffusion-related parameters (ADC, DDC, ADCslow and a) could be

used to distinguish between low- and high-grade ccRCC. The a derived from the

stretched-exponential model may be the most promising parameter for

grading ccRCC.
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Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common type

of primary malignant epithelial tumor of the kidney and accounts for

approximately 70% of all renal cell carcinomas (1). The biological

behavior of different grades of ccRCC is heterogeneous. The clinical

outcomes of different grades of ccRCC vary. In addition to less

traumatic surgeries, such as laparoscopy or partial nephrectomy,

radiofrequency ablation can be used to treat low-grade ccRCC.

However, high-grade ccRCC has a relatively higher recurrence rate,

metastasis rate and mortality. Hence, the assessment of presurgical

histologic grade is helpful for determining treatment strategies and

evaluating the prognosis. At present, renal biopsy is the most accurate

method for characterizing presurgical ccRCC. However, it is invasive

and has some risks, such as postsurgical bleeding, infection and biopsy

failure. Therefore, a noninvasive and accurate method for the

characterization of presurgical ccRCC grades is needed.

Diffusion-weighted imaging (DWI) is a useful noninvasive

technique for exploring biological microstructures. The isotropic

apparent diffusion coefficient (ADC), which is obtained from DWI

with a monoexponential model, has been widely used for the

characterization of ccRCC (2–4). Considering the complexity of the

tumor microstructure, water diffusion behavior in tumors is

considerably more complicated. Hence, advanced fitting models of

DWI, including biexponential and stretched exponential models, may

provide real-world information on the diffusion behavior of water

molecules within tumors (5–9). The biexponential model proposed

by Le Bihan et al. (10) can theoretically separate the molecular

diffusion coefficient from perfusion. The biexponential model

parameters included the true diffusivity (ADCslow), which reflects

the pure diffusion level; the pseudodiffusion coefficient (ADCfast),

which is related to the microvascular compartment; and the perfusion

fraction (f), which provides a measure of the fractional volume of

capillary blood flowing in each voxel. Furthermore, the tumour tissue

has a relatively higher cell density and comprises complex

microstructure, which restricts the diffusion of water molecules and

leads to a non-Gaussian distribution. To tackle the limitation of the

hypothesis of two diffusion compartments, as one of the most popular

non-Gaussian DWI models, the stretched exponential DWI model,

introduced by Bennett et al. (11), is an alternative method that can

quantify both tissue heterogeneity and diffusion simultaneously.
02
Then, two new parameters were derived. These parameters were

the distributed diffusion coefficient (DDC) and water molecular

diffusion heterogeneity index (a). The stretched exponential DWI

model has been applied in very few clinical studies thus far. Although

some previous studies have shown the diagnostic value of intravoxel

incoherent motion (IVIM) imaging in grading ccRCC, they have

generally used one or two models, such as the monoexponential and/

or biexponential models, and not the stretched-exponential model (2,

6, 7, 12, 13). Hence, the aim of our study was to systematically

compare the value of the parameters obtained from three signal

attenuation models (monoexponential, biexponential and stretched

exponential) for predicting the pathological grade of ccRCC.
Materials and methods

Study population

This study protocol was approved by the Institutional Review Board.

Written informed consent was obtained from all patients prior to the

examination. Seventy-three patients with clinically suspected renal

tumors were enrolled in the study from February 2023 to April 2024.

The inclusion criteria were as follows: (1) MR imaging was performed in

patients prior to the treatment of ccRCC, (2) surgery was performed

within two weeks after MRI examination, and (3) a histopathological

diagnosis was made according to the Fuhrman nuclear grading system.

