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Introduction: In the setting of pediatric and adolescent young adult cancer,

increased access to genomic profiling has enhanced the detection of genetic

variation associated with cancer predisposition, including germline syndromic

conditions. Noonan syndrome (NS) is associated with the germline RAS pathway

activating alterations and increased risk of cancer. Herein, we describe our

comprehensive molecular profiling approach, the association of NS with

glioma and glioneuronal tumors, and the clinical and histopathologic

characteristics associated with the disease.

Methods: Within an institutional pediatric cancer cohort (n = 314), molecular

profiling comprised of paired somatic disease–germline comparator exome

analysis, RNA sequencing, and tumor classification by DNA methylation

analysis was performed.

Results: Through the implementation of paired analysis, this study identified 4 of

314 (1.3%) individuals who harbored a germline PTPN11 variant associated with

NS, of which 3 individuals were diagnosed with a glioma or glioneuronal tumor.

Furthermore, we extend this study through collaboration with a peer institution

to identify two additional individuals with NS and a glioma or glioneuronal tumor.

Notably, in three of five (60%) individuals, paired genomic profiling led to a
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previously unrecognized diagnosis of Noonan syndrome despite an average age

of cancer diagnosis of 16.8 years. The study of the disease-involved tissue

identified signaling pathway dysregulation through somatic alteration of genes

involved in cellular proliferation, survival, and differentiation.

Discussion: Comparative pathologic findings are presented to enable an in-

depth examination of disease characteristics. This comprehensive analysis

highlights the association of gliomas and glioneuronal tumors with

RASopathies and the potential therapeutic challenges and importantly

demonstrates the utility of genomic profiling for the identification of germline

cancer predisposition.
KEYWORDS

glioma, glioneuronal tumor, Noonan syndrome, cancer predisposition, PTPN11,
germline, genomic profiling, next-generation sequencing
Introduction

Noonan syndrome (NS) is an autosomal dominant multisystem

disorder with an estimated incidence of 1:1,000 to 1:2,500 in which

affected individuals display characteristic facial features, congenital

heart defects, short stature, developmental delays, and an increased

risk of malignancy (1). NS is caused by pathogenic variation in the

RAS/MAPK signaling pathway, which leads to aberrant pathway

activation (2). More than 50% of individuals with NS have a germline

pathogenic variant in PTPN11 (3, 4). Other genes in the RAS/MAPK

signaling pathway (i.e., A2ML1, BRAF, CBL, HRAS, KRAS, LZTR1,

MAP2K1, MAP2K2, NRAS, RASA2, RIT1, RAF1, SHOC, SOS1) are

also implicated in NS or related constitutional disease with

overlapping phenotypes, collectively termed RASopathies (2, 3).

Leukemias, solid tumors, and central nervous system (CNS) tumors

are reported with increased frequency in individuals diagnosed with a

RASopathy (5–9). Among CNS tumors, gliomas and glioneuronal

tumors are reported in association with NS, including but not limited

to dysembryoplastic neuroepithelial tumor (DNET), rosette-forming

glioneuronal tumor (RGNT), and pilocytic astrocytoma. Notably,

molecular analysis has identified concurrent somatic activation of the

RAS/MAPK and PI3K/AKT signaling pathways in gliomas, which

intriguingly overlap the signaling dysregulation seen in RASopathies

(10–12).

The World Health Organization (WHO) 2021 guidelines (13)

have expanded the defining molecular features associated with

gliomas and, in concert with histopathologic findings, can provide

additional supporting data for tumor classification in the setting of

an integrated diagnosis. For example, RGNT is a rare, indolent,

glioneuronal WHO grade 1 tumor (13), characterized by biphasic

neurocytic and glial architecture, most commonly arising in the

midline, especially in the fourth ventricular region (14–16), with

rare cases reported in the spine or cerebral hemispheres (17, 18).

Molecularly, RGNT shares a characteristic methylation signature
02
and FGFR1 alterations, co-occurring with alterations involving

PIK3CA or PIK3R1 and/or NF1 (12, 19, 20). Diffuse

leptomeningeal glioneuronal tumor (DLGNT) is an example of a

glioma that was introduced as a provisional entity in the 2016WHO

Classification of CNS Tumors (21). DLGNT is a rare glioneuronal

neoplasm, composed of oligodendrocyte-like cells and molecularly

characterized by chromosome arm 1p deletion with MAPK

pathway gene alteration (13).

Historically, treatment for pediatric low-grade gliomas (LGGs)

included surgical resection, radiation therapy, and adjuvant

chemotherapy (22–26). Unlike their adult counterparts, pediatric

LGGs tend to have a favorable prognosis, with rare reports of

malignant transformation (26, 27). Pediatric LGGs typically harbor

alterations that result in RAS/MAPK signaling pathway activation

for which targeted inhibitors, such as the combination of dabrafenib

(BRAF inhibitor) and trametinib (MEK inhibitor), have

demonstrated utility as a first-line treatment (11, 28, 29). High-

grade gliomas (HGGs) harbor alterations affecting various signaling

pathways (30). Clinical trials are underway to determine the efficacy

of various targeted therapies against pediatric HGGs (31).

Herein, we present a series offive individuals with NS diagnosed

with glioma or glioneuronal tumors, along with molecular

characterization of these tumors. The integrated diagnosis

presented draws from the clinicopathologic, histologic, and

molecular features of the tumors from these individuals.
Materials and methods

Cohorts

At the Nationwide Children’s Hospital (NCH; Columbus, OH),

314 individuals with solid tumors or hematologic malignancy/

disease consented as part of an institutional translational protocol
frontiersin.org
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from January 2018 to April 2022. Under this Institutional Review

Board (IRB)-approved protocol (IRB17-00206), comprehensive

molecular profiling, including paired exome sequencing of tumor

tissue and a germline comparator, RNA sequencing of the tumor,

and when possible, DNA methylation array-based tumor

classification, was performed. A histopathologic review of a

hematoxylin and eosin-stained slide was used to estimate tumor

content among the assayed tumor specimens. This protocol allowed

for the identification of somatic cancer-associated genomic

alterations to include single nucleotide variants (SNVs) and small

insertion-deletion (indel) events, copy number alterations, gene

fusions, and importantly, germline findings associated with cancer

predisposition. Individuals 1–3 were profiled as part of the NCH

cohort methodology.

