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Creating an interactive database
for nasopharyngeal carcinoma
management: applying machine
learning to evaluate metastasis
and survival
Yanbo Sun, Jian Tan, Cheng Li, Di Yu and Wei Chen*

Department of Otorhinolaryngology, The Central Hospital of Wuhan, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
Objective: Nasopharyngeal carcinoma (NPC) patients frequently present with

distant metastasis (DM), which is typically associated with poor prognosis. This

study aims to develop and apply machine learning models to predict DM, overall

survival (OS), and cancer-specific survival (CSS) in NPC patients to provide

optimal tools for improved predictive accuracy and performance.

Methods: We retrieved over 8,000 NPC patient samples with associated clinical

information from the Surveillance, Epidemiology, and End Results (SEER)

database. Utilizing two methods for handling missing values—imputation or

deletion—we created various cohorts: DM-all, DM-slim, OS-all, OS-slim, CSS-

all, and CSS-slim. Five machine learning models were deployed for the binary

classification task of DM, and their performance was evaluated using the area

under the curve (AUC). For the survival prediction tasks of OS and CSS, we

constructed 45 combinations using nine survival machine learning algorithms.

The Concordance Index (C-index), 5-year AUC, and Brier score assessed model

accuracy. Patients were stratified into two risk groups for survival analysis, and the

survival curves were presented.

Results: This study examines the relationships between clinical factors and

survival in NPC patients. The analysis, visualized through forest plots, indicates

that demographic and clinical variables like gender, marital status, tumor grade,

and stage significantly affect metastatic risks and survival. Specifically, factors

such as advanced stages increase metastasis and survival risks, while enhanced

treatments improve survival rates. In the cohort for DM prediction, results

revealed that the random forest model was the most effective, with an AUC of

0.687. In contrast, when predicting overall survival (OS), the random survival

forest (RSF) model consistently showed superior performance with the highest

mean C-index of 0.802, a 5-year AUC of 0.857, and a Brier score of 0.167.

Similarly, for cancer-specific survival (CSS) prediction, the RSF model

demonstrated a mean C-index of 0.822, a 5-year AUC of 0.884, and a Brier

score of 0.165. An online Shiny server was developed to allow the models to be

used freely and efficiently via http://npcml.shinyapps.io/NPCpre.
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Conclusion: This study successfully established an online tool by machine

learning models for NPC metastasis and survival prediction, providing valuable

references for clinicians.
KEYWORDS

nasopharyngeal carcinoma, distant metastasis, machine learning, random survival
forest, survival prediction
1 Introduction

Nasopharyngeal carcinoma (NPC), with an incidence that is

steadily increasing, is among the most common cancers affecting

the human head and neck (1). Although it is relatively rare globally,

NPC is notably prevalent in Eastern and Southeastern Asia (2). In

areas with high incidence, rates can reach 15–50 per 100,000 people

(3). Epstein-Barr virus (EBV) infection is considered the primary

cause of NPC, with the virus utilizing various strategies to support

the immune escape during both latency and productive infection

(4). Factors such as smoking, preserved foods, and air pollution also

contribute to the development of NPC (5). Unlike other cancers,

surgical resection is not the primary treatment option for NPC due

to its inaccessible anatomical location. Instead, radiotherapy, either

alone or combined with chemotherapy, is the mainstay treatment

for early or non-metastatic NPC (6). Treatment protocols differ

significantly between patients with non-metastatic NPC and those

with recurrent or metastatic disease. For metastatic NPC, anti-PD-1

monoclonal antibodies have effectively improved survival. A recent

meta-analysis found that the overall response rate of metastatic

NPC was 73% when anti-PD-1 antibodies were combined with

Gemcitabine and Cisplatin (7). These treatment variations between

non-metastatic and metastatic NPC underscore the importance of

accurate predictions for NPC metastasis. Furthermore, accurate

predictions of OS and CSS help customize treatments and improve

patient prognoses. Early and aggressive interventions for

individuals identified as high-risk for metastasis or poor survival

can prolong life and minimize complications.

Recently, machine learning (ML) has significantly transformed

the field of survival prediction due to its ability to process these non-

linear interactions within data. For instance, a stacked predictive

ML model demonstrated an 85.9% accuracy in stratifying NPC

patients into survival probability groups (8). In another study,

survival support vector machines and random survival forests

were used to predict NPC survival outcomes, with C-index values

of 0.785 and 0.729, respectively (9). These studies demonstrate that

ML algorithms can accurately predict survival outcomes for patients

with NPC. Despite these advancements, there remains a clear gap in

the availability of an ML-based online tool for predicting metastasis

and survival in NPC. Our study seeks to address this gap by
02
developing online tools that apply popular ML algorithms for

NPC metastasis and survival prediction, aiming to advance

treatment strategies and improve patient care through more

precise prognostic assessments.