These tumors were then divided into low-grade (I+II) and high-grade

(III+IV) tumors. The exclusion criteria were as follows: (1)MR data were

not available owing to the presence of obvious artifacts, (2) antitumor

therapy or biopsy was performed before MRI, (3) no dynamic contrast-

enhanced (DCE) data were available, and (4) the solid tumor component

was unavailable for analysis due to its small size (< 20mm²). Finally, fifty-

one patients were included in this study.
Magnetic resonance examination

Magnetic resonance imaging was performed in all patients with

a 3.0-T whole-body MRI unit (Discovery MR 750; General Electric

Medical Systems, Milwaukee, Wisconsin) using an 8-channel

phased-array coil (GE Medical System). Conventional MR

imaging was performed with the following sequences: breath-hold
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(in expiration) axial T1-weighted (FSPGR imaging sequence;

repetition time (TR)/echo time (TE), 180/2.1 ms; field of view

(FOV), 360×360 mm²); axial respiratory triggering T2-weighted

(FRFSE imaging sequence; TR/TE, 8000/81.4 ms; FOV 420×420

mm²; slice thickness/gap, 5/1 mm); and Cor respiratory triggering

T2-weighted (fat-suppressed; TR/TE, 9230.77/81.4 ms; FOV 420 ×

420 mm²; slice thickness/gap, 5/1 mm). Transverse respiratory-

triggering DW images were obtained before the administration of

contrast agents using the following imaging parameters: single-shot

spin−echo echo-planar imaging (EPI); spectral fat saturation; TR/

TE, 7058.82/75.6 ms; FOV, 360 × 360 mm²; slice thickness/gap, 5/1

mm; fifteen b values (0, 10, 30, 50, 70, 100, 150, 200, 300, 400, 600,

800, 1000, 1500, and 2000 sec/mm²) (NEX 1 for b = 0-800 sec/mm²,

NEX 2 for b = 1000-2000 sec/mm²); and a total measurement time

of 6 minutes, 14 seconds. Axial T1-weighted sequences were

repeated after the injection of gadopentetate dimeglumine

(Magnevist; Bayer Schering Pharma, Berlin, Germany).
Image data analysis and processing

The DW images were transferred to a workstation for processing

(Advantage Windows 4.5; GE Medical System). The images were

independently processed by two radiologists (with 8 and 10 years of renal

MR imaging experience) who were blinded to the histopathology results.

The monoexponential calculation of the ADC using the least-

squares model for the linear regression of the logarithmically

normalized signals of all b-values was performed as follows (10):

S(b) = S(0) exp(� b ADC),

where S(0) corresponds to the signal without diffusion

sensitization, and S(b) corresponds to the signal with

diffusion weighting.

Biexponential fitting to the IVIM model separating the vascular

compartment and tissue compartment in a DWI measurement was

performed according to Le Bihan et al. (10):

S(b) = S(0) · ½f · exp(� b ADCfast) + (1� f ) · expð� b · ADCslowÞ�
This model assumes 2 compartments: (1) microperfusion,

occupying an f of the tissue volume in each voxel and showing an

ADCfast, and (2) real diffusion, occupying the remaining volume

fraction (1-f) and showing an ADCslow.

The stretched-exponential model is described as follows (11):

S(b) = S(0) · exp½� (b DDC)a�,
where parameter a varies between 0 and 1, representing the

intravoxel water molecular diffusion heterogeneity. By inspection of

the equation, an a near 1 indicates that this model approaches

monoexponential decay. The DDC is the distributed diffusion

coefficient, representing the mean intravoxel diffusion rate.
ROI positioning and statistical analysis

Two blinded radiologists analyzed all the images independently.

Free-hand regions of interest (ROIs) were placed at a solid area of
Frontiers in Oncology 03
the tumor on the largest slice with reference to T1-enhanced images

and T2-weighted images. Areas of necrosis, cysts, hemorrhage,

calcifications, perirenal fat invasion, and renal vein and/or

inferior cava vein invasion were avoided to ensure more accurate

measurements. Then, the selected ROIs were copied to the maps of

all the other parameters from the same patient. The median value of

each parameter within the ROI was used for statistical analysis. The

ROI areas varied from 30 to 120 mm².

