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Mendelian randomization
study of the relationship
between blood and urine
biomarkers and lung cancer
Haihua Huang and Haijun Zheng*

The First People's Hospital of Chenzhou, Chenzhou, China
Introduction: Identifying suitable biomarkers is crucial for exploring the

pathogenesis, early screening, and therapeutic monitoring of lung cancer. This

study aims to analyze comprehensively the associations between lung cancer

and biomarkers in blood and urine.

Methods: Bidirectional two-sample Mendelian randomization (MR) was used to

evaluate the potential causal relationships between blood and urine biomarkers

and lung cancer. We obtained Single nucleotide polymorphisms (SNPs) related to

lung cancer from the 2021 Finnish database of genome-wide association studies,

including small cell lung cancer (SCLC), total non-small cell lung cancer (NSCLC),

lung adenocarcinoma (LAC), and lung squamous cell carcinoma (LSCC).Data on

blood and urine biomarkers were derived from the UK Biobank cohort,

comprising 376,807 participants.

Results: We found a potential inverse causal relationship between total bilirubin

and SCLC (b=-0.285, P=0.015, FDR=0.12). Urate was inversely associated with

NSCLC (b=-0.158, P=0.004, FDR=0.036*). Serum calcium showed a possible

inverse relationship with lung squamous cell carcinoma (b=-0.256, P=0.046,
FDR=0.138), while urinary creatinine was positively associated (b=1.233,
P=0.024, FDR=0.216). Non-albumin proteins (b=-0.272, P=0.020, FDR=0.180)
and total protein (b=-0.402, P=0.009, FDR=0.072) were inversely related to lung

squamous cell carcinoma. The AST/ALT ratio was positively associated with lung

adenocarcinoma (b=0.293, P=0.009, FDR=0.072). Our reverse Mendelian

randomization study found a positive causal association between small cell

lung cancer and serum creatinine (b=0.022, P=0.002, FDR=0.018*), while it

was inversely associated with the estimated glomerular filtration rate(eGFR)(b=-
0.022, P=0.003, FDR=0.027*). A positive causal relationship was also observed

with cystatin C (b=0.026, P=0.005, FDR=0.045*) and glycated hemoglobin

HbA1c (b=0.013, P=0.014, FDR=0.028*). A negative causal relationship was

observed with Gamma_glutamyltransferase (b=-0.013, P=0.019, FDR=0.152).
For non-small cell lung cancer, a negative causal relationship was found with

albumin (b=-0.024, P=0.002, FDR=0.016*), while a potentially positive causal

relationship was observed with cystatin C (b=0.022, P=0.006, FDR=0.054).

Possible negative causal relationships were also observed with phosphate (b=-
0.013, P=0.008, FDR=0.072) and urinary potassium (b=-0.011, P=0.012,

FDR=0.108), while a potential positive causal relationship was observed with

C-reactive protein (b=0.013, P=0.040, FDR=0.280).Regarding lung squamous

cell carcinoma, an inverse causal relationship was found with eGFR (b=-0.022,
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P=9.58e-06, FDR=8.62×10-5*), while a positive causal relationship was observed

with serum creatinine (b=0.021, P=1.16e−4, FDR=1.05×10-3*). Potential positive
causal relationships were observed with Urate (b=0.012, P=0.020, FDR=0.180),
urea (b=0.010, P=0.046, FDR=0.141), and glycated hemoglobin HbA1c (b=0.020,
P=0.049, FDR P=0.098), whereas a potential negative causal relationship was

observed with sex hormone-binding globulin(SHBG) (b=-0.020, P=0.036,

FDR=0.108).Lastly, adenocarcinoma was found to have a positive causal

association with alkaline phosphatase (b=0.015, P=0.006, FDR=0.033*).

Conclusion:Our study provides a robust theoretical basis for the early screening

and therapeutic monitoring of lung cancer and contributes to understanding the

pathogenesis of the disease.
KEYWORDS

lung cancer, biochemical markers in blood and urine, Mendelian randomization, scRNA-
seq, scPagwas method
Introduction

Lung cancer is the leading cause of cancer-related mortality (1),

with limited treatment options due to most patients being diagnosed

at a late stage (2). Whilst smoking is undeniably the primary global

risk factor for lung cancer, environmental exposures (3), genetic

factors (4), and multi-omics biomarkers (5) also drive its initiation

and progression. To enhance early detection of lung cancer, high-risk

individuals can undergo low-dose computed tomography (CT)

screening; however, this method is plagued by high false-positive

rates and patient radiation exposure, and current screening programs

primarily target heavy smokers and the elderly. Although all types of

lung cancer are associated with smoking, small cell lung cancer

(SCLC) and squamous cell carcinoma have a higher incidence in

smokers. Conversely, in never-smokers, adenocarcinomas are more

prevalent, representing a larger proportion of all lung cancer cases

and becoming increasingly common in younger patients, particularly

never-smokers (6). To address these limitations, the use of

biomarkers as potential supplements or alternatives to low-dose CT

has been proposed, prompting extensive research in this area.

However, current data on their clinical efficacy and their

comparison with existing lung cancer screening strategies are

relatively scarce. Identifying these biomarkers necessitates a deeper

understanding of how tumors initiate and progress, and of the

importance of the role these molecules play in this process (7).

Peripheral blood and urinary biomarkers are frequently used for

diagnosing and assessing chronic disease status (8). Biochemical

markers in peripheral blood and urine have been found to be

abnormal in many patients with lung cancer, making them

promising alternatives for lung cancer detection, although their

application in clinical practice remains limited.
02
Mendelian randomization (MR) is a statistical method that uses

genetic variations as instrumental variables (IVs) (9) to infer causal

relationships between exposures and outcomes. MR integrates

summary data from genome-wide association studies (GWAS),

akin to a natural randomized controlled trial. Given that genotype

allocation from parents to offspring is random, MR studies are less

susceptible to confounding factors and reverse causation compared to

traditional observational studies (10). MR has emerged as a powerful

tool for identifying causal relationships between risk factors and

diseases and is widely used in epidemiological research to explore

potential causal associations between two traits (11).