To expand the results and analysis of the NCH cohort, the

Seattle Children’s Hospital (Seattle, WA) contributed data from two

adolescent young adult individuals who underwent molecular

profiling as part of routine clinical testing in the setting of a CNS

malignancy at the University of Washington (Seattle, WA). The

contribution of this dataset was conducted under an IRB-approved

protocol (#14449). Individuals 4 and 5 were profiled as part of the

Seattle cohort methodology.
Enhanced exome sequencing—NCH cohort

Libraries were prepared using 100 ng of input DNA beginning

with enzymatic fragmentation, followed by end repair, 5′
phosphorylation, A-tailing, and platform-specific adapter ligation

using NEBNext Ultra II FS reagents (New England Biolabs, Ipswich,

MA). Target enrichment by hybrid capture was performed using

the xGen Exome Research Panel v1.0 enhanced with the xGenCNV

Backbone and Cancer-Enriched Panels-Tech Access (Integrated

DNA Technologies, Coralville, IA). Paired-end 151-bp reads were

generated on the Illumina HiSeq 4000 or NovaSeq 6000 (Illumina,

San Diego, CA). Secondary analysis was performed using Churchill,

a comprehensive bioinformatic workflow that takes raw sequencing

reads from alignment through variant identification through the

incorporation of the following analytical steps (32). Reads were

aligned to the human genome reference sequence (build GRCh38)

using Burrows-Wheeler Aligner (BWA) (v0.7.15) and refined

according to community-accepted guidelines for best practices

(https://gatk.broadinstitute.org/hc/en-us). Duplicate sequence

reads were removed using samblaster-v.0.1.22, and base quality

score recalibration was performed on the aligned sequence data

using the Genome Analysis Toolkit (v4.1.9) (33). The average depth

of coverage obtained for the comparator germline samples and

disease-involved tumors is presented in Supplementary Table 1.

Germline variants were called using GATK’s HaplotypeCaller (34).

Somatic SNV and indel detection was performed using MuTect2

(35). Variants were filtered for those >5% variant allele fraction

(VAF), within a coding region of the genome, or in proximity to an

exon/intron junction (splice site region ≤ 3 bp), with a parameter

defined as passing (MuTect2 PASS), and according to population

frequency (gnomAD FAFpopmax95 <= 0.0001). Additionally,

germline and somatic variation in cancer-associated genes was
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genomic databases including those described by Zhang et al., as well

as genes with strong or emerging evidence of germline or somatic

cancer association as documented in the Cancer Gene Census (36,

37) (Supplementary Table 2). Variants flagged as pathogenic/likely

pathogenic or with conflicting interpretations in ClinVar were also

reviewed. Reportable variants were manually reviewed using the

Integrated Genomics Viewer. Variants reported as part of this

translational research protocol met the aforementioned criteria

and were evaluated in the setting of the tumor type under study.

Variants of uncertain significance were not reported. Copy number

variation (CNV) was assessed using a combination of GATK

(v4.2.4.1) and VarScan2 (38).
RNA sequencing—NCH cohort

In parallel with enhanced exome sequencing, tumor-derived

RNA, input at 500 ng, was subject to DNase treatment and

ribodepletion prior to library preparation using the NEBNext

Ultra II Directional RNA Library prep kit with 5–10 min of

chemical fragmentation for individuals 1, 2, and 3. Independent

cDNA libraries were diluted for whole transcriptome sequencing.

Paired-end 151-bp reads were generated on the Illumina HiSeq

4000 or NovaSeq 6000 (Illumina, San Diego, CA), and reads were

aligned to the human genome reference sequence (GRCh38). The

resultant output represented 141,857,623 (individual 1),

236,186,711 (individual 2), and 185,159,431 (individual 3)

uniquely mapped reads for the tumor samples.

For fusion analysis, RNA sequence data were processed using

EnFusion (39), an ensemble approach of seven fusion callers

STARfusion (v.1 .6 .0) (40) , MapSpl ice (v .2 .2 .1) (41) ,

FusionCatcher (v.0.99.7c) (42), FusionMap (v.mono-2.10.9) (43),

JAFFA (v.1.09) (44), CICERO (v0.3.0) (45), and Arriba (v1.2.0)

(46). Rare fusions (<5% frequency in our internal cohort) identified

by at least three fusion callers were subject to further review for

biological relevance.

Gene expression analyses were performed in R-4.1.1. using the R

packages tidyverse (v.1.3.1), dplyr (v.1.0.9), and plyr (v.1.8.7) for data

manipulation; Salmon (v.1.9.0), tximport (v.1.18.0), matrixStats

(v.0.61.0), umap (v.0.2.8.0), and Rtsne (v.0.16) for analytics; and

rsvg (v.2.2.0), ggrepel (v.0.9.1), RColorBrewer (v.1.1.3), plotly

(v.4.10.0), and ggplot2 (v.3.3.6) for analytic visualization.

Normalized read counts (TPM) were calculated for all samples

from an internal NCH cohort of CNS cancers (n = 235) using the

Salmon package. An external cohort of CNS cancers (n = 791) from

the Treehouse Childhood Cancer Initiative at the University of

California Santa Cruz Genomics Institute (v.9 and v.11, University

of California Santa Cruz, Santa Cruz, CA) was combined with the

internal cohort to improve clustering. Expression counts of protein-

coding genes were log2(x + 1)-transformed and quantile

normalization was performed. The 500 protein-coding genes with

the highest variances were used to perform a principal components

analysis. The data dimensionality was further reduced by

performing Uniform Manifold Approximation & Projection

(UMAP) using the umap package. This analysis used the first 34
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principal components, as they account for >80% of the variance

among the samples. The UMAP plot of UMAP1 and UMAP2 was

generated using the R packages ggplot2 and plotly.

