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reveals multiple dysregulated
pathways including glucose
metabolism, TGF-b, and
HIF-1 signaling
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Liposarcoma is the most prevalent sarcoma in adults representing 20% of all

sarcomas with well-differentiated/dedifferentiated among the most common

subtypes represented. Despite multimodality treatment approaches, there has

not been any appreciable change in survival benefit in the past 10 years. The

future of targeted therapy for WD/DDLPS is promising with the intention to spare

multi-visceral removal due to radical surgical resection. Therefore, there is a

need to expand upon the molecular landscape of WDLPS and DDLPS which can

help identify potential therapeutic targets for the treatment of this disease.

Targeted transcriptome analysis using the NanoString tumor signaling 360

panel revealed a dysregulation in glucose metabolism and HIF1 signaling

pathways in both WDLPS and DDLPS when compared to normal fat controls.

WDLPS, however, demonstrated upregulation of HIF-1A and TGF-b when

compared to DDLPS by targeted transcriptome analysis and orthogonal

validation by RT-qPCR suggesting activation of EMT pathway in WDLPS when

compared to DDLPS. Our findings implicate a putative role for dysregulation in

glucose metabolism, TGF-b and HIF1 signaling in the pathogenesis of both WD/

DDLPS suggesting a possible proinflammatory tumor environment withinWDLPS

and subsequent activation of the TGF-b signaling pathway.
KEYWORDS

dedifferentiated liposarcoma, well-differentiated liposarcoma, NanoString, TGF-b,
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Introduction

Liposarcoma is one of the prevalent mesenchymal neoplasms in

adults, representing 20% of all sarcomas and is divided into 5 main

subtypes including atypical lipomatous tumor (ALT)/well-

differentiated liposarcoma (WDLPS), dedifferentiated liposarcoma

(DDLPS), myxoid liposarcoma, pleomorphic liposarcoma, and

atypical spindle cell/pleomorphic lipomatous tumor. Unique

molecular and biological differences exist that define the

histopathologic/clinical subtypes. The largest subgroup includes

both ALT/WDLPS and DDLPS representing approximately 45%

of all liposarcomas (1–3). When localized to the extremities, the

term atypical lipomatous tumor is used, whilst liposarcoma is used

for retroperitoneal and central body cavity locations.

The morphology and clinical behavior of WDLPS and DDLPS

differ drastically, and the biological behavior of DDLPS portends a

worse prognosis due to its aggressive nature, high local recurrence

rate, and ability to metastasize (4–7). We also recognize that 90% of

DDLPS arises de novo in the absence of a WDLPS precursor lesion.

(8) The non-adipogenic morphology of DDLPS is distinct from

WDLPS, often consisting of a high-grade non-lipogenic spindle cell

sarcoma (7). In cases of secondary DDLPS the dedifferentiation of

WDLPS is not well understood. Moreover, bothWDLPS and DDLPS

are among the most common retroperitoneal sarcoma establishing a

critical need to further elucidate the molecular landscape that defines

tumorigenesis in retroperitoneal liposarcoma and to understand the

underlying mechanisms that distinguish the unique biological

behavior of WDLPS and DDLPS. For the purposes of uniformity,

we will restrict our terminology to WDLPS rather than ALT.

Previous studies on molecular profiling of lipomatous tumors

have established amplification of MDM2 as a diagnostic marker

distinguishing WDLPS and DDLPS from benign lipomatous

tumors as well as other subtypes of liposarcoma (9, 10). Both

WDLPS and DDLPS harbor supernumerary ring and giant

marker chromosomes resulting from amplification of the 12q13-

15 region containing the MDM2 locus. The MDM2-p53 axis has

been well established in summarizing the regulatory mechanisms by

which MDM2 functions to facilitate p53 degradation by E3

ubiquitin ligase thereby inhibiting the tumor suppressor activity

of p53 (11, 12). Further, overexpression of neighboring genes,

CDK4 and HMGAI, have been identified in WDLPS and DDLPS

as well as exploited as potential molecular targets for treatment (10).

However, the molecular genetic determinants of transformation of

WDLPS to DDLPS are not known.