In this study, we comprehensively analyzed the associations

between blood and urinary biomarkers and lung cancer. We

conducted bidirectional two-sample Mendelian randomization

analyses to validate the causal relationships between biomarkers

and lung cancer (Figure 1).
Methods

UKB cohort serum and urine biomarker
GWAS dataset

The blood and urine biomarker data used in this study were

derived from the UK Biobank (UKB), which conducted a large

prospective cohort study from 2006 to 2010 (12). The UKB

performed laboratory tests on common biomarkers in serum

(category 100080) and urine (category 100083) in a cohort with

extensive phenotype and whole-genome genotype data (12).

Participants’ health-related records, including age and sex, were

collected via touchscreen questionnaires or verbal interviews at
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assessment centers. These data are publicly accessible at https://

gwas.mrcieu.ac.uk/.
Lung Cancer GWAS Dataset

The GWAS summary statistics data for lung cancer were sourced

from a 2021 study in the Finnish database R10. This included data for

four types: small-cell lung cancer, non-small cell lung cancer,

adenocarcinoma, and squamous cell carcinoma. Small-cell lung

cancer included 717 cases and 314,193 controls, non-small cell lung

cancer included 5,315 cases and 314,193 controls, squamous cell

carcinomas included 1,510 cases and 314,193 controls, and

adenocarcinomas included 1,590 cases and 314,193 controls.
Bidirectional two-sample Mendelian
randomization data analysis

The traits investigated in this study comprised 35 blood and urine

biomarkers, specifically Alanine aminotransferase, Albumin, Alkaline

phosphatase, Apolipoprotein A, Apolipoprotein B, Aspartate

aminotransferase, AST to ALT ratio, C-reactive protein, Calcium,

Cholesterol, Creatinine, Creatinine in urine, Cystatin C, Direct

bilirubin, eGFR, Gamma glutamyltransferase, Glucose, HbA1c, HDL
Frontiers in Oncology 03
cholesterol, IGF-1, LDL cholesterol, Lipoprotein A, Microalbumin in

urine, Non-albumin protein, Phosphate, Potassium in urine, SHBG,

Sodium in urine, Testosterone, Total bilirubin, Total protein,

Triglycerides, Urate, Urea, Vitamin D. These included 8 liver-

related, 7 cardiovascular-related, 9 kidney-related, 3 osteoarthritis-

related, 2 diabetes-related, and 3 hormone-related indicators

(Supplementary Table S1). Lung cancer types included small-cell

lung cancer, non-small cell lung cancer, lung adenocarcinoma, and

lung squamous cell carcinoma. The number of genome-wide

significant independent loci for each trait was represented by SNPs

(n), with a screening p-value of 5e-8. We ensured the independence of

each SNP by setting a linkage disequilibrium (LD) threshold of r^2 <

0.001 and a clumping distance of 10,000 kb, based on the European

1000 Genomes Project reference panel (13).

We also harmonized the biomarker and lung cancer data for

subsequent MR analysis. If exposure-related SNPs were missing in

the outcome GWAS, we selected proxy SNPs with r^2 > 0.80. We

then removed palindromic SNPs with A/T or G/C alleles to ensure

consistent allelic effects of SNPs on exposure and outcome.
Statistical methods

We carried out MR analysis to assess the causal effects of

biomarkers on lung cancer, using the inverse variance weighted
FIGURE 1

Bi-directional two-sample Mendelian randomization analysis. (A) Forward analysis: The exposure is blood and urine biomarkers, and the outcome is
lung cancer. (B) Reverse analysis: The exposure is lung cancer, and the outcome is blood and urine biomarkers.
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(IVW) method as our primary analytical approach (14). We also

applied MR-Egger regression, weighted median method, and

weighted and simple modes to further verify the robustness of the

MR analysis results. Significant results (p < 0.05) generated by the

IVW method were considered positive outcomes even if there was

no significance exhibited by the other methods, provided that the

direction of the beta values was consistent across the methods. To

consider multiple testing, we employed a modified version of the

Benjamini and Hochberg false discovery rate (FDR) procedure,

tailored to the hierarchical and interdependent nature of our data

(15). At each category level, we set an FDR corrected significance

threshold of 0.05, based on the effective number of independent

tests at each category level. With liver category p = 0.05/8 = 6.3 ×

10^-3, cardiovascular p = 0.05/16 = 7.1 × 10^-3, kidney p = 0.05/9 =

5.6 × 10^-3, osteoarthritis p = 0.05/8 = 1.67 × 10^-2, diabetes p =

0.05/2 = 2.5 × 10^-2, and hormones p = 0.05/3 = 1.67 × 10^-2. For

identifying more precise causal associations, we employed an FDR

significance threshold of p < 0.05. We utilized the MR-Egger

regression intercept to detect potential pleiotropy (16). If the MR-

Egger intercept was not statistically significant (p > 0.05), there was

no evidence suggestive of pleiotropy. We performed Cochran’s Q

statistical analysis in the IVW mode to check for potential

heterogeneity amongst the selected IVs (17). If heterogeneity was

present (p < 0.05), we further validated through the IVW random

effects model and IVW multiplicative random effects model.