Our research employed clinical variables to develop 5 binary

machine learning classifiers for predicting metastasis and 45 survival

machine learning classifiers to predict OS and CSS. Evaluations on

testing datasets have shown that these classifiers can accurately

predict outcomes. To enhance accessibility and usability, we created

an online web server. This platform enables clinicians and patients to

easily access these predictive tools, facilitating better decision-making

in treatment strategies and improving patient outcomes through

timely and personalized interventions.

2 Materials and methods

2.1 Data selection

We conducted a retrospective study on NPC patients using data

from the SEER program. The SEER dataset, covering the period

from 2000 to 2021 and including records from 17 registries,

comprises over 9 million tumor records. This dataset mirrors the

overall demographic composition, cancer incidence, and mortality

rates across the nation. Access to the SEER database was granted

following a formal application process, and the data was retrieved

using SEER*Stat software. Since SEER is a publicly available

database with de-identified data, institutional review board

approval and formal patient consent were not required for this

study. This study adhered to the World Medical Association’s

Declaration of Helsinki for Ethical Human Research.

The inclusion criteria for NPC samples in the SEER database

included the following: (1) The primary site disease code for selecting

NPC is C11 (10). (2) The selected histology subtypes in patients

included keratinizing squamous cell carcinoma (KSCC),

differentiated non-keratinizing carcinoma (DNKC), undifferentiated

non-keratinizing carcinoma (UNKC), and Others. (3) NPC was the

first and only primary malignancy. (4) Additionally, patients’ survival

time should be over 0 months. (5) We excluded patients with missing

or unknown survival data and those whose reporting source was

autopsy or death certificate only.
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2.2 Variables of interest

This study organized, categorized, and preprocessed the

downloaded clinical baseline data. The demographic variables

examined included age (continuous variable), sex (male or

female), race (Hispanic, white, black, American Indian or Alaska

Native (AA), and Asian or Pacific Islander (AP)), and marital status

(partnered: married or domestic partner; previously partnered:

divorced, separated, widowed; and single). The clinical variables

include histological subtypes, tumor site, tumor grade, Tumor-

node-metastasis (TNM) staging system, overall stage, and tumor

size. Histological subtypes were classified into DNKC, KSCC,

UNKC, and Others. Tumor sites were detailed as anterior wall,

lateral wall, overlapping lesion, posterior wall, superior wall, and

unspecified sites. Tumors were graded as Grade I, Grade II, Grade

III, and Grade IV. TNM staging system was delineated as T1 to T4,

N0 to N3, and M0 to M1. Tumor size (continuous variable) was also

included. Treatment Variables included Surgery for the primary site

(SurgPS), Surgery for lymph nodes (SurgLN), Chemotherapy,

Radiotherapy, and Time-to-treatment. SurgPS was categorized as

No Surgery, Local Excision, Pharyngectomy, and unspecified

Surgery. SurgLN included Biopsy, Lymph Nodes Removed, and

None. Chemotherapy was recorded as No/Unknown and Yes, while

radiotherapy was categorized as Beam Radiation, Other Radiation,

and No/Unknown. Time-to-treatment (time from diagnosis to

treatment in days) was quantified as Timely (<30 days),

Intermediate (30-90 days), and Long (>90 days).

The study’s primary outcomes focused on Distant Metastasis

(DM), Overall Survival (OS), and Cancer-Specific Survival (CSS)

among patients with NPC. DM was defined as M1 in the TNM

staging system. OS was defined as the duration from diagnosis to

death from any cause, while CSS was defined as the time from

diagnosis until death directly attributable to NPC. In the DM

cohort, demographic variables included age, gender, race, and

marital status, while clinical variables included histology subtype,

site, grade, tumor size, T stage, and N stage. For the OS and CSS

cohorts, demographic variables included age, gender, race, and

marital status, and clinical variables included histology subtype,

site, grade, tumor size, T stage, N stage, and M stage. Additionally,

treatment variables included primary surgery (SurgPS), lymph node

surgery (SurgLN), chemotherapy, radiotherapy, and time-

to-treatment.
2.3 Cohort separation and data preparation

Managing missing values in datasets is a widely debated topic

within data science. Our research used the K-Nearest Neighbors

method to impute missing values. Alternatively, another strategy

involves removing variables with more than 30%missing values and

excluding samples with any missing values. These methodologies

led to the formation of two distinct sets of cohorts for each group.