Scripts used for RNASeq fusion calling and dimensionality

reduction can be found at https://github.com/nch-igm/EnFusion

and https://github.com/nch-igm/RNAseq_dimensionality

_reduction, respectively.
DNA methylation array—NCH cohort

DNA methylation profiling was performed on nucleic acid

extracted from disease-involved tissue. For each tumor studied,

250 ng of input DNA was bisulfite-converted (catalog # D5006,

Zymo Research, Irvine CA) and, if applicable, treated using the

Illumina formalin-fixed paraffin-embedded (FFPE) restoration

process (catalog # WG-321-1002, Illumina, San Diego CA).

Bisulfite-converted DNAs, including methylated human DNA

controls (catalog # D5014, Zymo Research, Irving CA), were

hybridized to the Infinium Methylation EPIC BeadChip (catalog

# WG-317-1001, Illumina, San Diego, CA) following the Illumina

Infinium HD Methylation protocol. Beadchips were imaged on the

Illumina iScan System, and the resulting raw IDAT files were

processed through a local installation of the German Cancer

Research Center (DKFZ) DNA Methylation Brain Tumor

Classifier, version 12.5 (47). The Classifier algorithm produces a

score that indicates the similarity of the queried sample against

previously characterized CNS tumor types, wherein a score ≥0.9 is

strongly supportive of that type.
Targeted next-generation sequencing—
Seattle cohort

Paired tumor–germline testing was performed on disease-

involved and normal sample DNA from individuals 4 and 5 using

the University of Washington-OncoPlex version 7 (OPXv7), a

DNA-based targeted next-generation sequencing panel, as

previously described (48). In brief, DNA was extracted from

peripheral blood using Qiagen DSP DNA Midi Kit, while total

nucleic acid (TNA) was extracted from FFPE tissue using the

Qiagen DNA/RNA AllPrep Kit followed by DNA extraction using

the Qiagen GeneRead DNA FFPE Kit (Qiagen, Valencia, CA). After

shearing, libraries prepared using KAPA HyperPrep reagents

(Roche, Wilmington, MA) were hybridized to a set of custom

probes (xGen Lockdown Probes, Integrated DNA Technologies,

Coralville, IA) designed to target a panel of 377 genes

(Supplementary Table 3) chosen for their relevance in cancer

diagnosis, prognosis, and/or treatment. In addition to identifying

SNVs, indels, select gene fusions, and CNVs, OPXv7 was also

validated to detect microsatellite instability and tumor mutational

burden. The libraries were subsequently sequenced on an Illumina

NextSeq500 system (Illumina, San Diego, CA), and sequences were

processed through an automated, custom-designed bioinformatics

pipeline developed by the University of Washington Next

Generation Sequencing Laboratory and Analytics group before
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analysis by a board-certified molecular pathologist (48). The

average depth of coverage obtained for the comparator germline

samples and disease-involved tumors is presented in

Supplementary Table 1.
Results

Amid the NCH cohort, 4 of 314 individuals (1.3%) who

underwent genomic profiling as part of an institutional

translational cancer protocol harbored a germline variant in

PTPN11 associated with NS. A diagnosis of NS was not

previously known in two of the four (50%) individuals within this

cohort until comprehensive molecular profiling was performed due

to a cancer diagnosis. Three of these individuals were diagnosed

with CNS malignancies including RGNT (n = 2; individuals 1 and

2) and a diffuse leptomeningeal glioneuronal tumor with worrisome

molecular features, not elsewhere classified (NEC) (n = 1; individual

3). A fourth individual with NS in the NCH cohort was diagnosed

with B-cell acute lymphocytic leukemia and is therefore excluded

from further in-depth examination in this CNS-focused analysis.

The paired exome sequencing used in this translational protocol

testing was the first manner of identification of NS-associated

PTPN11 variation in individuals 2 and 3 and subsequently

allowed for orthogonal confirmation by targeted Sanger

sequencing in the clinical laboratory. The observation of CNS

malignancies and NS in the NCH cohort served as the foundation

for an extended analysis. To further enhance our dataset,

collaboration with a peer institution identified two additional

individuals diagnosed with gliomas or glioneuronal tumors and

NS (Seattle cohort—individuals 4 and 5). Given the unique

molecular profiles associated with these CNS tumors, we discuss

the utility of paired sequencing and the clinicopathologic,

histologic, and molecular features of these five individuals. The

average age at cancer diagnosis among this combined cohort of five

individuals with NS was 16.8 years (range 9–22 years). The cohort

was predominantly male patients (one female patient, four male

patients) with variable clinical features associated with NS,

including short stature (five of five), dysmorphic facial features

(five offive), intellectual disability or delay (four offive), and cardiac

abnormalities (three of five) (Supplementary Table 4).
Individual 1

A 22-year-old male patient with NS diagnosed during infancy

presented with progressive headaches, vomiting, and visual

disturbances. A brain magnetic resonance imaging (MRI)

demonstrated an extensive suprasellar mass involving the third

ventricle, extending through the floor into the prepontine cistern

with obstructive hydrocephalus (Figures 1A, B). Spinal MRI showed

no evidence of drop metastasis. Subtotal surgical resection was

performed. Histologic examination of the tumor (Table 1) showed a

low-grade glioma of moderate cell density, composed of mostly

small bland round neurocytic-type cells, with fewer bipolar-

spindled piloid cells, consistent with a partial pilocytic
frontiersin.org
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TABLE 1 Comparative pathologic findings among the described tumors in this cohort.

Histopathological
feature

Individual 1
RGNT

Individual 2
RGNT

Individual 3
Glioneuronal
neoplasm with

worrisome molecular
features, NEC

Individual 4
Low-grade
glioneuronal
tumor, NEC

Individual 5
DNET

Rosenthal fibers No No No No No

Eosinophilic granular bodies Yes No No No No

Neurocytic cells Yes Yes No No No

Ganglion cells Yes No No No Yes

Mitoses Few No No No No

Microvascular proliferation Yes No No Yes No

Hyalinized vessels No No No No No

Microcalcification Yes No No Yes No

Mucinous
microcystic matrix

Yes No No Yes, focal Yes

Tumor infiltration None Focal Dural and
leptomeningeal involvement

None Yes

Perivascular pseudorosettes Yes No No No No

Rosettes with neuropil cores Yes Yes No No No

Ki-67 index 5%–10% <3% <5% <3% <3%

GFAP Partially positive Partially positive Focally positive Positive Partially positive