The landscape of systemic and molecular-based therapies for

WDLPS and DDLPS are limited to CDK4 and PDL1 inhibitors.

Small molecule MDM2 (i.e. nutlins, Siremadlin) and cdk4

inhibitors (ribociclib) have shown limited efficacy in phase I

clinical trials (13, 14). Novel targets of the EMT pathway are

emerging as potential therapeutics for the treatment of DDLPS.

For example, CCNDBP1, a tumor suppressor, has been shown to

suppress gene expression and protein levels of key regulators of the

EMT in vivo. (15).

Surgical resection is currently the standard treatment. (16)

Chemotherapy used in the adjuvant setting for DDLPS has shown

no significant improvement in clinical outcomes regarding local
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recurrence. More so, the overall 5-year survival rate of DDLPS is

approximately 40-60% and no significant improvement in survival

rates has been achieved in the past 15 years. (17) Despite surgical

resection, retroperitoneal WDLPS recurs in approximately 20% of

cases and has a higher incidence of dedifferentiation to DDLPS with

an increased 20-year mortality rate between 30-40% (2, 18).

Cytotoxic chemotherapy is not routinely utilized in patients with

retroperitoneal WDLPS indicating a critical need to identify

therapeutic targets for the treatment of this aggressive subtype of

WDLPS. Importantly, the cellular pathways that define the

sarcomagenesis of WDLPS and DDLPS and distinguish each entity

continue to remain elusive. Thus, there remains an urgent need for

more targeted therapeutic options for WD/DDLPS patients.

Using the targeted NanoString 360 tumor signaling

transcriptomic panel, we further explore the molecular

underpinnings of WDLPS and DDLPS and identify key cellular

pathways unique to the two liposarcoma subtypes. Expanding our

understanding of the molecular drivers in WDLPS may lead to the

identification of therapeutic targets for its treatment to

prevent recurrence.
Materials and methods

Sample selection

Snap-frozen tissue samples were retrieved from tissue

biorepository, obtained at the time of radical surgical resections.

All the patients were chemoradiation therapy naïve, and the nature

of the surgical resections were R1.

Selection criteria included a known diagnosis of retroperitoneal

WDLPS [n=12 (males = 7; females = 5); median age = 61.5 years]

and DDLPS [n=12 (males = 8; females = 4); median age = 61.5

years]. Normal fat was collected as normal controls [n = 4 (males

=3; females = 1); median age = 59 years] (Supplementary Table 1).
Quantitative real-time PCR analysis

Total RNA was isolated from snap-frozen human tissue

samples using RNeasy Lipid Tissue Mini Kit according to

manufacturer’s protocol (Qiagen). Preparation of cDNA was

achieved using the high-capacity cDNA reverse transcription kit

with RNase Inhibitor (Applied Biosystems, Thermo Fischer

Scientific). SYBR Green (Bio-Rad) biochemistries was used to

perform qRT-PCR to quantify gene expression with GAPDH or

ACTB as reference genes.
NanoString nCounter gene
expression assay

NanoString nCounter Tumor Signaling 360 panel was used for

direct detection of target molecules using color-coded molecular

barcodes, providing a digital simultaneous quantification of the

number of target molecules. The panel included standard probes for
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the Tumor Signaling 360 panel without customization. A

concentration of 100 ng of total RNA was hybridized overnight

with nCounter Reporter (8 mL) probes in hybridization buffer and

in excess of nCounter Capture probes (2 mL) at 65°C for 18 h. After

overnight hybridization, probe excess was removed using two-step

magnetic bead-based purification on an automated fluidic handling

system (nCounter Prep Station). Biotinylated capture probe-bound

samples were immobilized and recovered on a streptavidin-coated

cartridge. The abundance of specific target molecules was then

quantified using the nCounter digital analyzer. Individual

fluorescent barcodes and target molecules present in each sample

were recorded with a CCD camera by performing a high-density

scan (325 fields of view). Images were processed internally into a

digital format and exported as Reporter Code Count (RCC).
Western Blot

A total of 20 µg of protein was loaded into a 10% Tris-HCL gel.