Additionally, we employed leave-one-out sensitivity analyses to

test the potential influence of individual SNPs on the observed

causal effects. Moreover, we assessed the strength of the IVs chosen

in our study by calculating the F-statistic, with the final SNPs

included in the analysis being F > 10. This enabled us to rule out the

possibility of weak instrument bias affecting our estimation of the

causal relationship. The formula for the F-statistic was F= R^2/(1-

R^2) * (n-k-1)/k, where R^2 represented the proportion of variance

explained by SNPs, n was the sample size, and k was the number of

IVs included. R^2 was estimated using the MAF and b values, with

the formula: R^2 = 2 * MAF * (1 - MAF) * b^2. Finally, we
conducted reverse MR analysis to explore the causal effects of lung
Frontiers in Oncology 04
cancer on biomarkers, following the same protocol as the previous

MR. All statistical analyses were conducted using R software

(Version 4.3.0), with the R packages TwosampleMR and

MR-PRESSO.
Results

Causal effects of biomarkers on
lung cancer

The IVW analysis results shown in Table 1 suggest a potential

causal relationship between genetically predicted total bilirubin

levels and a lower risk of small cell lung cancer (b: -0.285, P:
0.015, FDR: 0.12). A more precise negative causal relationship was

found between urate levels and non-small cell lung cancer (b:
-0.158, P: 0.004, FDR: 0.036*). Serum calcium showed a potential

negative causal relationship with squamous cell carcinoma (b:
-0.256, P: 0.046, FDR: 0.138), while urine creatinine showed a

potential positive causal relationship with squamous cell

carcinoma (b : 1 .233, P: 0.024, FDR: 0.216). Gamma-

glutamyltransferase also showed a potential positive causal

relationship with squamous cell carcinoma (b: 0.241, P: 0.009,
FDR: 0.072), while non-albumin exhibited a potential negative

causal relationship with squamous cell carcinoma (b: -0.272, P:
0.020, FDR: 0.180). SHGB was potentially negatively causally

related to lung squamous cell carcinoma (b: -0.209, P: 0.033,
FDR: 0.297), while sodium in urine showed a potential positive

causal relationship with lung squamous cell carcinoma (b: 1.166, P:
0.010, FDR: 0.090). Total protein demonstrated a potential negative

causal relationship with lung squamous cell carcinoma (b: -0.402, P:
0.009, FDR: 0.072), while AST/ALT revealed a potential positive

causal relationship with lung adenocarcinoma (b: 0.293, P: 0.009,
FDR: 0.072). Except for the causal relationships between

Gamma_glutamyltransferase, SHBG, Sodium_in_urine and lung

squamous cell carcinoma, the other seven causal relationships

were all validated by five types of MR analysis, and generated
TABLE 1 Mendelian randomization study results of biomarkers and lung cancer.

Biomarkers Lung cancer b P FDR OR OR (95% Cl)

Total Bilirubin Small cell lung cancer -0.285 0.015 0.12 0.752 0.597 0.947

Urate Non-small cell cancer -0.158 0.004 0.036* 0.854 0.766 0.952

Calcium Lung squamous cell carcinoma -0.256 0.046 0.138 0.774 0.601 0.995

Urinary Creatinine Lung squamous cell carcinoma 1.233 0.024 0.216 3.433 1.181 9.983

Gamma-Glutamyltransferase Lung squamous cell carcinoma 0.241 0.009 0.072 1.272 1.060 1.526

Non-Albumin Lung squamous cell carcinoma -0.272 0.020 0.180 0.762 0.606 0.958

SHBG Lung squamous cell carcinoma -0.209 0.033 0.099 0.811 0.669 0.984

Urinary Sodium Lung squamous cell carcinoma 1.166 0.010 0.090 3.210 1.317 7.826

Total Protein Lung squamous cell carcinoma -0.402 0.009 0.072 0.669 0.495 0.903

AST/ALT Ratio Lung Adenocarcinoma 0.293 0.009 0.072 1.341 1.029 1.748
fr
*FDR:P<0.05.
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consistent effect estimation directions (Supplementary Table S2).

Figure 2 illustrates the scatter plots of the study results. After FDR

correction, only the IVW estimate for urate (OR = 0.854, 95%CI =

0.766–0.952, FDR = 0.036*) remained significantly associated with

small cell lung cancer.
Causal effects of lung cancer
on biomarkers

Reverse MR analysis revealed causal associations of lung cancer

on biomarkers. As shown in Table 2, IVW analysis results show that

genetically predicted risk of small cell lung cancer has a positive

causal relationship with Creatinine (b: 0.022, P: 0.002, FDR: 0.018*),
Cystatin C (b: 0.026, P: 0.005*, FDR: 0.045*), and Haemoglobin

HbA1c (b: 0.013, P: 0.014, FDR: 0.028*), a potential positive causal
relationship with AST-ALT_ratio (b: 0.021, P: 0.022, FDR: 0.176),
and a clear negative causal relationship with eGFR (b: -0.022, P:
0.003, FDR: 0.027*), and a potential negative causal relationship

with Gamma Glutamyltransferase (b: -0.013, P: 0.019, FDR: 0.152).
Non-small cell lung cancer exhibits potential positive causal

relationships with Cystatin C (b: 0.022, P: 0.006, FDR: 0.054), and
C-reactive protein (b: 0.013, P: 0.04, FDR: 0.28), a clear negative

causal relationship with albumin (b: -0.024, P: 0.002, FDR: 0.016*),
and potential negative causal relationships with phosphate (b:
-0.013, P: 0.008, FDR: 0.072), and urine potassium (b: -0.011, P:
0.012, FDR: 0.108). Lung squamous cell carcinoma has a clear

causal relationship with creatinine (b: 0.021, P: 1.16×10-5, FDR:
1.05×10-3*), Cystatin C (b: 0.028, P: 0.004, FDR: 0.036*), potential
positive causal relationships with urate (b: 0.012, P: 0.020, FDR:
0.180), urea (b: 0.010, P: 0.046, FDR: 0.141), and Glycated

Haemoglobin HbA1c (b: 0.019, P: 0.049, FDR: 0.098), and a clear

negative causal relationship with eGFR (b: -0.022, P: 9.58×10-6*,
FDR: 8.62×10-5*), and a potential negative causal relationship with

SHBG (b: -0.020, P: 0.036, FDR: 0.108). Adenocarcinoma has a clear

positive causal relationship with alkaline phosphatase (b: 0.015, P:
0.011, FDR: 0.033*).