For the DM group, we created the DM-all cohort, where missing

values were imputed, and the DM-slim cohort, which consists only

of samples with complete data. For the OS group, we created the

OS-all cohort with imputed missing values and the OS-slim cohort
Frontiers in Oncology 03
with only complete data. Similarly, the CSS-all cohort includes

imputed data for the CSS group, while the CSS-slim cohort

comprises only fully observed data. These approaches allow for

comprehensive data analysis while catering to different data

integrity preferences. Subsequently, these cohorts were randomly

divided into training (70%) and testing (30%) subsets.
2.4 Models for binary classification of
DM status

Due to the imbalance ratio of distant metastasis vs. non-distant

metastasis, we employed a method to balance the dataset. This study

applied the Synthetic Minority Oversampling Technique (SMOTE)

to the metastasis samples in the training sets. SMOTE offers four

key advantages over other techniques. (1) It has been widely

validated and is known for effectively addressing class imbalance

in medical datasets, including those involving survival analysis and

binary classification problems (11). (2) A significant benefit of

SMOTE is its simplicity and transparency, as it generates

synthetic samples for the minority class based on the k-Nearest

Neighbors algorithm. (3) SMOTE provides a good balance between

efficiency and performance. While generative adversarial networks

show advantages for handling imbalanced datasets (12), SMOTE is

more straightforward to implement. (4) SMOTE enhances the

representation of minority classes without significantly altering

the overall data distribution, thereby helping to maintain model

generalizability. In this study, SMOTE was only applied to the

training set.

In this study, we constructed models using five machine

learning algorithms: Gradient Boosting Machine (GBM), Decision

Tree (Tree), K-Nearest Neighbors (KNN), Random Forest (RF),

and Generalized Linear Model (GLM). We trained five models

using the training sets from DM-all and DM-slim cohorts and then

tested the models on testing sets from DM-all and DM-slim

cohorts. To determine the ideal model parameters, we used a

random hyperparameter search and average AUC values under 5-

fold cross-validation for every methodology. Additionally, we used

plots to assess the relative importance values of clinical variables

using the random forest model.
2.5 Models for survival classification of OS
and CSS

In analyzing right-censored survival data, various machine

learning methods are employed to handle datasets effectively. The

“rfSRC” model utilizes the Random Survival Forest methodology,

constructing an ensemble of survival trees that enhance prediction

accuracy through a collective voting mechanism (13). The “CoxPH”

model applies the traditional Cox Proportional Hazards framework

to efficiently estimate hazard ratios without defining a baseline

hazard (14). The “CoxBoost” model extends this approach by

incorporating boosting techniques to improve the performance of

the Cox proportional hazards model. The “GBM” method employs

Gradient Boosting Machine principles, adeptly correcting
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prediction errors sequentially with an assembly of decision trees,

effectively managing nonlinear relationships within censored

survival data. Additionally, “superPC” utilizes principal

component analysis optimized for survival outcomes,

concentrating on the most significant predictors. The “stepCox”

method streamlines the variable selection process within the Cox

model, enhancing accessibility and ease of use. Regularization

techniques such as “Lasso”, “Ridge”, and “Enet” are implemented

to prevent overfitting and improve model accuracy by imposing

penalties on complex models, thus enhancing their generalization

across different datasets. After building individual models for each

survival machine learning algorithm, we performed model

combinations by integrating their outputs and calculating the

mean of two models. For example, if the predicted values from

the rfSRC and CoxPH models are 0.6 and 0.8, respectively, the

combined prediction from the rfSRC_plus_CoxPH model would be

0.7. This combination approach resulted in a total of 45 machine

learning models, consisting of 9 individual models and 36

combined models.
2.6 Evaluation of survival machine
learning models

The OS-all, OS-slim, CSS-all, and CSS-slim cohorts were

randomly separated into training (70%) and testing (30%) sets.

We followed a comprehensive machine learning workflow (MLW)

for training and testing: 45 survival machine learning models were

trained on the training set and validated on the testing set. We

conducted cross-validation within the training set to reduce

potential bias from the random split. Specifically, we divided the

training set into five folds, where in each iteration, one fold served as

the validation set while the remaining four folds were used for

training. This MLW process ensured that all samples in the dataset

were used for testing. The machine learning combinations were

validated by assessing the performance of discrimination and

calibration between the five folds of training and validation sets.

The C-index, the AUC at five years, and the Brier score were used to

assess the models’ discriminating ability. A higher C-index and

AUC prove the model’s predictions and actual events agree.