Proteins were transferred to a PVDF membrane (0.2 µm). The

PVDF membrane was blocked with 5% nonfat dry milk in 1X TBS-

T (1% polysorbate 20) for 1 hour and incubated with the primary

antibody, rabbit anti-human TGF-b (Cell Signaling, Danvers, MA,

USA, #3711) or rabbit anti-human GAPDH (Cell Signaling, 2118S)

overnight at 4°C. Membranes were incubated in a secondary goat

anti-rabbit HRP-linked antibody (Thermo Fisher Scientific, 31460,

Rockford, IL, USA) for 2 hours. Membranes were incubated with

chemi luminescence ECL Western Blot t ing subst ra te

(ThermoScientific, Waltham, MA, USA). ImageJ was used to

quantify the protein intensity of TGF-b relative to GAPDH.
Statistical analysis

Statistical analysis was performed using GraphPad Prism 9.5.1

(GraphPad Software, San Diego, CA, USA). Statistical differences

were determined using a one-way ANOVA followed by a Tukey-

Kramer or Bonferroni test for post hoc comparison. Nanostring

gene expression was performed by using ROSILAND® software. In

brief, ROSILAND® software follows the nCounter® Advanced

Analysis protocol for normalization. Fold changes and p-values

were calculated using the nCounter® Advanced Analysis 2.0. The

adjusted p-value was calculated using the Benjamini-Hochberg

method of estimating the false discovery rate (FDR).
Results

WDLPS and DDLPS demonstrate a
global differential gene expression and
downregulation in genes associated
with glucose metabolism compared
to normal fat

The NanoString nCounter Tumor Signaling 360 Panel was used

to characterize the gene expression profiles of WDLPS, DDLPS, and
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the normal fat control. The heat-map (Figure 1A) and principal

component analysis (Figure 1B) show global differential gene

expression and clustering between well differentiated liposarcoma,

dedifferentiated liposarcoma and normal fat. The panel analyzed

760 genes involved in global pathways including tumorigenesis,

invasion, metastasis, angiogenesis, immune evasion, inflammation

and glucose metabolism (Figures 1C, D). Our initial evaluation

revealed 352 differentially expressed genes involved in a variety of

biochemical pathways including signal transduction, metabolism,

autophagy, and epigenetic and transcriptional regulation

(Figure 1C). Of the 352 differentially expressed genes between

both the liposarcoma groups (WDLPS and DDLPS) and normal

fat, 147 genes were involved in signal transduction pathways that

function to regulate cell cycle progression, immune response,

autophagy, and oxidative stress (Figures 1C, D). Glucose

metabolism demonstrated a global downregulation in both

WDLPS and DDLPS when compared to normal fat (global

significance score >2.0) as highlighted in Figure 1D. Additionally,

glutamine metabolism and HIF-1 signaling pathways were

upregulated in both WDLPS and DDLPS thereby suggesting a

metabolic shift in WDLPS and DDLPS when compared to the

nonneoplastic normal fat control (Figure 1D).

Targeted transcriptomic analysis of WDLPS and normal fat

tissue identified 82 differentially expressed genes representing

significantly altered cellular pathways. Among the pathways with

the greatest significance score include glucose metabolism and HIF-

1-signaling (downregulated) as well as antigen presentation

(upregulated) with significance score >2.0 (Figures 2A–C). Our

initial comparison between DDLPS and normal fat in Figures 2D–F

revealed 118 differentially expressed genes representing significantly

altered cellular pathways (significance score >2.0) including glucose

metabolism (downregulated) as well as HIF-1signaling, T-cell

exhaustion, hedgehog (upregulated). The comparison between

WDLPS and DDLPS (Figures 2G–I) shows differential gene

expressions involved in the Notch, TNF and VEGF-signaling

pathways, though the significance scores are <2.0.

Significantly downregulated genes in both WDLPS and DDLPS

when compared to normal fat were PFKP, ALDOA, PKM, PFKFB3,

LDHA, NDUFB1, IDH2, COX5B, NDUFA2, and PRKACA which

share key modulators of glucose metabolism, specifically aerobic

respiration including glycolysis and the electron transport chain

(Table 1; Figures 3A–C).