Except for small cell lung cancer with AST/ALT ratio and

squamous cell carcinoma with Cystatin_C, the other 17 causal

associations were all validated by all five types of MR analysis

(Supplementary Table S3). The scatter plots of each test are shown

in Figures 3 and 4. After FDR correction, associations remained

significant between small cell lung cancer and creatinine, eGFR,

cystatin C, glycated haemoglobin A1c, non-small cell lung cancer

and albumin, lung squamous cell carcinoma and eGFR, creatinine,

cystatin C. Lung adenocarcinoma and alkaline phosphatase.
Sensitivity analysis

To further validate the causal associations, sensitivity analyses

were performed to assess pleiotropy and heterogeneity in the MR

results. The MR Egger intercept test showed no significant evidence

of pleiotropy (all P-values > 0.05) (Supplementary Table S4).

However, evidence of heterogeneity was found in some cases
Frontiers in Oncology 05
based on Cochran’s Q test (Supplementary Table S5). For results

exhibiting heterogeneity, we re-evaluated them using the IVW

random-effects model and the multiplicative random-effects

model. The results remained consistent with those obtained from

the IVW method (Supplementary Tables S6, S7). Additionally,

leave-one-out analyses indicated that no single SNP was driving

the identified causal associations (Supplementary Figures S1, S2).
Discussion

In this study, we initially employed bidirectional Mendelian

randomization (MR) analyses to investigate the causal relationships

between 35 blood and urine biomarkers and various types of lung

cancer. In the forward MR analysis, we identified seven potential

causal associations. Five biomarkers showed inverse causal

relationships with lung cancer risk: total bilirubin with small cell

lung cancer (SCLC), urate with non-small cell lung cancer (NSCLC),

serum calcium with lung squamous cell carcinoma (LSCC), non-

albumin proteins with LSCC, and total protein with LSCC.

Conversely, two biomarkers exhibited positive causal relationships

with lung cancer phenotypes: urinary creatinine with LSCC and the

AST/ALT ratio with lung adenocarcinoma (LADC).

In the reverse MR analysis, we identified 17 potential causal

relationships. SCLC showed positive causal relationships with

creatinine, cystatin C, and glycated hemoglobin A1c (HbA1c),

and negative causal relationships with eGFR and gamma-glutamyl

transferase (GGT). NSCLC showed positive causal relationships

with cystatin C and C-reactive protein (CRP), and negative causal

relationships with albumin, phosphate, and urinary potassium.

LSCC showed positive causal relationships with creatinine, urate

urea, and HbA1c, and negative causal relationships with eGFR and

SHBG. LADC showed a positive causal relationship with alkaline

phosphatase (ALP).

After adjusting for the false discovery rate (FDR), we confirmed

10 more robust causal associations (Table 3), including: urate as a

protective factor for NSCLC; SCLC increasing blood creatinine

levels, decreasing eGFR, increasing cystatin C levels, and increasing

HbA1c levels; NSCLC decreasing albumin levels; LSCC decreasing

eGFR and increasing blood creatinine cystatin C levels; and LADC

increasing ALP levels. Fourteen other potential causal relationships

were identified.

Bilirubin possesses potent antioxidative properties, which may

help protect respiratory tissues from oxidative stress (18–21). Maria

J. Monroy-Iglesias et al. (22) found in a Cohort Study and Meta-

Analysis that total bilirubin is a protective factor for lung cancer.

Laura Jane Horsfall et al. (23) also demonstrated via Mendelian

randomization study using total bilirubin single nucleotide

polymorphisms (SNPs) that total bilirubin is a protective factor

for lung cancer, particularly among heavy smokers. Our study

results corroborate these findings, confirming that plasma total

bilirubin levels serve as a protective factor for SCLC.

Serum urate exhibits potent antioxidant properties in vitro and

is the most abundant antioxidant molecule in human blood (24, 25).

It’s estimated that up to 50% of antioxidant capacity in human
frontiersin.org
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blood is attributable to the action of serum urate (26). Not only is

urate highly concentrated in the blood, but it’s also present in high

amounts in human respiratory tissues and epithelial lining fluid of

the airways, potentially providing an important first line of defense

against environmental oxidants in smoke and pollutants (27, 28).

While Haruka Fujikawa et al. (29) suggested a certain negative

correlation between urate and lung cancer, Laura J. Horsfall et al.

(30) did not find an association in their cohort and one-sample

Mendelian randomization study. However, an observational study
Frontiers in Oncology 06
by A. Bozkır (31) found that lung cancer patients had significantly

higher urate levels than healthy controls. Our study results show

that urate has a protective effect on NSCLC, while LSCC increases

the level of serum urate.

Studies have found that signals from the 1,25(OH)2D3 receptor

(VDR) and calcium-sensing receptor (CaSR) can inhibit tumor

proliferation and metastasis, and promote tumor differentiation and

apoptosis (32, 33). However, Yumie Takata et al. (34) found no

correlation between calcium intake and lung cancer, while Haihao
FIGURE 2

Mendelian randomization scatter plot of biomarkers and lung cancer.
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Yan et al. (35) showed via a Mendelian randomization study that

serum calcium is a protective factor for lung cancer, including

SCLC, LADC, and LSCC. Our study supports the latter finding,

showing that serum calcium is a protective factor for LSCC.

The term “non-albumin” refers to proteins other than albumin

in the blood, the majority of which are immunoglobulins. Extensive

research has been conducted on the protective role of

immunoglobulins against tumors. Our results align with these

findings, showing an inverse relationship between non-albumin

proteins and LSCC.

Plasma total protein represents the sum of all proteins in the

blood, primarily including albumin and globulin. These proteins

play crucial roles in maintaining fluid balance, transporting

nutrients, immune responses, and blood clotting processes. The

level of plasma total protein can reflect the body’s nutritional status,

liver function, kidney function, and immune status. Füsun Sahin

(36) found no difference in total protein levels between lung cancer

patients and healthy individuals in a cross-sectional study, whereas

Priyanka Gaur (37)reported significantly lower total protein levels

in lung cancer patients compared to healthy controls. Our study

indicates that plasma total protein is a protective factor for LSCC.