Synaptophysin Partially positive Partially positive Highlights very rare cells Partially positive Partially positive
F
rontiers in Oncology
 0
5
DNET, dysembryoplastic neuroepithelial tumor; NEC, not elsewhere classified; RGNT, rosette-forming glioneuronal tumor.
FIGURE 1

Individual 1—radiologic and histopathologic studies of the tumor. Axial T2 (A) and FLAIR (B)-weighted MRI brain displays an extensive suprasellar
mass involving the third ventricle and extending through the floor into the prepontine cistern with obstructive hydrocephalus. A rosette-forming
glioneuronal tumor (RGNT) dominated by oligodendroglia-like, small round neurocytic cells, within a mucinous-myxoid stroma, shows
(C) neurocytic cell rosettes surrounding an eosinophilic neuropil core (**) and a perivascular neuropil-accumulating pseudo-rosette (*) [H&E ×40
ocular mag.] and (D) also demonstrates the synaptophysin-reactivity of many neuropil cores (>) [synaptophysin, ×40 ocular mag.]. (E) Area of
biphasic tumor with more glial tumor cell component is strongly positive for GFAP [GFAP, ×40 ocular mag.].
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https://doi.org/10.3389/fonc.2024.1453309
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shatara et al. 10.3389/fonc.2024.1453309
astrocytoma component; focally, ganglion-like cells were also seen.

There was a partial angiocentric (perivascular rosette-like) pattern,

with small round neurocytic cells surrounding perivascular

neuropil-rich regions, which showed staining for synaptophysin

(Figures 1C–E). In some areas, rosettes with eosinophilic neuropil

cores surrounded by completely circumferential neurocytic tumor

cells were obvious. Occasional eosinophilic granular bodies were

seen focally, but no Rosenthal fibers were present. There was

prominent glomerular-type microvascular proliferation and

focal microcalcification.

Comprehensive genomic profiling using paired exome

sequencing confirmed the presence of a germline missense variant

in PTPN11 p.Gly60Ala (classified as pathogenic in ClinVar,

variation ID: 40493) (Table 2). Additionally, the tumor (estimated

at 100% tumor content) was found to harbor an in-frame deletion

in PIK3R1 p.Ile442_Thr454del and a recurrent hotspot missense

variant in FGFR1 p.Lys656Glu. No clinically actionable gene fusions

were identified. No CNV or copy-neutral loss of heterozygosity

(cnLOH) was identified (Supplementary Figure 1A). DNA

methylation array-based classification analysis (v12.5)

demonstrated a high-confidence family score (0.99907) for a low-

grade glioneuronal tumor, with the highest methylation class

associated with RGNT (0.56372).

The final integrated diagnosis was consistent with RGNT

(WHO grade 1). A year following tumor resection, focal proton

beam irradiation was performed for local progression, which was

complicated by severe somnolence syndrome and managed with

steroid therapy. There has been no evidence of tumor progression

38 months after irradiation.
Individual 2

A 19-year-old male patient was reported with complex medical

history including prematurity, bradycardia, and cyanosis at birth

requiring cardiopulmonary resuscitation, reported neonatal strokes,

developmental delays, facial dysmorphism, short stature, and

intellectual disability. He presented with chronic migraine

headaches, and brain imaging at the age of 16 years displayed

multiple abnormal signals in the pineal region, thalami, and

midbrain of unknown etiology (Figures 2A, B). Spine MRI and

cerebrospinal studies were negative. An MRI-guided stereotactic

biopsy was consistent with RGNT; bland small round neurocytic

cells of moderate density, with no significant pleomorphism, were

found completely surrounding synaptophysin-positive neuropil

cores, with no Rosenthal fibers or eosinophilic granular bodies

seen (Table 1 and Figures 2C–E).

Paired exome sequencing (estimated 70% tumor content)

identified a pathogenic missense hotspot variant in PTPN11

p.Asn308Asp (classified as expert panel pathogenic in ClinVar,

variation ID: 13326) (Table 2). This variant was subsequently

confirmed by targeted Sanger sequencing in our clinical

laboratory and reported in the patient’s medical record.

Molecular characterization was therefore consistent with NS, a

diagnosis which was previously unrecognized in this individual.

The somatic analysis revealed three alterations within PIK3R1.
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These include the missense variant, p.Val695Met, an in-frame

indel p.Glu451_Asn453delinsAsp, and lastly, an in-frame deletion

p . T h r 4 5 4 _ P h e 4 5 6 d e l . T h e t w o i n - f r am e i n d e l s

(p.Glu451_Asn453delinsAsp and p.Thr454_Phe456del) did not

occur within the same read based on visualization of the aligned

sequence (Supplementary Figure 2). Additionally, a recurrent

hotspot missense variant in FGFR1 p.Asn546Lys was also

detected. No clinically actionable gene fusions were identified. No

CNV was identified; however, cnLOH involving chromosome 19p

was detected (Supplementary Figure 1B). DNA methylation

analysis (v12.5) demonstrated a high-confidence family score

(0.99999) for a low-grade glioneuronal tumor, with the highest

methylation class associated with RGNT (0.99998).

The final integrated diagnosis was consistent with RGNT. Now

36 months since diagnosis, initial slow but progressive growth of the

tumor has been described, with subsequent stabilization.

RNA-sequencing studies were performed to better understand

how these individuals cluster based on similarities in gene

expression profiles. A UMAP data structure, as derived from

RNA-sequencing studies, was generated from individuals with

CNS tumors studied as part of the NCH cohort (n = 235) and the

UCSC Treehouse Initiative (n = 791). Individuals 1 and 2 clustered

closely together amid other LGG and glioneuronal tumors. This

suggests similarity in gene expression between each tumor which

may reflect the shared mutational profile, including activating

FGFR1 variants, in addition to PIK3R1 variants predicted to

activate the PI3K signaling pathway, in concert with the germline

PTPN11 variant (Supplementary Figure 3, Table 2).
Individual 3

A 9-year-old female patient presented with a transient headache

and left-sided weakness which led to a brain and spine MRI being

performed. Imaging revealed diffuse dural enhancement and

nodular thickening of unknown etiology (without a focal primary

mass) for which an oncologic process could not be ruled out.