Both WDLPS and DDLPS displayed reduced aerobic glucose

metabolism when compared to normal fat. Downregulated genes

involved in glucose metabolism identified in the DDLPS group were

similar to genes identified inWDLPS which included PFKP, PFKFB3,

IDH2, PRKACA, ALDOA, COX5B, NDUFB1, and NDUFA2

(Figures 3A–C). Real-time PCR was performed to validate

differential gene expression in WDLPS, DDLPS, and normal fat.

Figures 3B, C highlights decreased gene expression of NDUFA2,

IDH2, and PRKCAC in bothWDLPS and DDLPS when compared to

normal fat tissue. Among the genes involved in glucose metabolism

include PFKP, PFKFB3, IDH2, and PRKACA which are known to

serve multifactorial roles in carcinogenesis including differentiation,

cell-cycle regulation, and apoptosis however, the role of these genes in

sarcomagenesis of WDLPS and DDLPS is not well elucidated.
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Glutamine synthesis is altered in DDLPS
when compared to WDLPS and normal fat

One means by which cancer metabolism is altered is by utilizing

a variety of different biosynthetic substrates including glutamine.

Glutamine synthesis was reduced in both WDLPS and DDLPS

when compared to normal fat potentially supporting a metabolic

shift toward glutaminolysis. Interestingly, GA binding protein

transcription factor subunit alpha, GABPA, was downregulated in

DDLPS when compared to normal fat and WDLPS and confirmed

by RT-PCR (Figure 3C). However, the role of GABPA in the

pathogenesis of DDLPS is still unknown.
The HIF-1 signaling pathway is upregulated
in WDLPS

The HIF-1 pathway was significantly altered in both WDLPS

and DDLPS when compared to the normal fat control (Figures 3D,

E). Expression of HIF-1A was significantly upregulated in WDLPS

and DDLPS compared to normal fat (Figure 3D) and confirmed by

RT-PCR. Further exploration of the HIF-1A pathway revealed

differences in the transcriptome profile of WDLPS and DDLPS

(Figure 3E). Expression of ADM and FLT1, genes also involved in

angiogenesis, were increased in WDLPS when compared to DDLPS

(Figure 3E). In contrast, DDLPS showed an upregulation of P4HA2,

a key mediator of collagen synthesis when compared to

WDLPS (Figure 3E).
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Profiling of resident immune cells reveals
an increased population of T-cells
in WDLPS

Resident immune cells serve a predominantly anti-

inflammatory role within normal adipose tissue as well as

indirectly regulating adipocyte metabolism. Therefore, as an

additional metric, we evaluated the composition of the immune

fraction within the tumor microenvironments of WDLPS and

DDLPS as well as normal adipose tissue using Nanostring cell

profiling capabilities (Figure 4). The population of neutrophils was

elevated in bothWDLPS and DDLPS when compared to the normal

fat control (Figure 4A). Immune profiling revealed increased

lymphocytes, specifically T-cells and cytotoxic T-cells, in the

WDLPS samples when compared to both DDLPS and normal

adipose tissue (Figure 4A). Populations of the remaining immune

cells including dendritic cells, macrophages, and mast cells

remained unchanged (Figure 4A).
Epithelial-mesenchymal transition and
TGF-b pathways are upregulated in WDLPS

Our analysis established that WDLPS and DDLPS share similar

metabolic profiles, specifically a shift from glucose metabolism to

glutaminolysis thus exhibiting a cancer-promoting metabolic

phenotype. Of the 760 differentially expressed genes, 47 genes

were significantly altered in WDLPS when compared to DDLPS
FIGURE 1

NanoString nCounter Tumor Signaling 360 Panel was used to characterize the gene expression profiles and pathway analysis of WDLPS, DDLPS, and
the normal fat control. (A, B) Heat map (A) Principal component analysis (B) generated by hierarchical clustering analysis to represent the unique
expression profiles for WDLPS, DDLPS, and normal fat. Global pathway analysis and differential gene expression show differentially expressed genes
involved in a variety of biochemical pathways including signal transduction, metabolism, autophagy, and epigenetic and transcriptional regulation
(Global significance cutoff scores of 1.0 and -1.0) (C, D).
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FIGURE 2