Creatinine is a metabolite of creatine, and elevated serum

creatinine levels are commonly used as a biomarker indicating

impaired kidney function. Urinary creatinine, primarily filtered

from the blood by the glomeruli and excreted in the urine,

decreases in cases of kidney failure and increases with elevated
Frontiers in Oncology 07
blood creatinine levels. There is currently insufficient research on

the direct link between urinary creatinine levels and the

mechanisms of lung cancer development, and no direct studies

on the relationship between urinary creatinine and lung cancer have

been reported. Our research shows a causal relationship between

elevated urinary creatinine and LSCC. We also found that SCLC

and LSCC can cause elevated serum creatinine levels, similar to

findings by Miroslava Sarlinova (38), who observed that both

primary and secondary lung cancers cause significant increases in

creatinine, glucose, citrate, and acetate, while pyruvate, lactate,

alanine, tyrosine, and tryptophan significantly decrease. Elevated

creatinine may result from obstructed creatine utilization and

increased creatinine production, with kidney dysfunction

also contributing.

Aminotransferases, including aspartate aminotransferase (AST)

and alanine aminotransferase (ALT), are well-known biomarkers

for l iver damage . Studies have also l inked elevated

aminotransferases to systemic regulation of human diseases and

metabolic functions (39). The AST/ALT ratio, also known as the De

Ritis ratio, was initially proposed to study the etiology of hepatitis

and is commonly used to distinguish between different causes of

liver diseases such as fatty liver. Currently, the AST/ALT ratio is

also employed as an effective biomarker for non-hepatic diseases

like cardiovascular diseases, various cancers, and T2DM. Initially, a

high AST/ALT ratio was reported to predict poor prognosis in non-

metastatic renal cell carcinoma. Since then, further retrospective
TABLE 2 Lung cancer and biomarkers Mendelian randomization study results.

Lung cancer Biomarker b P FDR OR OR (95% CI)

Small cell lung cancer Creatinine 0.022 0.002 0.018* 1.023 1.008 1.037

eGFR -0.022 0.003 0.027* 0.978 0.964 0.992

Cystatin C 0.026 0.005 0.045* 1.026 1.008 1.045

Glycated Haemoglobin HbA1c 0.013 0.014 0.028* 1.014 1.003 1.025

Gamma Glutamyltransferase -0.013 0.019 0.152 0.987 0.977 0.998

AST/ALT 0.021 0.022 0.176 1.021 1.003 1.039

Non-small cell lung cancer Albumin -0.024 0.002 0.016* 0.977 0.963 0.992

Cystatin C 0.022 0.006 0.054 1.023 1.006 1.039

Phosphate -0.013 0.008 0.072 0.987 0.978 0.997

Urinary Potassium -0.011 0.012 0.108 0.990 0.981 0.998

C Reactive Protein 0.013 0.04 0.28 0.025 1.013 1.001

Lung squamous cell carcinoma eGFR -0.022 9.58×10-6 8.62×10-5* 0.979 0.969 0.988

Creatinine 0.021 1.16×10-5 1.05×10-3* 1.021 1.010 1.031

Cystatin C 0.028 0.004 0.036* 1.029 1.009 1.049

Urate 0.012 0.020 0.180* 1.012 1.002 1.022

SHBG -0.020 0.036 0.108 0.981 0.963 0.999

Urea 0.010 0.046 0.141 1.010 1.000 1.019

Glycated Haemoglobin HbA1c 0.019 0.049 0.098 1.019 1.000 1.038

Lung adenocarcinoma Alkaline Phosphatase 0.015 0.011 0.033* 1.015 1.003 1.027
fr
*FDR:P<0.05.
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studies have validated the association between the AST/ALT ratio

and cancer prognosis. However, no studies have specifically

investigated its relationship with lung cancer. Our study indicates

that the AST/ALT ratio is a risk factor for LADC and that SCLC can

also cause an elevated AST/ALT ratio. Although direct studies on

the relationship between the AST/ALT ratio and lung

adenocarcinoma are lacking, some indirect evidence suggests a

potential association. For instance, Wangyang Chen (40)

examined the relationship between the AST/ALT ratio and

various cancers, concluding that while there was no significant

association with lung cancer overall, there was a notable connection

with colorectal cancer risk. The primary mechanism suggested is

that an elevated AST/ALT ratio may indicate liver damage, leading

to the accumulation of toxic metabolites, which is associated with

systemic inflammatory responses and metabolic diseases—all of
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which are factors related to colorectal cancer. This mechanism

could similarly help explain a possible link between the AST/ALT

ratio and lung adenocarcinoma, as lung adenocarcinoma may

exhibit a stronger correlation with these factors compared to

other types of lung cancer.Furthermore, Sofia Christakoudi (41)

reported a negative correlation between ALT levels and lung cancer

risk in men, suggesting that elevated ALT might be linked to

obesity-related non-alcoholic fatty liver disease (NAFLD) and

liver fibrosis, conditions that can reduce platelet counts and

potentially lower lung cancer risk. This relationship may also

partially explain why an elevated AST/ALT ratio might serve as a

risk factor specifically for lung adenocarcinoma. As for the increase

in the AST/ALT ratio often observed in patients with small cell lung

cancer (SCLC), this may be due to the distinct characteristics of

SCLC, which is generally more aggressive than other lung cancer
FIGURE 3

Lung cancer and biomarkers Mendelian randomization scatter plot.
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types. SCLC has a higher propensity for liver metastasis, is

associated with a more pronounced systemic inflammatory

response, carries a higher risk of tumor lysis syndrome, and is

more likely to produce ectopic hormone secretion. These factors

collectively increase the risk of liver function impairment, and the

AST/ALT ratio may serve as a marker for the extent of liver damage

in this context.