Cerebrospinal fluid cytology analysis following lumbar puncture

was negative for malignant cells. Full body positron emission

tomography (PET)/computed tomography (CT) scan did not

demonstrate obvious extraneural disease. She presented 1 month

later and repeat imaging showed persistent linear and nodular

leptomeningeal enhancement with progressive increased fluid-

attenuated inversion recovery (FLAIR) signal abnormalities in the

periventricular and deep white matter of bilateral frontal

and parietal lobes (Figure 3A). At this time, a dural and

leptomeningeal biopsy was performed. Neuropathologic

evaluation revealed an unusual glioneuronal tumor with

morphologic features suggestive of DLGNT. The tumor was

composed of moderately cellular nodules of small bland cells with

oval to elongate nuclei embedded in a desmoplastic to collagenous

stroma (Figure 3B). No definite neuronal component was identified

by morphology. Mitoses were not found. The tumor cells were

immunoreactive for Olig2 (Figure 3C) and GFAP. Synaptophysin

immunostain highlighted very rare small cells.
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TABLE 2 Clinical and molecular characteristics among this cohort.

e findings (VAF) Somatic findings (VAF) DNA array-based
methylation

classification (v12.5)

M_002834.3:c.179G>C:
ly60Ala (50%)

FGFR1 NM_023110.2:c.1966A>G: p.Lys656Glu (44%)
PIK3R1 NM_181532.2:

c.1324_1362delATTGAAGCTGTAGGGAAAAAATTACATGAATATAACACT:
p.Ile442_Thr454del (25%)

Rosette-forming glioneuronal
tumor (class score: 0.56372)

M_002834.3:c.922A>G:
sn308Asp (46%)

FGFR1 NM_023110.2:c.1638C>T: p.Asn546Lys (32%)
PIK3R1 NM_181523.2:c.1353_1358delATATAA:p.Glu451_Asn453delinsAsp

(34%)
PIK3R1 NM_181523.3: c.1359_1367delCACTCAGTT: p.Thr454_Phe456del

(7%)
PIK3R1 NM_181523.2:c.2083G>A: p.Val695Met (43%)

Rosette-forming glioneuronal
tumor (class score: 0.99998)

M_002834.3:c.209A>G:
ys70Arg (45%)

KRAS NM_004985.5:c.35G>A: p.Gly12Asp (13%)
Loss of chromosome arm 1p
Gain of chromosome arm 1q

4q12 amplification (PDGFRA, KIT, KDR, CHIC2, and FIP1L1)

Meningioma, benign, (class
score: 0.35455); clinically
reported as no match

M_002834.3:c.922A>G:
sn308Asp (50%)

FGFR1 NM_023110.2:c.1638C>A: p.Asn546Lys (26%)
PIK3CA NM_006218.2:c.3140A>G: p.His1047Arg (25%)
PIK3CA NM_006218.2:c.3139C>T: p.His1047Tyr (5%)

N/A

M_002834.3:c.174C>A:
sn58Lys (43%)
_005228.3:c.1591C>T:
rg531Ter (47%)

FGFR1 NM_023110.2:c.1638C>A p.Asn546Lys (10%) No match
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Germlin

Individual 1 (RGNT) M 5 22 PTPN11 N
p.

Individual 2 (RGNT) M 19.5 19 PTPN11 N
p.A

Individual 3 (glioneuronal
neoplasm with worrisome
molecular features, NEC)

F 9 9 PTPN11 N
p.

Individual 4 (low-grade
glioneuronal tumor, NEC)

M 18.9 18 PTPN11 N
p.A

Individual 5 (DNET) M 1.5 16 PTPN11 N
p.

EGFR NM
p.A

DNET, dysembryoplastic neuroepithelial tumor; NEC, not elsewhere classified; RGNT, rosette-forming glioneu
G
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Paired exome analysis of disease-involved tissue (estimated 30%

tumor content) and a comparator sample revealed a germline

missense variant in PTPN11 p.Lys70Arg (classified as expert

panel pathogenic in ClinVar, variation ID: 44603) (Table 2). The
Frontiers in Oncology 08
tumor harbored a somatic hotspot activating variant in KRAS

p.Gly12Asp. The somatic copy number analysis demonstrated a

focal amplification of 4q12 (encompassing the PDGFRA, KIT, KDR,

CHIC2, and FIP1L1 loci), a loss of chromosome arm 1p, and a gain
FIGURE 2

Individual 2—radiologic and histopathologic studies of the tumor. Axial T2 (A) and FLAIR (B)-weighted MRI brain demonstrates multiple abnormal
signals in the pineal region, thalami, and midbrain. (C) RGNT with neurocytic cells of moderate density near-completely surrounding neuropil cores
(*) [H&E, ×40 ocular mag.]. (D) Synaptophysin stain shows neurocytes surrounding synaptophysin-positive neuropil cores (*) [synaptophysin, ×40
ocular mag.]. (E) Area of biphasic tumor with more so glial tumor cells and matrix is diffusely positive for GFAP [GFAP, ×40 ocular mag.].
FIGURE 3

Individual 3—radiologic and histopathologic studies of the tumor. (A) Axial T1-weighted, post-contrast images in two planes demonstrate a growing,
enhancing right frontal nodule (yellow arrow) as well as nodular leptomeningeal enhancement and thickening throughout (green arrows). (B) H&E
shows a low-grade-appearing glioneuronal tumor with features suggestive of diffuse leptomeningeal glioneuronal tumor. (C) Immunohistochemical
stain shows tumor cell immunoreactivity for Olig2 [Olig2, ×40 ocular mag.].
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of 1q (Supplementary Figure 1C). Targeted fusion analysis was

negative, including for KIAA1549::BRAF. In support of a DLGNT

diagnosis, IDH1 and IDH2 were considered wild type with no

evidence of mutation. DNA methylation analysis (v12.5) failed to

classify confidently to a specific tumor type, with a family score of

0.39560 for meningioma and a class score of 0.35455 for

meningioma, benign. The low scores may be attributed to low

tumor cellularity in the sample under study. UMAP visualization of

gene expression data demonstrated that the tumor from individual

3 clustered uniquely from those of individuals 1 and 2 and instead

clustered with a separate group of LGGs (Supplementary Figure 3).