NanoString nCounter Tumor Signaling 360 Panel was used to characterize the gene expression profiles and pathway analysis of WDLPS, DDLPS, and
the normal fat control. (A, B) Significantly altered pathways in WDLPS compared to normal fat (significance score cutoff 1.0). (C) Volcano plot
demonstrating the distribution of differential gene expression for WDLPS and normal fat. (D, E) Significantly altered pathways in DDLPS compared to
normal fat (significance score cutoff 1.0). (F) Volcano plot demonstrating the distribution of differential gene expression for DDLPS and normal fat.
(G, H) Significantly altered pathways in WDLPS compared to DDLPS (significance score cutoff 1.0). (I) Volcano plot demonstrating the distribution of
differential gene expression for WDLPS and DDLPS; blue and red dots correspond to genes associated with glucose metabolism and signal
transduction, respectively.
TABLE 1 Differentially expressed genes involved in glucose metabolism.

Gene Full Name
Cellular
Pathway

Key Function of Encoded Protein
Fold

Change
P-value

NDUFA2 NADH: ubiquinone
oxidoreductase
subunit A2

Glucose
Metabolism

Subunit of the NADH: ubiquinone oxidoreductase (complex I), the first
enzyme complex in the electron transport chain within the inner
mitochondrial membrane

-1.81066 0.00128

NDUFB1 NADH: ubiquinone
oxidoreductase
subunit B1

Glucose
Metabolism

Involved in mitochondrial respiratory chain complex I assembly -2.52667 0.00059

IDH2 Isocitrate dehydrogenase
(NADP(+))2

Glucose
Metabolism

NADP (+) –dependent isocitrate dehydrogenase within the mitochondria that
catalyzes the oxidative decarboxylation of isocitrate to 2-oxoglutarate

-2.36756 0.003

COX5B Cytochrome c oxidase
subunit 5B

Glucose
Metabolism

Component of the cytochrome c oxidase, the last enzyme in the mitochondrial
electron transport chain which drives oxidative phosphorylation

-0.02546 0.00607

PRKACA Protein kinase cAMP-
activated catalytic
subunit alpha

Glucose
Metabolism

One of the catalytic subunits of protein kinase A and is involved in a variety of
cellular processes including glucose metabolism, cell division, and apoptosis

-1.92719 0.00486

PFKP Phosphofructokinase,
platelet

Glucose
Metabolism

Platelet type isoform of PFK that initiates the first committing step of
glycolysis by catalyzing the phosphorylation of D-fructose 6-phosphate to
fructose 1,6-bisphosphate by ATP

-5.64334 0.00048

PFKB3 6-phosphofructo-
2kinase/fructose-2,6-
bisphosphatase 3

Glucose
Metabolism/
HiF-1 Signaling

A bifunctional protein involved in the synthesis and degradation of fructose-
2,6-bisphosphate to regulate glycolysis, cell cycle progression, and apoptosis

-3.62025 0.01092

ALDOA Aldolase dehydrogenase
1A (class 1),
alpha polypeptide

Glucose
Metabolism/
HiF-1 Signaling

Catalyzes the reversible conversion of fructose-1,6-bisphosphate to
glyceraldehyde 3-phosphate and dihydroxyacetone phosphate

-3.35627 0.00115
F
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(Figure 1). Interestingly, the corresponding cellular pathways

significantly altered in WDLPS when compared to DDLPS are

predominantly associated with metastasis including inflammation,

angiogenesis, and extracellular matrix remodeling (Figures 4B–D).