Cystatin C (Cys-C) is a non-glycosylated, low molecular weight,

basic protein composed of 120 amino acids (42). It is considered a

housekeeping gene, with stable production by all nucleated human
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cells (40). Early studies indicated that cystatin C levels in healthy

individuals were independent of age, muscle mass, or body mass

index (BMI) (43, 44). Additionally, initial reports suggested that the

production rate of cystatin C remains constant and is not altered

under inflammatory conditions (45, 46). However, recent reports

have found an association between serum cystatin C levels and

inflammatory biomarkers such as C-reactive protein (CRP) (47, 48).

Recent research has also linked serum cystatin C levels with tumors.

Wojciech Naumnik (49) observed higher serum cystatin C

concentrations in lung cancer patients compared to healthy
FIGURE 4

Lung cancer and biomarkers Mendelian randomization scatter plot.
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individuals, a conclusion also reached by Qingyong Chen (50). Our

study confirms these findings, showing that SCLC, NSCLC, and

LSCC lead to elevated cystatin C levels. In cancer, increased cysteine

protease activity, if not balanced by a corresponding increase in

cysteine protease inhibitors, leads to the remodeling and

degradation of extracellular matrix proteins—an event associated

with tumor dissemination, invasion, and metastasis (51). Elevated

expression of cystatins is expected to reduce tumor-related

proteolytic activity, and indeed, evidence suggests that tumor-

associated cystatins play an inhibitory role across various cancer

types (52). Therefore, the high expression of cystatin C in lung

cancer primarily acts as a tumor suppressor.

Glycated hemoglobin (HbA1c) is closely related to blood

glucose levels and diabetes. The relationship between HbA1c and

lung cancer is controversial. J C de Beer (53) found that elevated

HbA1c does not lead to lung cancer. Similarly, Kai Liu (54), using

Mendelian randomization analysis, concluded that HbA1c does not

cause lung cancer, though he did not investigate whether lung

cancer could cause elevated HbA1c levels. Our study also shows that

HbA1c does not cause lung cancer, but SCLC and LSCC can lead to

increased HbA1c levels. The elevation of glycated hemoglobin

(HbA1c) in lung cancer is primarily attributed to cancer-induced

hyperglycemia. The mechanisms by which lung cancer contributes

to elevated blood glucose include: 1) Chemotherapy-Induced

Pancreatic Damage: Certain chemotherapy agents can harm

pancreatic islet cells, impairing insulin synthesis and secretion.

Additionally, glucocorticoids, commonly used as adjuvants in

lung cancer therapy, promote gluconeogenesis in the liver, inhibit

glucose uptake and utilization in peripheral tissues, enhance the

action of hyperglycemic hormones (such as growth hormone,

epinephrine, and glucagon), and may also damage islet cell

function. 2)Ectopic Hormone Secretion: Ejaz et al. (55) reviewed

43 cases of Cushing’s syndrome induced by ectopic ACTH secretion

from tumors, finding that 48.9% of primary tumor sites were

located in the chest. The most common symptoms were

hyperglycemia (77%), venous thrombosis (14%), and infections

(23%). The lung, as an endocrine organ, may contribute to

hyperglycemia through the secretion of various bioactive
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substances. For instance, Unger et al. (56) detected glucagon in

lung cancer tissue, which can promote hepatic glycogen breakdown

and gluconeogenesis, thereby raising blood glucose levels. In some

patients with elevated blood glucose, tumor treatment normalized

glucose levels, only for hyperglycemia to return upon cancer

relapse. 3)Cytokine-Mediated Insulin Resistance: Many advanced

cancer patients exhibit low-grade CRP elevation, indicative of a

chronic inflammatory state, which can raise IL-2, CRP, and cortisol

levels, disrupting glucose metabolism. Additionally, tumor cells can

secrete large amounts of IL-6 and TNF-a, leading to insulin

resistance and subsequent hyperglycemia (57).

Our research indicates that SCLC and LSCC result in decreased

eGFR. Cancer patients are at risk of acute kidney injury due to

sepsis, direct damage to the kidneys from primary cancer, metabolic

disorders, nephrotoxic effects of anticancer therapies, and

hematopoietic stem cell transplantation (58–60). Nearly all

hematologic and solid organ cancers are associated with tumor

lysis syndrome, leading to uric acid nephropathy (61).

Hypercalcemia occurs in up to 30% of patients with advanced

cancer, often resulting in renal dysfunction due to AKI or CKD

(61). Moreover, direct invasion and metastasis of cancer, infectious

diseases caused by immunosuppression from cancer and its

treatment, and various metabolic disorders can also lead to renal

dysfunction (61, 62), contributing to decreased eGFR. Soonsu Shin

(63) found that low eGFR is significantly associated with increased

lung cancer risk, while Yutaka Hatakeyama (64) discovered that

most cancers, particularly those of the kidney, urinary system, liver,

or pancreas, cause decreased eGFR. Our study also found that SCLC

and SCC result in decreased eGFR, but did not find that decreased

eGFR causes lung cancer.

Gamma-glutamyltransferase (GGT) is located on cell

membranes and is abundant in tissues with transport functions,

such as the kidneys and biliary system (65). Elevated serum GGT is

considered a marker of liver damage and alcohol consumption, but

it is also a marker for various other diseases, including diabetes,

cardiovascular diseases, and metabolic syndrome (66–68).

Persistent elevation of serum GGT reflects chronic inflammation

and oxidative stress, which contribute to tumor development and
TABLE 3 Results of bidirectional Mendelian randomization study on lung cancer and biomarkers (FDR < 0.05).