Given the unusual molecular findings and methylome features

not entirely consistent with typical DLGNT (yet displaying MAPK

pathway alteration and 1p loss, with Olig2 positivity and rare cells

with synaptophysin immunoreactivity), the tumor was ultimately

diagnosed as a glioneuronal neoplasm with worrisome molecular

features, NEC. Following the identification of the germline PTPN11

variant in the translational study, sequencing of this locus was

performed at an outside clinical laboratory which confirmed the

presence of the variant. A review of the patient’s clinical

characteristics and history revealed that she had previously

unrecognized features consistent with NS, including short stature,

concerns for poor growth, dysmorphic facial features, easy bruising,

and atrial septal defect. Notably, identification of this variant led to

cascade testing of family members, and this variant was found to be

de novo in our proband.

The patient was treated with the oral MEK inhibitor trametinib,

with an initial decrease in disease burden (at 6 weeks), but then

rapid progression of leptomeningeal disease and a new, growing

right frontal nodule 2.5 months later. At this time, the decision was

made to proceed with proton craniospinal irradiation (CSI; 41.4 Gy

CSI with 54 Gy boost to right frontal nodule) given early disease
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progression on targeted therapy and concern for higher-risk

molecular features [1q gain and 4q12 amplification (containing

PDGFRA and other loci)]. The patient is now 18 months post-

completion of proton CSI, with concern for disease progression

based on radiographic findings, and has started maintenance

chemotherapy with temozolomide and lomustine.
Individual 4

An 18-year-old male patient with a history of short stature,

cryptorchidism, gastroesophageal reflux, and minor cardiac leaflet

abnormalities presented with progressive headaches. Maternal

history was positive for benign brain tumors, epilepsy, and mild

pulmonary stenosis; however, neither the mother, patient, nor other

family members were previously known to have a diagnosis of NS.

Brain MRI/magnetic resonance angiography (MRA) found a

primary hemorrhagic lesion arising from the left thalamus and

filling a portion of the left lateral ventricle, along with two distinct

lesions involving the left insular cortex and the right temporal fossa

(Figures 4A, B). Spinal imaging was negative. Subtotal resection of

the primary thalamic lesion and ventriculoperitoneal (VP) shunt

placement were performed. Histologic examination of the tumor

showed a low-grade glial neoplasm with abundant calcifications

(Figures 4C–E). No rosettes or pseudorosettes were identified. Foci

of microvascular proliferation were noted along with areas of

acute hemorrhage.

Targeted molecular profiling of disease-involved tissue and a

peripheral blood sample using OPXv7 identified a heterozygous

germline pathogenic gain-of-function variant in PTPN11

p.Asn308Asp (classified as expert panel pathogenic in ClinVar,

variation ID: 13326) (Table 2), prompting a new diagnosis of NS.
FIGURE 4

Individual 4- Radiologic and Histopathologic Studies of the Tumor. (A, B) Axial T2 contrast-weighted images demonstrate a mass lesion ~3.6 cm in
greatest dimension adjacent to the left thalamus within the ventricle. The left insular cortex contains a separate lobular lesion approximately 1 cm in
diameter in within the right temporal fossa there is also a soft tissue lesion measuring approximately 3 cm in maximum dimension. (C) H&E shows a
low-grade appearing glioneuronal tumor with abundant calcifications. (D) Immunohistochemical staining for GFAP is positive. (E)A subset of cells
appears positive for synaptophysin.
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The tumor tissue was also positive for well-characterized activating

alterations in FGFR1 p.Asn546Lys and two variants in PIK3CA

p.His1047Arg and p.His1047Tyr (Supplementary Figure 4). No

clinically actionable gene fusions or copy number alterations were

otherwise identified. The tumor did not demonstrate any evidence

of microsatellite instability using the mSINGs method (49), and the

tumor mutational burden was low, estimated to be approximately 1

mutation per megabase (50).

The final integrated diagnosis of the tumor was a low-grade

glioneuronal tumor, NEC. Although this tumor had histologic and

molecular features suggestive of an RGNT, that diagnosis could not

be established given the lack of rosettes in an otherwise well-

sampled tumor. The additional incidentally found lesion in the

insular cortex was determined to be consistent with benign LGG,

and biopsy was not indicated. The temporal fossa lesion was

determined to be most compatible with a vascular malformation,

as has been reported in NS and other RASopathies (2).

Postoperatively, this individual developed right-sided hemiparesis

and was found to have a venous infarct in the left thalamus and

basal ganglia. Routine imaging 3 months following resection found

ventriculomegaly with trapping of the temporal horn of the left

lateral ventricle, necessitating a secondary VP shunt placement.

Now 6 months since diagnosis, he has no evidence of

tumor progression.
Individual 5

A 16-year-old male patient had a remote history of growth delay

which ultimately led to a workup and diagnosis of NS. He was treated

with growth hormone replacement but was otherwise asymptomatic
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until he developed seizures. A brain MRI identified a left parietal lobe

mass measuring 2.2 × 1.8 cm with increased T2/FLAIR signal

intensity (Figure 5A). The MRI also identified small foci of signal

abnormality in the thalamus. Gross total surgical resection of the

main tumor mass was performed. Histologically, the tumor was

largely composed of small oligodendroglial-like cells with round

nuclei with occasional nuclear halos along with scattered

interspersed cytologically normal neurons (Figures 5B–D). The

background had a myxoid appearance in areas though no definitive

“floating” neurons were identified. Delicate chicken wire-like vessels

were noted in the background.

Molecular analysis of tumor tissue and a peripheral blood

sample using OPXv7 identified a heterozygous germline

pathogenic gain-of-function variant in PTPN11 p.Asn58Lys

(classified as pathogenic in ClinVar, variation ID: 40488) and a

germline heterozygous EGFR nonsense variant p.Arg531Ter along

with a somatic FGFR1 p.Asn546Lys alteration (Table 2). The

PTPN11 variant conferred a diagnosis of Noonan syndrome. This

individual also harbored a germline inactivating variant in EGFR,

for which he would be a carrier for autosomal recessive neonatal

inflammatory skin and bowel disease (51). Clinical methylation

profiling of the tumor demonstrated no high confidence match but

was suggestive of DNET. The tumor did not demonstrate any

evidence of microsatellite instability using the mSINGs method

(49), and the tumor mutational burden was low, estimated to be

approximately 1 mutation per megabase (50).