Our data revealed that genes involved in metastasis, specifically

pathways that comprise the epithelial-mesenchymal transition,

EMT, pathway were differentially expressed in the WDLPS and

DDLPS (Figures 4B–D). It is well known that the biological

behavior of DDLPS is more aggressive than WDLPS and can

metastasize to distant sites. The behavior of WDLPS, however, is

more insidious as it tends to expand in the peritoneal and

retroperitoneal cavities engulfing visceral organs. Genes involved
Frontiers in Oncology 06
in the EMT pathway including proinflammatory cytokines/

chemokines IL-6, CCL21, CCL2, as well as the innate immune

receptor, TLR4, were upregulated in WDLPS when compared to

DDLPS (Figure 4B). Additionally, genes involved in angiogenesis

and vascular permeability including VEGFA, FLT4, FLT1, and

PTGS2 were upregulated in WDLPS when compared to DDLPS

with the exception of VEGFC which showed increased mRNA levels

in DDLPS when compared to WDLPS (Figure 4B). Snail family

transcriptional repressor 1, SNAI1, is known to be involved in

promoting the EMT pathway in human cancer and is a direct

downstream target of the HIF-1 pathway as well as the TGF-b
signaling pathway. Evaluation of differentially expressed genes
FIGURE 3

WDLPS and DDLPS demonstrate a global downregulation in genes associated with glucose metabolism and upregulated HIF1 signaling. (A) Overview
of glycolysis. (B) Differentially expressed genes involved in glucose metabolism (padj < 0.05; log2 fold change > 1 & < -1). (C) Real-time PCR
demonstrating a downregulation of NDUFA2, IDH2, PRKCAC in both WDLPS and DDLPS when compared to normal fat as well as downregulation of
GABPA in DDLPS when compared to WDLPS and normal fat. (D) HIF1A expression is upregulated in WDLPS when compared to DDLPS and normal
fat. (E) Differential expression of genes associated with HIF1-signaling pathway (padj < 0.05; log2 fold change > 1 & < -1). * represents p<0.05; **
represents p<0.01; and *** represents p<0.001.
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involved in the EMT pathway revealed an upregulation of SNAI1 in

the WDLPS when compared to DDLPS (Figure 4B). Measurement

of SNAI1 mRNA levels by real-time PCR confirmed that SNAI1 is

upregulated in WDLPS when compared to DDLPS as well as

normal fat (Figure 4C).

The TGF-b signaling pathway plays an integral role in

adipogenesis by promoting the differentiation from preadipocytes
Frontiers in Oncology 07
to mature adipocytes programmed to store lipids primarily in the

form of triglyceride. The TGF-b signaling also plays a role in cell

proliferation and apoptosis and has been implicated in a variety of

human cancers serving as a therapeutic target. The gene expression

profiles of both WDLPS and DDLPS demonstrated that genes

involved in the TGF-b signaling pathway by direct or indirect

downstream transcriptional regulation are predominately up-
FIGURE 4

Profiling of resident immune cells reveals an increased population T-cells and upregulation of the EMT pathway in WDLPS. (A) Cell profiling of
resident immune populations based on NanoString nCounter Tumor Signaling 360 Panel capture probes demonstrates increased lymphocytes,
specifically T-cell and cytotoxic T-cells in WDLPS compared to DDLPS and normal fat. Neutrophils are increased in WDLPS and DDLPS compared to
normal fat. (B) Differential expression of genes involved in the EMT pathway demonstrates upregulation of IL-6, TLR4, CCL21, CCL2, PTGS2, SNAI1,
VEGFA, FLT4, and MYC when compared to DDLPS (padj < 0.05; log2 fold change > 1 & < -1). (C) SNAI1 is upregulated in WDLPS when compared to
DDLPS and normal fat by real-time PCR. (D) Genes (PTGS2, SOX7, BHLHE40, LAMB3, LOX) downstream of TGF-b signaling are upregulated in
WDLPS when compared to DDLPS. (E, F) TGF-b protein and mRNA levels (E) are increased in WDLPS confirmed by Western blot and real-time qPCR
(*p-value < 0.05). (G) Summary of EMT-related pathways activated in WDLPS. ** represents p<0.01.
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regulated in WDLPS when compared to DDLPS (Figure 4D). Gene