Conversely, a lower Brier score indicates higher accuracy in

survival data. Finally, the importance values of clinical variables

in the models were plotted.
2.7 Survival differences of different
risk groups

The random survival forest model was used for every patient in

the testing set to generate the overall risk score. Patients were divided

into low- and high-risk categories using the median risk score as a

guide. Using log-rank tests and Kaplan-Meier survival curves, the OS

and CSS of patients in risk categories were plotted and contrasted.
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2.8 Online web server by Shiny

To make the predictive models accessible, we developed an

online web server using the Shiny package in R. We formatted the

data to meet Shiny’s input and output requirements. Machine

learning models were connected to provide real-time predictions.

A simple interface was created with fields for clinical variables and

results for predicted DM risk scores and survival. The online web

server was hosted on a cloud server to ensure easy access and

scalability. Our online platform allows medical professionals and

researchers to offer patients with NPC more tailored treatment

plans and risk evaluations.
3 Results

3.1 The association of variables
with outcomes

After screening, our study incorporated 6,709 nasopharyngeal

carcinoma (NPC) samples into the Disease Metastasis (DM) cohort,

characterized by 10 unique clinical variables. Additionally, we

analyzed 8,315 NPC samples in the Overall Survival (OS) cohort

and 8,186 samples in the cancer-specific survival (CSS) cohort, each

with 16 distinct clinical variables (Figure 1). We used a forest plot to

visualize the odds ratios (ORs) of various variables associated with

the metastasis of NPC (Figure 2A). Notably, being male, single, and

having a larger tumor size are associated with increased odds of

metastasis. Additionally, advanced T stages (T3, T4) and N stages

(N1, N2, N3) significantly elevate the odds of metastasis. Race also

plays a role, with White patients showing lower odds compared to

American Indian or Alaska Native (AA). These findings highlight

the influence of demographic, clinical, and tumor-specific variables

on the metastatic progression of NPC.

The forest plot from the univariate Cox proportional hazards

model highlights the influence of various factors on OS (Figure 2B).

Key findings reveal that older age and male gender are linked to

modest increases in hazard ratios. Specific racial groups such as

Asian or Pacific Islanders (AP), Blacks, and Hispanics exhibit

significantly better survival rates compared to AA. Tumors

located in the Lateral Wall, Posterior Wall, and Superior Wall

demonstrate improved survival compared to those in the Anterior

Wall. Contrary to most tumor types, higher tumor grades are

associated with enhanced survival. Advanced TNM staging and

larger tumor sizes, particularly when involving metastasis,

significantly elevate the risks. Treatment strategies also play a

crucial role: extensive surgeries and chemotherapy boost survival,

whereas time-to-treatment correlates with poorer outcomes.

Specifically, beam radiation markedly improves survival. Similar

associations of clinical variables with the survival outcome of

Cancer-Specific Survival (CSS) are observed through a forest

plot (Figure 2C).
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3.2 Data preprocessing and
cohort separation

Our approach used the KNN method to impute missing values,

forming the Distant Metastasis (DM), Overall Survival (OS), and

Cancer-Specific Survival (CSS) cohorts, named DM-all, OS-all, and

CSS-all, respectively. Alternatively, we removed samples with any

missing values, thus creating the DM-slim, OS-slim, and CSS-slim

cohorts. Comprehensive baseline information for these cohorts can

be found in Supplementary Tables 1–Supplementary Tables 6.

Then, we divided the data set into the training and testing sets in

a 7:3 ratio using random sampling. For the predictive modeling

phase, the DM-all cohort included 4,699 patients in the training and

2,010 in the testing set, with 10 available variables. The DM-slim

cohort comprised 4,014 and 1,719 patients in the training and

testing sets, respectively, with 8 variables. In the OS-all cohort, 5,823

patients were allocated to the training and 2,492 to the testing set

with 16 variables. The OS-slim cohort included 3,605 patients in the

training set and 1,542 in the testing set, with 14 clinical variables.