The final integrated molecular diagnosis of the tumor was

consistent with DNET. Following surgical resection, this

individual did well and had no subsequent seizures. Follow-up

imaging studies have been stable with no new areas of signal

abnormality in radiographic studies.
FIGURE 5

Individual 5—radiologic and histopathologic studies of the tumor. (A) A coronal T2 post-contrast image contains a nodular cortically based left
frontal mass. (B) H&E staining reveals a low-grade glioneuronal tumor with small oligodendroglial-like cells admixed with cytologically normal-
appearing neurons. (C) A GFAP stain highlights reactive astrocytes but appears negative in the small oligodendroglial-like cells. (D) A NeuN stain
highlights scattered neurons between the oligodendroglial-like tumor cells.
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Discussion

Herein, we report on the clinical features, histopathologic

characteristics, and clinical course associated with molecularly

characterized gliomas and glioneuronal tumors among a group of

individuals with NS. Part of the RASopathies spectrum, NS is

associated with a heightened risk of pediatric malignancies, with a

standardized incidence ratio of 8.1 in childhood cancer registries

(6, 8). A spectrum of CNS tumors has been reported in association

with NS, including LGG, medulloblastoma, HGG, and others

(52, 53). PTPN11 is the most commonly altered gene in NS and

encodes the SH2 domain-containing tyrosine phosphatase 2 (SHP-

2), modulating the RAS/MAPK and the PI3K/AKT pathways, with

resultant control in cell growth and differentiation (Figure 6)

(54, 55). Dysregulation of these pathways leads to altered cellular

proliferation, invasion, and inhibition of apoptosis, contributing to

tumorigenesis (56, 57). In this report, we describe the molecular

characteristics of gliomas or glioneuronal tumors in five individuals

with NS associated with PTPN11. All five individuals also had

somatic alterations which led to activation of the RAS/MAPK and

PI3K/AKT signaling pathways (Table 2, Figures 6, 7).
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In 2021, the WHO released guidelines for CNS tumors (13),

which emphasized the use of an integrated diagnosis, in which the

histopathologic features combined with molecular findings support

a final diagnosis. Within these guidelines, the use of comprehensive

molecular testing, in particular DNA-based methylation

classification, can aid in accurately classifying specific tumors or

tumor subtypes. Notably, the WHO identifies numerous tumor

types, for which methylation profiling has high diagnostic utility

(13). DNA-based methylation classification for CNS tumors was

described by Capper et al., in which a machine learning-based

classifier was developed to calculate the probability of an individual

tumor sample’s similarity to one of the 91 methylation classes

included in the classifier’s training dataset (47). Among >1,000

tumors evaluated by methylation classification, 76% were in

agreement between histopathology and predicted methylation

classification. Nevertheless, methylation analysis may not provide

diagnostic certainty in all cases due to an atypical methylation

pattern in the studied tumor or underrepresented methylation

profiles for a given entity within the applied classifier.

The utility of methylation profiling is limited in tumors with

diminished disease content. High tumor content (>60%) is often
FIGURE 6

Diagram of the RAS/MAPK and PI3K signaling pathways. The star highlights the protein products with genetic alterations described in individuals 1–5.
RTK = receptor tyrosine kinase (e.g., FGFR1), SHP2 (protein product for PTPN11), Ras (e.g., KRAS), and PI3K [heterodimer comprising a catalytic (e.g.,
PIK3CA) and regulatory subunit (PIK3R1)].
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required to achieve high-confidence classifier scores (58, 59).

Furthermore, while some tumor types have a characteristic

molecular signature (i.e., methylation profile or pattern of somatic

variation), there may be histopathologic, clinical, or molecular

features that overlap numerous tumor types making a final

integrated diagnosis challenging. For example, the results from

DNA methylation analysis for the tumor from individual 3 did
Frontiers in Oncology 12
not confidently classify a specific tumor type. Given this individual’s

clinical course, which has required craniospinal irradiation

following a poor response to targeted therapy, and now

maintenance chemotherapy due to progressive disease, the

integrated diagnosis appropriately raised concern for the

potentially aggressive nature of the molecular findings in

this tumor.
FIGURE 7

Lollipop plot of germline and somatic variation identified among each individual and tumor. Identified variants in (A) PTPN11, (B) FGFR1, (C) PIK3R1,
(D) KRAS, and (E) PIK3CA denoting germline or somatic origin.
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In NS, most brain tumors are described as glial or glioneuronal,

with DNETs accounting for 40% of the published cases. Other

reported tumors include low-grade glioneuronal tumors, HGGs,

and medulloblastoma (5–7, 52, 53, 60–78). Karafin et al. (5)

described an early report of RGNT in NS, demonstrating strong

pERK immunoreactivity, suggesting MAPK/ERK pathway

activation playing a role in tumor development. Given the

clinical, histopathologic, and molecular overlap between LGGs,

diagnostic characterization can be challenging. As evidence of

such, El-Ayadi et al. (52) reported a total of 24 LGGs in the

setting of NS, of which only one was diagnosed as RGNT (5).

Within this cohort, numerous morphologic mimics of RGNT were

documented, including pilocytic astrocytoma (n = 4), pilomyxoid

astrocytoma (n = 1), oligodendroglioma (n = 2), low-grade mixed

glial–neuronal tumor (n = 1), other low-grade astrocytoma (n = 3),

and DNET (n = 9). Histopathologic diagnosis may well be

confounded by small biopsies with a high potential for sampling

error. A piloid/pilocytic to oligodendroglial-like morphologic

component predominates in most classic RGNT, while the

characteristic/diagnostic neurocytic rosettes of RGNT may be

quite subtle or only focal/sparse. Similarly, molecular

characteristics, such as FGFR1 alterations, may frequently occur

in other LGGs (11). Furthermore, the majority of NS-associated

LGGs in the cohort described by El-Ayadi et al. presented in the

now well-known typical midline location of RGNT and at least one-

third were multifocal and/or disseminated, a generally much less

frequent, if not rare, phenomenon in other LGG diagnoses. Thus, it

appears highly plausible that some of the other LGGs previously

described may well represent additional examples of RGNT

occurring in NS and, with updated molecular characterization/

analysis, might be subject to reclassification.