All the statistical analyses were performed with SPSS software

(version 17.0, SPSS Inc., Chicago). The Mann−Whitney U test was

used for comparisons of each parameter between high-grade and

low-grade ccRCC. Correlations between all parameters of both

models and the Fuhrman nuclear grade were analyzed using

Spearman’s rank correlation. To characterize the accuracy of the

different parameters, univariate ROC analyses were implemented

using MedCalc version 11.3.3.0 (MedCalc Software, Mariakerke,

Belgium), and the areas under the curve (AUCs) were compared by

using the method developed by DeLong et al. The maximum

Youden index was used to determine the optimal sensitivity and

specificity, as well as the corresponding cutoff values. Statistical

significance was defined as P<0.05.
Histologic analysis

All histopathological results were available based on surgically

resected specimens. A uropathologist (with 12 years of experience

in uropathology) who was blinded to the MRI findings reviewed the

histological slides. According to the Fuhrman classification system

(14), all tumors were subcategorized into ‘‘low-grade’’ (Fuhrman I–

II) and ‘‘high-grade’’ groups (Fuhrman III–IV) (12, 15, 16).
Results

Study group

In total, 51 ccRCC patients were enrolled in this study. The

median age of the 51 enrolled patients was 59 years (range, 33–74

years; 29 males and 22 females). The mean tumor diameter was 4.3

cm (range, 2.7–6.9 cm). Based on the Fuhrman classification

system, the patients were divided into four groups: 18 with grade

I tumors, 20 with grade II tumors, 10 with grade III tumors, and 3

with grade IV tumors. Due to the small number of patients with

Fuhrman grade IV tumors, we classified grades I and II as low

grade, while grades III and IV were classified as high grade.
Associations between diffusion parameters
and pathologic diagnoses

Mann–Whitney U tests revealed that the ADC, ADCslow, a, and
DDC differed significantly between the low-grade and high-grade

groups (all Ps< 0.05). No significant difference was found between

the two groups for f and ADCfast (p > 0.05). The average ADC,
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ADCslow, a, and DDC values decreased with increasing ccRCC

grade (Table 1, Figures 1, 2). We found a strong negative correlation

between several parameters and the Fuhrman nuclear grade of

tumors (including ADC, ADCslow, a, and DDC) (Table 2). The

correlation coefficient of a was -0.666 (P< 0.001). Compared with

the other parameters, a had the closest correlation with the

Fuhrman nuclear grade.
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ROC analysis of the utility of the ADC, ADCslow, a, and DDC

for distinguishing between different nuclear grades is presented in

Table 3 and Figure 3. The AUCs for ADC, ADCslow, a, and DDC

were 0.863, 0.814, 0.941 and 0.742, respectively. The AUC of a was

greater than that of the other parameters. The best cutoff point was

0.538x10-3 mm²/s, and the sensitivity and specificity were 100% and

84.2%, respectively.

Table 4 shows the comparison of ROC curves using the DeLong

test. There were significant differences in the ROC curves between

ADCfast/ADCslow, ADCfast/ADC, ADCfast/a, f/ADCslow, f/ADC, f/a,
and DDC/a. (p< 0.05).
Discussion

In this study, we compared the diagnostic value of parameters

derived from monoexponential, biexponential and stretched-

exponential models for differentiating high-grade ccRCC from

low-grade ccRCC. Our results showed that the diffusion

parameters (ADC, ADCslow and DDC) offered significant clinical

value for grading ccRCC. However, the perfusion-related
FIGURE 1

A 59-year-old man with Fuhrman grade III clear cell renal cell carcinoma in the left kidney. (A) T1WI map; (B) T2WI map; (C) Postgadolinium T1WI
map; (D) the ADC map; (E) the ADCslow map; (F) the ADCfast map; (G) the f map; (H) the DDC map; and (I) the a map.
TABLE 1 Monoexponential, biexponential and stretched-exponential
Diffusion Parameters of Low- and High-Grade ccRCCs.