Similarly, the CSS-all cohort had 5,732 patients in the training set

and 2,454 in the testing set with 16 variables. In comparison, the

CSS-slim cohort included 3,565 patients in the training set and

1,526 in the testing set with 14 clinical variables. These allocations

are designed to ensure robust training and validation phases,

enhancing the accuracy and reliability of our predictive models

across these specific cohorts.
3.3 Model performance for predicting DM

To develop predictive models for DM, we trained five different

machine learning algorithms on the training set of the DM-all

cohort. We evaluated their performance on the corresponding

testing set. Parameter tuning was conducted using five-fold cross-

validation within the training set, and the optimal models were

subsequently saved. The evaluation of model efficacy, based on

AUC scores, indicated that the random forest algorithm achieved

the highest score of 0.687 (Figure 3A). Analysis of feature
Frontiers in Oncology 05
importance in the random forest model revealed that N stage, T

stage, and tumor size were the most influential variables in

predicting DM (Figure 3B). Similarly, we trained and tested the

machine learning models for the DM-slim cohort. In this cohort,

the generalized linear model (GLM) yielded the highest AUC value

of 0.66 (Figure 3C). Clinical variables such as N stage, age, and T

stage were identified as having the most significant impact on DM

prediction in the DM-slim cohort (Figure 3D).
3.4 Model performance for predicting OS

The study’s OS-all dataset comprised 8,315 NPC samples with

16 clinical variables. These were randomly divided into a training

set containing 5,823 samples and a testing set containing 2,492. We

adopted a comprehensive machine learning workflow (MLW),

training 45 survival machine learning models on the training set

and validating their performance on the testing set using three key

metrics: the C-index, AUC, and IBS scores. To ensure robustness

and reduce bias from the random division, we performed cross-

validation within the training set by dividing it into five folds. In

each iteration, one fold was the validation set, and the remaining

four were used for model training. This procedure guaranteed that

every sample in the dataset was utilized for testing.

Among all model combinations in the OS-all cohort, the rfSRC

model achieved the highest average C-index value of 0.802, with

individual fold results ranging from 0.760 to 0.821 and testing at

0.771 (Figure 4A). The rfSRC model also excelled in 5-year AUC

(Figure 4B) and Brier score (Figure 4C), recording 0.857 and 0.167

respectively. For the OS-slim cohort, which included 3,605 patients

in the training set and 1,542 in the validation set with 14 clinical

variables, the rfSRC_plus_stepCox combination displayed the

highest mean C-index (Figure 4D) and 5-year AUC (Figure 4E)

values of 0.742 and 0.782, respectively. In terms of the Brier score

(Figure 4F), the rfSRC model stood out by showing the lowest mean

value of 0.198, indicating its high predictive accuracy. The rfSRC

model calculated each variable’s importance (VIMP) using the

VIMP method, which helped rank the variables by importance.
FIGURE 1

Flowchart of patient selection and model construction in this study.
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The six most critical variables identified in predicting OS-all were

Age, M stage, tumor size, T stage, chemotherapy, and radiation

(No) (Figure 4G). The six most critical variables identified in

predicting OS-slim were Age, M stage, T stage, radiation (No), N

stage, and radiation (beam radiation) (Figure 4H).
Frontiers in Oncology 06
3.5 Model performance for predicting CSS

The CSS-all dataset included 5732 patients in the training set and

2454 in the validation set, with 16 clinical variables. Among all 45

machine learning combinations, rfSRC performed the best, showing
FIGURE 2

The associations of clinical variables with distant metastasis (DM), overall survival (OS), and cancer-specific survival (CSS). Logistic regression analysis
was used for the DM analysis (A). Univariate Cox regression analysis was used for the OS (B) and CSS (C) analyses. Abbreviations: American Indian or
Alaska Native (AA); Asian or Pacific Islander (AP); Keratinizing Squamous Cell Carcinoma (KSCC), Differentiated Non-Keratinizing Carcinoma (DNKC),
Undifferentiated Non-Keratinizing Carcinoma (UNKC).
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the highest mean C-index (0.822), the highest 5-year AUC (0.884), and

the lowest Brier score (0.165) as illustrated in Figures 5A-C,

respectively. The CSS-slim dataset included 3565 patients in the

training set and 1526 in the validation set, with 14 clinical variables.

rfSRC-related models performed as the best model in this cohort,

showing the highest mean C-index (0.742), the highest 5-year AUC

(0.782), and the lowest Brier score (0.200), as shown in Figures 5D-F.