Molecular profiling in the absence of a paired germline sample

can confound variant interpretation, necessitating confirmatory

testing for suspected germline findings. If a variant is inferred to

be germline, published guidance from the scientific community

supports laboratory-recommended follow-up confirmatory testing

(79, 80). In the setting of a paired analysis, such as that performed in

this case series, the etiology of called variants is clearly delineated

and may prompt genetic counseling and cascade testing.

Importantly, a paired analysis can identify germline cancer

predisposition in those with previously unrecognized clinical

features. As a result of genomic profiling following the cancer

diagnosis, two of four PTPN11-positive individuals within our

NCH pediatric/adolescent and young adult (AYA) cancer cohort

(individuals 2 and 3) received an NS diagnosis following their

cancer diagnosis as a result of paired exome sequencing. Similarly,

among the Seattle cohort, individual 4 remained undiagnosed for

NS until paired genomic profiling was performed as a result of their

CNS malignancy.

While surgical resection remains the standard of care for

individuals with pediatric LGG (22, 23, 25, 28), over the past

decade, risk-adapted approaches and molecular-directed therapies

have refined the management of pediatric LGGs (11, 28), most

notably in patients with progressive or relapsing disease.

Additionally, Ryall et al. (28) proposed a risk-stratified approach

that integrates clinical, imaging, and molecular data to guide
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appropriate tumor management. In cases of low-risk

stratification, conservative approaches would be suitable, while

high-risk stratification would necessitate more aggressive

interventions (28).

There is increasing experience demonstrating that molecularly

targeted therapies, such as RAF (81–83), MEK (84–87), and mTOR

inhibitors (88–90), are effective in patients with pediatric LGGs who

have failed first-line chemotherapy; these studies have early results

with reassuring short-term safety data. The results of both phase I

and II clinical trials have led the efforts to evaluate selumetinib as

frontline therapy for pediatric LGGs with (NCT03871257) or

without neurofibromatosis-1 (NCT04166409). Additionally, the

combination of the BRAF inhibitor dabrafenib and the MEK

inhibitor trametinib has recently gained FDA approval as a first-

line treatment for pediatric patients with LGG (29), and tovorafenib

was recently FDA-approved for use in BRAF-altered relapsed or

refractory pediatric LGG (91, 92).

Somatic alterations in FGFR1 and PI3K pathway genes in LGG

resulting in upregulation of the RAS/MAPK and the PI3K/AKT/

mTOR pathways provide attractive therapeutic targets in the setting

of progressive disease. A recent case report describes the use of the

mTOR inhibitor everolimus in RGNT which demonstrated

radiographic response, after failing first-line treatment with

chemotherapy (93). A single-center study observed objective

clinical and radiographic responses to the oral FGFR1 inhibitor

Debio1347 in three pediatric patients with progressive LGGs, with

an acceptable toxicity profile (94). Interestingly, the authors identified

specific FGFR1 alterations that could be associated with improved

response, as well as concomitant co-occurrence of NF1 deletion as a

potential mechanism for acquired resistance to therapy. Currently,

the FGFR1 inhibitor erdafitinib is under evaluation in children with

advanced solid tumors (NCT03210714). In the setting of NS and

glioma, the utility of targeted therapy may be challenging, given the

activation of the RAS/MAPK and PI3K/AKT pathways at multiple

levels throughout the pathway (Figure 6). Combinatorial approaches

or targeting downstream of SHP-2 (protein product of PTPN11) and

the PI3K complex, by using MEK and/or mTOR inhibitors,

respectively, may be necessary. Targeting RAS genes has proven

more difficult due to the lack of binding pockets on the surface of

these proteins for targeted therapies to bind; however, studies are

ongoing to overcome these challenges (95, 96). Recently, in the setting

of lung cancer, advances in RAS variant-specific targeting have been

achieved with FDA approval of sotorasib and adagrasib in patients

with locally advanced or metastatic non-small cell lung cancer

harboring a KRAS p.Gly12Cys variant (97, 98).

Our study has several limitations. First, the cohort size and

composition limits the generalizability of our findings. For the NCH

cohort, individuals with rare or treatment-refractory cancers were

nominated for translational research testing by a clinician engaged

in their care (99). Thus, selection bias may have influenced those

nominated for enrollment on the basis of clinical interest and

timing of clinical care. Furthermore, those with low-grade CNS

tumors that respond well to surgery or conventional chemotherapy

may not have been considered for paired exome sequencing at the

time of the study. While we were able to extend the NCH cohort

findings through the inclusion of two individuals clinically tested as
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part of the Seattle cohort, there were fundamental differences

between each cohort, and it was not possible to glean an overall

frequency of NS in the setting of glioma or glioneuronal tumor amid

the available data. Future studies with larger cohorts of individuals

with CNS malignancies undergoing comprehensive molecular

testing are needed to validate and extend our findings.

In the setting of cancer, comprehensive molecular profiling has

demonstrated utility in aiding diagnosis, identifying treatment

options, and prognostication. Importantly, utilization of paired

tumor and germline samples allows for the identification of

germline cancer predisposition variants, the frequency of which has

been documented in the range of 10–18% amid pediatric/AYA cancer

cohorts (100–102). In a CNS cancer-focused cohort comprised of

pediatric/AYA individuals, germline genetic variation associated with

cancer susceptibility was identified in 16% (99). Continued broad

molecular characterization will extend our understanding of germline

cancer susceptibility, particularly the breadth of cancer diagnoses,

disease risk, correlation with age, and other genotype–phenotype

relationships. Such knowledge potentiates improvement in

surveillance recommendations and extension of treatment

paradigms. Our study shows that amid this cohort, the

characterization of disease was strengthened through the rendering

of an integrated diagnosis, supported by multiple molecular testing

modalities. This study extends the benefit of comprehensive profiling

to aid in both germline and cancer diagnoses, as well as treatment

considerations of pediatric/AYA gliomas and glioneuronal tumors.
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