Parameters Low Grade
ccRCCs

High Grade
ccRCCs

p Value

ADC 1.28 ± 0.34 0.86 ± 0.21 <0.001

ADCslow 1.65 ± 0.25 1.28 ± 0.33 <0.001

ADCfast 92.4 ± 50.6 81.4 ± 59.1 0.331

f 0.45 ± 0.17 0.51 ± 0.09 0.275

DDC 2.30 ± 0.71 1.65 ± 0.81 <0.01

a 0.62 ± 0.07 0.48 ± 0.02 <0.001
ADC, ADCslow, ADCfast, DDC are in units of x10-3 mm²/s.
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parameters derived from the biexponential model (ADCfast and f)

could not be used to discriminate low-grade ccRCC from high-

grade ccRCC (p> 0.05). The a derived from the stretched-

exponential model had significantly greater diagnostic value than

the other diffusion parameters. As such, a may serve as an optimal

diffusion parameter for grading ccRCC in clinical practice.

We found that the diffusion parameters (ADC, ADCslow and

DDC) were significantly different between high- and low-grade

ccRCC (all p< 0.05), which is in line with previous studies (2, 7, 15).

This may be due to their histopathological characteristics. It is

known that the ADC, ADCslow and DDC values are mainly affected

by water molecule diffusion and cell density. High-grade tumors

(Fuhrman III–IV) with high nucleus-to-cytoplasm ratios reflect the
Frontiers in Oncology 05
microenvironment of these lesions, in which the cellular tissue

density is greater and the extracellular space is decreased. This

further limits the molecular motion of water in these tumor tissues.

Therefore, the diffusion parameters (ADC, ADCslow and DDC) can

be used to discriminate among ccRCC grades.

In our study, there was no significant difference in the perfusion

parameters (ADCfast and f) between high- and low-grade ccRCCs.

ADCfast and f, the other two important parameters in the

biexponential model, are associated with perfusion and reflect the

degree of tissue vascularity without the use of contrast agents. In

previous studies, the relationship between perfusion parameters and

histological grade has always been controversial (6, 7, 13, 17). The

potential reason for this conflicting evidence may be differences in

the location of the tumor and the feeding artery. Additionally,

variations in the results might be related to the different sample sizes

and the number and distribution of b-values in these studies.

According to previous studies, due to their intrinsic instability,

poor reproducibility, and lower diagnostic efficiency, the ADCfast

and f values cannot be used to provide accurate assessments of the

tumor grade (18–21). As such, more studies are needed to explore

the underlying biological rationale.
FIGURE 2

A 54-year-old man with Fuhrman grade II clear cell renal cell carcinoma in the left kidney. (A) T1WI map; (B) T2WI map; (C) Postgadolinium T1WI
map; (D) the ADC map; (E) the ADCslow map; (F) the ADCfast map; (G) the f map; (H) the DDC map; and (I) the a map.
TABLE 2 Correlation of monoexponential, biexponential and stretched-
exponential DWI parameters with the Fuhrman nuclear grading
of tumors.

ADC ADCslow ADCfast f DDC a

r −0.549 −0.474 −0.138 0.154 −0.365 −0.666

P <0.001 <0.001 0.336 0.279 0.008 <0.001
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In fact, the complexity of biological tissues leads to the restricted

diffusion of water molecules, which leads to a non-Gaussian

distribution. The stretched exponential model can describe the

non-Gaussian behavior of water, which overcomes the limitations

of the hypothesis about fast and slow diffusion compartments and

the slow exchange between them in a biexponential model. The

heterogeneity index a derived from the stretched exponential model

is usually thought to reflect tissue heterogeneity and is used to assess

tumors. Previous studies have suggested that lower a values indicate

greater tissue heterogeneity (9, 22–26). Our current results

demonstrated that a was significantly lower in high-grade ccRCC

than in low-grade ccRCC. In addition, compared with the other

parameters, a had the largest AUC. One possible explanation for

our results is that high-grade ccRCC may exhibit more intravoxel

diffusion heterogeneity than low-grade ccRCC, which is likely

related to a greater degree of histological heterogeneity,

microscopic hemorrhage, and tortuous vascular hyperplasia. Thus

far, the use of stretched-exponential DWI has limited clinical

applicability for the determination of the Fuhrman nuclear grade
Frontiers in Oncology 06
of ccRCC. Only Zhang Jianjian et al. (17), in their study involving 7