For the CSS-all dataset, the top three most important variables in

predicting outcomes were M stage, Age, and Tumor size, as shown in

Figure 5G. For the CSS-slim dataset, the top three most important

variables were the M stage, Age, and T stage, as shown in Figure 5H.
3.6 Survival analysis of subgroup analysis
based on risk stratification

We divided NPC samples into subgroups based on the median

predicted risk of death as determined by the machine learning model
Frontiers in Oncology 07
(rfSRC). This division was done to highlight the benefits of risk

stratification. In conducting survival analyses of these different risk

subgroups, we observed distinct prognostic outcomes: individuals in

the high-risk group exhibited poorer prognoses, whereas those in the

low-risk group demonstrated better prognoses. This pattern was

consistently observed across various datasets: in OS-all (Figure 6A),

OS-slim (Figure 6B), CSS-all (Figure 6C), and CSS-slim (Figure 6D).
3.7 Development of an online distant
metastasis and survival estimate calculator

To facilitate its use by clinicians, we developed an online tool

using the ‘shiny’ package. This web server is available at http://

npcml.shinyapps.io/NPCpre. Upon entering the required clinical

parameters, the tool displays predicted rates of distant metastasis

(DM) and survival curves, illustrating changes in survival rates over

time. Figures 7A-C demonstrates the use of this tool for predicting
FIGURE 3

Five machine learning models for predicting the DM of NPC. (A) The AUC values of models in the testing set of the DM-all cohort. (B) The relative
importance values clinical variables in the random forest model from the testing set of the DM-all cohort. (C) The AUC values of models in the
testing set of DM-slim cohort. (D) The relative importance values clinical variables in the random forest model from the testing set of the DM-slim
cohort. Abbreviations: gradient boosting machine (GBM); decision tree (Tree); k-nearest neighbors (KNN); random forest (RF); generalized linear
model (GLM).
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DM and overall survival (OS). For instance, Figure 7A presents

a case from the SEER database of a real-world NPC patient with

ID 897528, who belongs to the testing cohort of our study

and is therefore not used in model training. The NPCpre web

server predicts that this patient’s DM probability is 0.068, and actual
Frontiers in Oncology 08
follow-up data confirmed that the patient did not develop

DM. Similarly, to showcase the prediction capability of our

tool regarding OS, we randomly selected two NPC patients

(62896440 and 9081770) from the testing cohort. Figure 7B

illustrates that the survival rate for patient 62896440 was
FIGURE 4

The 45 machine learning combinations for predicting the OS in the OS-all and OS-slim cohorts. The C-index (A), 5-year AUC (B), and Brier score (C)
of models in the OS-all cohort. The C-index (D), 5-year AUC (E), and Brier score (F) of models in the OS-slim cohort. The importance values of
clinical variables in the random survival forest model from the OS-all (G) and OS-slim (H) cohort.
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predicted to drop significantly from 1 to 0.5 within the first

2.5 years, aligning with actual follow-up data indicating the

patient’s death approximately 1 year after the treatment.

Figure 7C reveals that patient 9081770 maintained a survival

rate higher than 0.5 for over 20 years, corroborated by follow-up

data showing this patient is still alive after over 13 years.
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The consistency between predictions from NPCpre and

actual follow-up data indicated our model’s and webserver’s

robustness. This tool provides a valuable resource, allowing

physicians and patients to individually and visually evaluate

the survival probabilities of each patient by common

clinical variables.
FIGURE 5

The 45 machine learning combinations for predicting the CSS in the CSS-all and CSS-slim cohorts. The C-index (A), 5-year AUC (B), and Brier score
(C) of models in the CSS-all cohort. The C-index (D), 5-year AUC (E), and Brier score (F) of models in the CSS-slim cohort. The importance values of
clinical variables in the random survival forest model from the CSS-all (G) and CSS-slim (H) cohort.
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4 Discussion

Accurately predicting distant metastasis (DM), overall survival

(OS), and cancer-specific survival (CSS) in patients with

nasopharyngeal carcinoma (NPC) is crucial for advancing

research in this field. These predictive capabilities allow for the

customization of treatments, planning of follow-ups, and

improvement of patient prognosis, particularly given the

treatment variations between non-metastatic and metastatic NPC.

The current study demonstrates the effectiveness of machine

learning (ML) models in accurately predicting DM, OS, and CSS

in NPC patients. To the best of our knowledge, this might be the

first online tool that utilizes ML models for assessing metastasis and

survival outcomes in NPC. This study shows the potential of

integrating artificial intelligence into clinical prognostics, offering

a more accessible and potentially precise method for healthcare

professionals to evaluate disease progression and survival rates.

DM, the primary cause of treatment failure in advanced NPC,

remains a significant challenge. Predicting DM is essential for

guiding individualized treatment plans for NPC patients.