expression of TGF-b has been shown to be upregulated in the

DDLPS by in vitro and in vivo studies. It is conceivable that the

upregulation of TGF-b may implicate proinflammatory cytokines

and other activators of EMT that drive the tumorigenesis of

WDLPS (Figure 4G). However, our data revealed that both TGF-

b protein and mRNA levels were elevated in WDLPS when

compared to DDLPS (Figures 4E, F) as well as several genes

involved in the TGF-b pathway including PTGS2, and SOX7

apart from BHLHE40, LAMB3, and LOX which were unchanged

or down-regulated in WDLPS, respectively (Figure 4D).
Discussion

The NanoSting nCounter panel has also been widely accepted as

an efficient screening modality for various tumor types including

soft tissue sarcomas with the goal of identifying key tumorigenic

pathways to aid in the further understanding of tumor biology. (19–

22) NanoString has demonstrated efficacy and cost-effectiveness for

the identification and diagnosis of WDLPS and DDLPS in a

predominantly retrospective series of low-grade adipogenic

tumors when compared to MDM2 FISH. (23) More recently, the

NanoString nCounter platform has been employed to evaluate the

immune profile of DDLPS for targeted immunotherapy. (24) This

the first pilot study to identify key metabolic signatures between

WDLPS and DDLPS utilizing the NanoString nCounter Tumor

Signaling 360 Panel.

WDLPS and DDLPS share the cytogenetic abnormality,

specifically amplification of the 12q13-15 region that leads to

subsequent diagnostic amplification of MDM2 and CDK4.

Previous cytogenetic studies have identified alternative

amplification of 1p32 and 6q23 in DDLPS and not identified in

WDLPS. (25) Located within the 1p32 and 6q23 loci, are the genes

jun proto-oncogene (JUN) and mitogen-activated protein kinase

kinase5 (MAP3K5). (26–28) Lineage-defining molecular

mechanisms of WDLPS and DDLPS, however, remain unknown.

The NanoString nCounter Tumor Signaling 360 Panel was

selected for targeted transcriptomic analysis due to the

comprehensive coverage of genes involved in tumorigenesis,

immune signaling, and microenvironment. Results of the current

study have provided insight into additional molecular pathways that

can be further explored to develop enhanced therapeutic modalities

for retroperitoneal WDLPS and DDLPS including molecular

pathways that are somewhat surprising in distinguishing WDLPS

from DDLPS such as HIF-1 signaling, TGF-b signaling, and the

epithelial-mesenchymal transition (EMT) pathways that are

indicators of aggressive tumor behavior and metastasis.

We have established that both WDLPS and DDLPS have

metabolic profiles generated from our targeted analysis that differ

significantly from normal fat including both notably glucose and

glutamine metabolism. Glucose is a primary focus in cancer

metabolism, especially in the setting of decreased nutrient

precursors in the tumor microenvironment. Cancer cells maintain

high rates of glucose metabolism and oxidative phosphorylation to
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fulfill the high anabolic demand. (29, 30) One mechanism of

particular interest is the Warburg effect in which a state of hypoxia

or pseudohypoxia induced by the tumor microenvironment and

rapid growth reduces oxidative phosphorylation while increasing

glucose metabolism. (31, 32) The tricarboxylic acid (TCA) cycle

remains intact to support tumor cell growth and is thought to be

rewired to provide the building blocks for cancer metabolism. (33, 34)

Glutamine is involved in a variety of energy-generating

biosynthetic pathways including cancer metabolism which has

generated special interest to utilize glutamine metabolism as a

potential therapeutic target. (35) Glutamine is the most abundant

amino acid in circulation and provides a readily accessible carbon

and nitrogen source for cellular metabolism. Cancer cells can

exploit glutamine for anaplerotic pathways by inducing

glutaminolysis which converts glutamine to the byproduct a-
ketoglutarate for entry to the TCA cycle. (36) Targeting

glutamine metabolism has been shown to slow growth in soft

tissue sarcomas. (37) Inhibition of glutamine synthetase induced

antiproliferative effects in sarcoma cell lines (rhabdomyosarcoma,

fibrosarcoma, osteosarcoma) including the liposarcoma derived cell

line (SW872) In particular, liposarcoma cells were highly sensitive to

the cytotoxic effects of antitumor enzyme L-asparaginase increasing

glutamine synthetase levels and reducing cell proliferation. (38)

However, the effects of glutamine metabolism are not well-

elucidated in human liposarcoma. Results from the targeted

transcriptome analysis revealed reduced glutamine synthesis in

both the WDLPS and DDLPS samples when compared to the

normal fat controls suggesting a tumor-induced metabolic shift

from glutamine synthesis to glutaminolysis. Inhibitors of glutamine

synthesis may be potential therapeutic options in the treatment of

sarcomas that express high levels of glutaminase and are dependent

on glutamine metabolism.