patients with high-grade ccRCC, reported that there was no

significant difference in the a parameter between the low- and

high-grade tumor groups. This finding was inconsistent with our

results, which showed greater negative correlation coefficients

between a and the Fuhrman nuclear grade. The possible reasons

could be variations in the sample size, equipment, and b-values

between the studies. In their study, they used fewer b-values (0, 30,

50, 100, 250, 500, 1000, and 2000 s/mm²) and a relatively smaller

sample size of high-grade ccRCC, which may have contributed to

the different results between the two studies. Based on our results, a
may be a better parameter to use to identify the ccRCC grade.

This study had several limitations. First, the patient population was

relatively small. Further studies with a large number of patients are

needed to confirm the results. Second, there was a lack of uniform

distributed b-sampling to maximize the precision and accuracy of the

parameters of the biexponential and stretched-exponential models.

Third, the ROIs were selected based on the solid regions on the largest
TABLE 3 AUC analysis of DWI parameters and corresponding sensitivity, specificity, and accuracy in prediction of Fuhrman low- and high-
grade tumors.

Diffusion Parameter AUC 95% CI Cutoff value Sensitivity (%) Specificity (%)

a 0.941 0.838-0.988 0.538 100 84.2

DDC 0.742 0.600-0.854 0.0026 100 44.7

ADCslow 0.814 0.680-0.909 0.0014 69.2 86.8

ADCfast 0.591 0.445-0.727 0.045 38.5 89.5

f 0.602 0.456-0.737 0.396 92.3 47.4

ADC 0.863 0.738-0.943 0.001 84.6 78.9
AUC, area under curve; 95% CI, 95% confidence interval. f and a have no units. Cutoff values are in units of (mm²/s).
FIGURE 3

Receiver operating characteristic curves for monoexponential,
biexponential and stretched-exponential DWI parameters in
distinguishing high- from low-grade ccRCC.
TABLE 4 Pairwise comparison of ROC curves using the DeLong test.

z statistic p

ADCfast/f 0.0946 0.9246

ADCfast/ADCslow 2.184 0.0290*

ADCfast/ADC 2.001 0.0454*

ADCfast/DDC 1.222 0.2215

ADCfast/a 3.316 0.0009*

f/ADCslow 2.342 0.0192*

f/ADC 2.613 0.0090*

f/DDC 1.135 0.2563

f/a 4.214 p< 0.0001

ADCslow/ADC 0.491 0.6234

ADCslow/DDC 0.690 0.4899

ADCslow/a 1.618 0.1057

ADC/DDC 1.497 0.1344

ADC/a 1.067 0.2859

DDC/a 2.207 0.0273*
ROC receiver-operating characteristic. *p< 0.05.
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slice instead of the entire renal tumor. This may lead to a certain degree

of selection bias owing to the heterogeneity of the tumor. Fourth, the

patient cohort was relatively small and we did not evaluate renal tumor

histologic subtypes. Chromophobe renal cell carcinoma and papillary

renal cell carcinoma are RCC subtypes with overall favorable prognosis

if compared with ccRCC. Last, due to the longer DWI time, the images

were more susceptible to motion artifacts, particularly those tumors

located at the upper or lower pole.

In summary, our study demonstrated that these parameters

(ADC, ADCslow, DDC and a) can be used to accurately differentiate

between low- and high-grade ccRCC, while perfusion-related

parameters (ADCfast and f) could not be used to distinguish

between high- and low-grade ccRCC. Compared with parameters

derived from mono-exponential and biexponential models, the a
derived from the stretched-exponential model might be the most

promising parameter for evaluating the grade of ccRCC.
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