Biomarkers/lung cancer Biomarkers/Lung cancer b P FDR OR OR (95% CI)

Urate Non-Small Cell Lung Cancer -0.158 0.004* 0.036* 0.854 0.766 0.952

Small cell lung cancer

Creatinine 0.022 0.002* 0.018* 1.023 1.008 1.037

eGFR -0.022 0.003* 0.027* 0.978 0.964 0.992

Cystatin C 0.026 0.005* 0.045* 1.026 1.008 1.045

Glycated Haemoglobin HbA1c 0.013 0.014* 0.028* 1.014 1.003 1.025

Non-small cell lung cancer Albumin -0.024 0.002* 0.016* 0.977 0.963 0.992

Lung squamous cell carcinoma

eGFR -0.022 9.58×10-6* 8.62×10-5* 0.979 0.969 0.988

Creatinine 0.021 1.16×10-5* 1.05×10-3* 1.021 1.01 1.031

Cystatin C 0.028 0.004* 0.036* 1.029 1.009 1.049

Lung adenocarcinoma Alkaline Phosphatase 0.015 0.011* 0.033* 1.015 1.003 1.027
fr
*P<0.05.
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progression (69, 70). In lung cancer patients, alveolar macrophages

and lymphocytes continuously produce GGT due to chronic

inflammation-induced cytokines and growth factors (71, 72). Ye

Jin Lee (73), through an observational study, linked persistently

elevated GGT with lung cancer in men. D J F Brown (74) found

significantly higher GGT levels in advanced lung cancer patients

compared to healthy individuals. N V Liubimova (75)

demonstrated that GGT is an effective marker for liver metastasis

in lung cancer. However, Peter Groscurth (76) argued that lung

cancer does not cause elevated GGT levels. Our study concludes

that SCLC leads to decreased GGT levels. Our study found that

small cell lung cancer (SCLC) may lead to decreased g-glutamyl

transferase (GGT) levels; however, the underlying mechanism has

not yet been explored in the literature.

C-reactive protein (CRP) is a commonly used systemic marker

primarily employed in diagnosing chronic and acute inflammation.

It is produced by hepatocytes, and during an inflammatory

response, such as infection or other injuries, certain molecular

substances known as pro-inflammatory cytokines are generated.

These cytokines stimulate hepatocytes to produce CRP. Therefore,

elevated levels of CRP in the body may indicate an ongoing

inflammatory response. In the context of cancer, CRP levels may

also be elevated, making it a potential cancer biomarker. Jian Yin

(77) studied the association between plasma high-sensitivity CRP

(hsCRP) levels and lung cancer risk, finding no association between

CRP levels and lung cancer risk in younger populations but a

significant association in older populations. Elevated baseline CRP

levels increased lung cancer risk in individuals with lower

educational levels but not in those with higher educational levels.

Stratification by BMI revealed a positive association between hsCRP

levels and lung cancer risk in individuals with a BMI < 24, but no

such association was observed in those with a BMI ≥ 28. Mengmeng

Ji (78), through Mendelian randomization, demonstrated a

significant correlation between circulating CRP levels and the risk

of different histological subtypes of lung cancer. Although the

etiological role of CRP in lung cancer has not been confirmed,

circulating CRP may serve as an early diagnostic marker for lung

cancer in current smokers. Our study did not find that CRP causes

lung cancer, but it did show that non-small cell lung cancer

(NSCLC) leads to elevated CRP levels. This is associated with the

chronic inflammatory response induced by lung cancer. In the

tumor microenvironment, large amounts of pro-inflammatory

cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-

a (TNF-a), are secreted. These cytokines stimulate the liver to

synthesize and secrete C-reactive protein (CRP), resulting in

increased serum CRP concentrations. Additionally, as the tumor

grows, tissue necrosis may occur, releasing cellular contents and

triggering further inflammatory responses that activate the immune

system and stimulate additional CRP production.

Albumin is a water-soluble 65 kd protein synthesized by the liver.

It is the most abundant blood protein in the human body, accounting

for about half of the serum protein, and is responsible for the colloidal

osmotic pressure of the blood. Some primary functions of albumin

include binding insoluble molecules in the serum and transporting
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drugs and hormones (79). Hypoalbuminemia can result from

malnutrition (insufficient intake), advanced liver disease (impaired

synthesis), kidney disease (increased loss), and extreme catabolic

states (increased breakdown) such as sepsis and metastatic cancer.

Cancer can lead to hypoalbuminemia in several ways. Firstly, cancer

patients may experience hypoalbuminemia due to the continuous

consumption of nutrients, including albumin, by the tumor, leading

to a deficiency of these essential nutrients in the body. Secondly, the

metabolic products of the tumor may damage liver function,

impairing the liver’s ability to synthesize albumin and thus causing

a decrease in albumin levels. Additionally, cancer can cause cachexia,

wasting, and reduced food intake, leading to insufficient nutrient

intake and decreased albumin levels. Our study shows that NSCLC

can lead to hypoalbuminemia.

Phosphate is crucial for normal cellular function as it provides

fundamental components for DNA, cell structures, signal

transduction, and energy production. Phosphate homeostasis is

regulated by hormones such as fibroblast growth factor (FGF)

(80) and parathyroid hormone (PTH). Hyperphosphatemia is

usually caused by impaired kidney function. Conversely,

hypophosphatemia may result from reduced dietary intake,

malabsorption, or renal phosphate wasting due to genetic or

acquired conditions. Phosphate toxicity is associated with

tumorigenesis because high levels of inorganic phosphate in the

tumor microenvironment can activate cell signaling pathways,

promoting cancer cell growth. Ronald B. Brown (81) proposed

that the association between alcohol and breast cancer is mediated

by phosphate toxicity, i.e., the accumulation of excessive inorganic

phosphate in body tissues. Phosphate homeostasis disruption

leading to hypophosphatemia is common in cancer patients.

Shreedhar Adhikari (82) elucidated the mechanisms and reasons

for cancer-induced hypophosphatemia. Our study did not observe a

causal relationship between phosphate and lung cancer, but it did

find that NSCLC causes reduced phosphate levels.

Potassium is the most abundant electrolyte in active cells.

Potassium homeostasis is maintained through various

mechanisms, including internal and external processes. Urinary

potassium generally reflects kidney function. Low urinary

potassium excretion is associated with CKD progression. Kathrin

Schilling (83) observed significantly lower urinary potassium levels

in pancreatic cancer patients compared to healthy controls. Our

study shows that NSCLC causes decreased urinary potassium levels.