The HIF-1 signaling pathway is crucial for cancer cells to adapt to

hypoxic stress, specifically intratumoral hypoxia and pseudohypoxia,

and is considered a risk factor for poor prognosis in a variety of

cancer types including retroperitoneal sarcomas (leiomyosarcoma,

malignant peripheral nerve sheath tumor, WDLPS and DDLPS).

HIF-1 is a heterodimer consisting of a and b subunits. (39)

Downstream targets of HIF-1 include genes involved in

angiogenesis (i.e. vascular endothelial growth factor, VEGF) (38)

Transforming growth factor b (TGF-b) has long been

considered a multifactorial regulator of embryonic development

and homeostasis by stimulating or inhibiting cell proliferation.

Dysregulation of TGF-b has been implicated in metabolic disease

promoting fibrosis and inflammation, and cancer. (40–42) In early

tumorigenesis, TGF-b signaling is shifted toward tumor

suppression. However, unregulated TGF-b expression in cancer

cells overcomes the apoptotic/cell cycle control of TGF-b
promoting tumor progression. The non-canonical pathway

activates various pathways including PI3K, JNK, and ERK MAP

kinases involved in transcriptional regulation. (43) The absence of

key components of the TGF-b pathway suggest reduced invasive

potential. (44, 45) Several genes involved in the TGF- b pathway

were found to be elevated in DDLPS when compared to WDLPS

suggesting a potential role in the progression of DDLPS. The
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therapeutic potential of TGF-b in liposarcoma was investigated to

show that inhibition of TGF- b signaling reduced the growth and

metastasis of liposarcoma cells in mice.

Activation of the TGF-b pathway can promote epithelial to

mesenchymal transition (EMT) promoting a motile mesenchymal

phenotype which is a characteristic of invasion and metastasis. (46,

47) Downstream targets of TGF-b such as SNAI1 mediate the EMT

pathway in a SMAD-dependent manner. (48) Nine genes involved

in the EMT pathway were upregulated in WDLPS when compared

to DDLPS including proinflammatory cytokines/chemokines (IL-6,

TLR4, CCL21, CCL2, PTGS2), cell proliferation (MYC), and

angiogenesis (VEGFA, FLT1, and FLT4). The expression of SNAI1

was upregulated in WDLPS when compared to DDLPS. Although

WDLPS demonstrates a predominantly adipose-like morphology in

contrast to the high-grade spindle morphology of DDLPS, both

WDLPS and DDLPS can show focal to extensive myxoid stroma,

sclerosis, or inflammatory infiltrate. A study evaluating the degree

of sclerosis in cases of retroperitoneal WDLPS showed that the

degree of sclerosis and not myxoid or inflammation had the greatest

impact on prognosis. Cases of minimally sclerotic WDLPS have a

more favorable outcome when compared to cases with advanced

sclerosis. (44) Although WDLPS is not considered to possess

metastatic potential, these findings suggest a possible

proinflammatory tumor environment within WDLPS and

subsequent activation of the TGF-b signaling pathway

(Figure 4G). Additional studies are warranted to understand the

role of TGF-b in the pathogenesis of WDLPS.

In conclusion, our data suggests that WDLPS and DDLPS

demonstrate diverse molecular and metabolic profiles. In an era

of personalized medicine, some questions remain; what additional

molecular aberrations account for the different behavior and

prognosis of WDLPS and DDLPS, and how can these molecular

pathways be targeted for therapeutic alternatives to surgical

resection? Therapeutic agents have been developed and are

currently in preclinical or clinical phases for pathways including

glutamine metabolism and TGF-b signaling which have

demonstrated efficacy, at least, in vivo in liposarcoma-derived cell

lines. The future of targeted therapy for WDLPS is promising with

the goal to spare multi-visceral removal as a consequence of radical

surgical resection and prevention of dedifferentiation to DDLPS.
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