Traditional methods have used genomic and clinical features for
Frontiers in Oncology 10
this purpose. For instance, a nomogram based on immune markers

(PD-L1+ CD163+, CXCR5, CD117) showed predictive

performance with a C-index of 0.729 in the validation cohort

(15). Another study’s nomogram achieved a C-index of 0.718 in

the validation cohort (16). Given the superior performance of

machine learning models over traditional nomograms, developing

machine learning models for predicting DM holds great promise for

enhancing predictive accuracy. Besides, these studies usually focus

on predicting DM after chemotherapy. However, the prediction of

DM at the primary diagnosis should also be included. In the current

study, we used machine learning models to predict the DM at

primary diagnosis instead of nomograms to predict DM after

treatment. We selected five machine learning algorithms to

predict DM, a binary classification task (non-metastasis or

metastasis). Despite adopting these machine learning models, the

number of variables in the SEER database for predicting DM at

primary diagnosis is limited. Our study used age, gender, race,

marital status, histology type, tumor site, tumor grade, tumor size, T

stage, and N stage.

The prognosis of cancer is influenced by multiple factors,

making traditional linear statistical models potentially unreliable
FIGURE 6

KM curves of survival are based on the machine learning-based risk score. KM curves of groups of OS from OS-all cohort (A) and OS-slim cohort
(B). KM curves of groups of CSS from CSS-all cohort (C) and CSS-slim cohort (D).
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for predicting survival. In many studies, nomograms using

conventional models are prevalent tools for predicting the

survival of NPC patients. One research group developed a

nomogram using eight clinical variables to predict overall survival
Frontiers in Oncology 11
(OS) in patients aged 18 to 59 with NPC, reporting a C-index of 0.69

and a 5-year AUC of 0.729 (17). Another group provided interactive

nomograms for predicting OS in NPC, achieving a 5-year AUC of

0.74 and a C-index of 0.70 in their testing cohorts (18). A different
FIGURE 7

Examples of Using NPCpre to Predict DM (A) and OS (B, C). Parameter Descriptions for Predicting DM (A). Age in years; Gender: Male (1), Female (2);
Race of Patient: Hispanic, American Indian or Alaska Native (AA), Asian or Pacific Islander (AP), Black, and White; Marital Status: Partnered, Previously
Partnered, Single; Histology Subtype: Keratinizing Squamous Cell Carcinoma (KSCC), Differentiated Non-Keratinizing Carcinoma (DNKC),
Undifferentiated Non-Keratinizing Carcinoma (UNKC), Others; Tumor Locations: Anterior wall, lateral wall, overlapping lesion, posterior wall, superior
wall, Not Otherwise Specified (NOS); Grade of Patient: I to IV; Tumor Size in centimeters; T Stages: 1 to 4; N Stages: 0 to 3. Additional Parameters
for Predicting OS (B, C). M Stage: 0 to 1; Surgery for the Primary Site (SurgPS): Local Excision, Pharyngectomy, Surgery Not Otherwise Specified, No
Surgery; Surgery for Lymph Nodes (SurgLN): 0 for None, 1 for Biopsy, 2 for Lymph Nodes Removed; Chemotherapy: 1 for No/Unknown, 2 for Yes;
Radiation: Beam Radiation, No Radiation, Other Radiation Types; Time-to-treatment: 1 for Timely (<30 days), 2 for Intermediate (30-90 days), 3 for
Long (>90 days). For example, plot (C) features a 36-year-old female, race AP, partnered, with UNKC subtype, tumor location NOS, Grade IV, tumor
size 4.5 cm, T1, N2, M0, did not receive SurgPS and SurgLN, received Chemotherapy and beam radiation. The days between diagnosis and treatment
were 30-90 days.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1456676
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2024.1456676
nomogram, constructed using four independent risk indicators

(histology, radiation therapy, chemotherapy, and metastatic

status), reported AUC values of 0.733 for 3-year cancer-specific

survival (CSS) and 0.719 for 5-year CSS (19). Other research groups

have also constructed nomograms for OS prediction in NPC (20,

21). However, the main drawback of non-machine learning models

is their suboptimal performance, with C-index and AUC values

typically below 0.80.

To develop more advanced prediction models with C-index and

AUC values exceeding 0.80, researchers have begun adopting

several machine learning (ML) algorithms to predict NPC

prognosis. A review summarized various publications employing

ML for NPC management (22). Using 123 MRI images, one study

developed a radiomics nomogram by integrating a radiomics

signature, achieving a C-index of 0.863 for personalized risk

stratification (23). Another study applied neural networks to

analyze pathological microscopic features, reaching a C-index of

0.723 (24). Additionally, some research focuses on using clinical

factors, which are easier to implement in clinical practice. One

research group developed a stacked predictive ML model showing

an accuracy of 85.9%. At the same time, the XGBoost algorithm

achieved 84.5% accuracy after the training and testing phases (8).