Serum urea is the end product of protein metabolism, filtered

through the renal glomeruli, and excreted from the body. There are

very few studies evaluating the impact of serum urea on cancer

development.Yandi Sun (84), through Mendelian randomization,

demonstrated a positive association between serum urea levels and

female-specific RCC (renal cell carcinoma) risk. Haoyan Chen (85),

through single-cell transcriptomics, microbiome analysis,

metabolomics, and clinical analysis of colorectal adenomas and

cancer tissues, found significant activation of host urea cycle

metabolism during colorectal cancer development, with low

bacterial urease abundance and high urea load detected in

colorectal cancer. M. C. Winter (86) proved that elevated pre-
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treatment serum urea is an important predictor of early mortality in

SCLC. Our study shows that LSCC increases serum urea levels. Our

study indicates that squamous cell carcinoma may elevate serum

urea levels, potentially due to tumor-induced kidney dysfunction

and the high catabolic state associated with malignancy.

SHBG is a glycoprotein that binds with high affinity to 17b-
hydroxy steroid hormones, including testosterone and estradiol. Its

concentration regulates the balance between bound and free

hormones, serving as a transport carrier and modulating the

bioactivity of sex hormones (87). Women have SHBG levels twice

as high as men, reducing exposure to androgens and estrogens (88).

Researchers have found associations between sex hormones and

cancer in several studies. Zoë Hyde and her team discovered that

higher testosterone levels are associated with an increased risk of

prostate and lung cancer (89). Niki Dimou found that SHBG levels

are negatively correlated with breast cancer risk (90). Katherine

Ruth observed a positive correlation between female testosterone

levels and endometrial cancer risk (91). Furthermore, according to

the Women’s Health Initiative, individuals with the highest SHBG

levels are more than twice as likely to develop colon cancer

compared to those with the lowest SHBG levels (92). Our study

results suggest a bidirectional causal relationship between

squamous cell carcinoma and SHBG.

Alkaline phosphatase (ALP) is a glycoprotein that catalyzes

hydrolysis and phosphate transfer reactions. Elevated serum ALP

has been reported in bone and liver-related diseases (93, 94).

Additionally, serum ALP has been found to be an independent

prognostic factor in NSCLC, gastric cancer, breast cancer, and other

cancer types. Elevated ALP levels are also associated with bone or

liver metastases in patients with lung cancer, prostate cancer, breast

cancer, and other types of cancer (95). TAO YANG (95) found that

elevated serum ALP levels in NSCLC patients are associated with

bone or liver metastases. N Walach (96) found that compared to

CEA levels, LAP scores are a more reliable marker for detecting lung

cancer, especially metastatic lung cancer. Our study similarly found

that adenocarcinoma causes elevated LAP, consistent with the

aforementioned studies.

In this study, we conducted a comprehensive assessment of the

association between blood/urine biomarkers and lung cancer using

a bidirectional Mendelian randomization approach. Our findings

identified several potential causal relationships between blood and

urine biomarkers and lung cancer, with some confirmed through

FDR-adjusted significance. This research can contribute to

understanding the mechanisms underlying lung cancer

development. Additionally, we suggest that screening for these

blood and urine biomarkers can help identify individuals with

abnormalities who may benefit from LDCT screening, enabling

early clinical intervention, regardless of age or smoking status.

Our study comprehensively investigated the associations

between blood/urine biomarkers and lung cancer. The sample size

maximized the power of the genetic analysis. However, this study

has several limitations. First, the lung cancer dataset is from the

Finnish database, which is predominantly composed of individuals

of European descent. Therefore, caution is needed when applying

our findings to other ethnic populations. Second, the use of
Frontiers in Oncology 12
residuals might affect the magnitude of the reported effects; future

studies should consider alternative methods to further validate our

findings. In future research, it is necessary to use independent

clinical samples or cohorts to validate our findings and to

investigate the potential biological mechanisms underlying the

associations between candidate blood and urine biomarkers and

lung cancer. Third, the methods and accuracy of biomarker

measurements in the UK Biobank could influence our results.

Fourth, some results exhibit heterogeneity, and although we used

the IVW random-effects model and multiplicative effects model to

verify consistency, this does not entirely resolve the issue of

heterogeneity. Fifth, we applied the modified FDR correction for

p-values, which may impact the results.

In our study, while we used bidirectional two-sample

Mendelian randomization to assess the potential causal

relationships between blood and urinary biomarkers and lung

cancer, we acknowledge that more sophisticated analyses are

needed to further elucidate the connections between these

biomarkers and lung cancer development. In particular, the

scPagwas method developed by Ma et al. (2023) offers an

innovative approach that combines single-cell RNA sequencing

(scRNA-seq) data with summary statistics from genome-wide

association studies (GWAS), identifying cell subpopulations and

pathways associated with complex diseases (97). Applying this

method may help uncover lung cancer-related immune cell types

and key proteins that mediate the causal relationships between

blood and urinary biomarkers and lung cancer.

Moreover, Ma et al. (2022) demonstrated the potential of

integrating blood cell scRNA-seq data with GWAS data in

identifying risk genes, inflammatory factors, and immune cell

types associated with severe COVID-19. This work provides a

valuable framework for investigating potential links between

blood and urinary biomarkers and lung cancer (98). These

findings underscore the importance of single-cell analyses in

identifying disease-related cellular subpopulations and may offer

crucial insights into the pathophysiology of lung cancer.

Although our study did not directly employ the scPagwas

method, these studies highlight the promise of adopting similar

approaches in future research to identify specific immune cell

subpopulations and key proteins involved in the initiation and

progression of lung cancer. Such approaches could deepen our

understanding of the causal relationships between blood

biomarkers and lung cancer and may help identify novel

therapeutic targets. Future studies could utilize scPagwas to

integrate lung cancer GWAS data with blood cell scRNA-seq data

to identify lung cancer-associated cell subtypes, providing a

stronger theoretical basis for early screening and therapeutic

monitoring of lung cancer.
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