Another study used a survival support vector machine and random

survival forest models to predict NPC survival, obtaining a C-index

of 0.785 for the survival-SVM model and 0.729 for the RSF model

(9). However, unlike nomogram-based studies, which are easily

accessible to clinicians, these ML-based studies have not provided

user-friendly tools, such as web applications, for broader

clinical use.

We tested different combinations of nine machine learning

algorithms (rfSRC, CoxPH, CoxBoost, GBM, superPC, stepCox,

Lasso, Ridge, and Enet) to identify the optimal model combinations

for survival prediction in NPC. The performance results showed

that the random forest survival (rfSRC) model and its combinations

had superior accuracy in predicting survival outcomes. For

predicting overall survival (OS), the best model achieved a C-

index of 0.802, a 5-year AUC of 0.857, and a Brier score of 0.167.

For predicting cancer-specific survival (CSS), the best model

achieved a C-index of 0.822, a 5-year AUC of 0.884, and a Brier

score of 0.165. These results outperform the models discussed in the

previous paragraph, either in terms of available variables or overall

performance. Furthermore, our models are publicly available for

easy use by clinicians and patients, as we have deployed them on an

online web server.

Based on the median predicted risk of death determined by the

rfSRC model, we found that individuals in the high-risk group

exhibited poorer prognoses. In contrast, those in the low-risk group

demonstrated better outcomes. However, there are limitations to

interpreting the Kaplan-Meier curves. One limitation is that

Kaplan-Meier curves are based on categorical groupings (e.g.,

high-risk vs. low-risk) and may not fully capture the continuous

nature of risk scores provided by the model. This categorization can

lead to simplistic information about individual risk levels.

Additionally, Kaplan-Meier curves do not account for competing

risks, such as death from causes other than NPC, which could affect

the interpretation of survival probabilities.
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Data preprocessing, including handling missing values, is

crucial in constructing machine learning models. Our study

employed two distinct strategies for handling missing data:

imputation and deletion. We utilized the KNN method to

estimate missing values for the imputation strategy. On the other

hand, our deletion strategy involved removing any variables with

more than 30% missing data and excluding any samples with

missing values. This approach resulted in a reduced dataset size.

Specifically, in the OS-all cohort, the data comprised 5,823 patients

in the training and 2,492 in the testing set, with 16 clinical variables

maintained. Conversely, the OS-slim cohort, formed under the

deletion strategy, included 3,605 patients in the training set and

1,542 in the testing set, with only 14 clinical variables. To compare

their efficacy, we independently constructed models on both the

imputation-generated and deletion-generated cohorts. The

evaluation of model performance revealed that the imputation-

based models consistently outperformed those generated from the

deletion strategy. This superior performance can be attributed to

the more significant number of variables and samples retained in

the imputation approach, which are crucial for enhancing the

predictive accuracy of machine learning models.

In this study, we developed machine learning models to predict

distant metastasis, overall survival, and cancer-specific survival in

patients with NPC. These models enhance patient stratification and

inform clinical decision-making by allowing healthcare

professionals to personalize treatment strategies based on

metastatic or survival status. Patients predicted to have metastatic

disease or worse survival outcomes may receive more aggressive

systemic treatments like combination chemotherapy, targeted

therapy, or immunotherapy. Conversely, those predicted not to

have metastatic disease can focus on local treatments such as

radiotherapy or concurrent chemoradiotherapy. By accurately

identifying metastatic and survival status, clinicians can select

treatments to optimize outcomes and minimize unnecessary

toxicity. The accessibility of our models via an online Shiny

server facilitates their integration into clinical practice. This

represents a significant step toward improving patient outcomes

through personalized, data-driven care.

Several limitations need to be addressed. Firstly, the SEER

database provides limited information on tumor genetic profiles

and biomolecular markers, essential for accurately assessing overall

survival (OS) and cancer-specific survival (CSS) outcomes. For

instance, incorporating genetic and biomolecular markers could

improve predictive accuracy and offer deeper insights. Secondly,

while metastasis information in the SEER database is recorded at

initial diagnosis, metastasis data from follow-up in non-metastatic

patients would be more valuable for this group. Thirdly, we lacked

an external dataset with a larger sample size to test the

generalization capability of our optimal model, and acquiring new

data may be necessary for further validation.
5 Conclusion

In conclusion, we have established an online web tool using

machine learning models that incorporate clinical features to
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predict metastasis and survival in NPC patients. This tool aims to

enhance decision-making in treatment strategies and improve

patient outcomes through timely and personalized interventions.
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