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Endoplasmic reticulum stress-
related features predict the
prognosis of osteosarcoma and
reveal STC2 as a novel risk
indicator for disease progression
Yongle Yu †, Jiadong Yu † and Zhenyu Pan*

Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University,
Wuhan, China
Endoplasmic reticulum (ER) stress exerts significant effects on cell growth,

proliferation, migration, invasion, chemoresistance, and angiogenesis in various

cancers. However, the impact of ER stress on the outcomes of osteosarcoma

patients remains unclear. In this study, we established an ER stress risk model

based on The Cancer Genome Atlas (TARGET) osteosarcoma dataset to reflect

immune features and predict the prognosis of osteosarcoma patients. Survival

analysis revealed significant differences in overall survival among osteosarcoma

patients with different ER stress-related risk scores. Furthermore, ER stress-

related risk features were significantly associated with the clinical pathological

characteristics of osteosarcoma patients and could serve as independent

prognostic indicators. Functional enrichment analysis indicated associations of

the risk model with cell chemotaxis, leukocyte migration, and regulation of

leukocyte migration. Additionally, the ER stress-related risk model suggested

the presence of an immunosuppressive microenvironment and immune

checkpoint responses. We validated the significance of 7 ER stress-related

genes obtained from LASSO regression analysis through RT-qPCR testing on

osteosarcoma samples from a local hospital, and inferred the importance of

STC2 based on the literature. Subsequently, IHC experiments using samples from

70 osteosarcoma cases and 21 adjacent tissue samples confirmed differential

expression of STC2 between cancer and normal tissues, and explored the gene’s

expression in pan-cancer and its association with clinical pathological

parameters of osteosarcoma. In conclusion, we have proposed an ER stress

risk model as an independent prognostic factor and identified STC2 as a novel

risk indicator for disease progression, providing a promising direction for further

research and treatment of osteosarcoma.
KEYWORDS
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1 Background

Osteosarcoma (OS) is the most common primary bone tumor

in children and adolescents (1, 2). OS is a malignant tumor with a

high tendency for local invasion and metastasis (2). OS metastasis,

especially to the lungs, is the most common cause of related deaths

(3). Despite some progress made with multi-modal treatment

(surgery, radiation therapy, chemotherapy, and immunotherapy),

the survival rate of OS patients, particularly those with metastatic

and recurrent disease, remains a major concern (4, 5). Meanwhile,

pain management in osteosarcoma patients has garnered attention

and has achieved some success (6, 7). Although many genes have

been identified as potential biomarkers for predicting and treating

OS (8), the heterogeneity and complexity of the OS genome

seriously hinder progress in treatment. Therefore, there is an

urgent need to better understand the mechanisms of OS tumor

development and progression to identify more effective and specific

biomarkers for early prediction, survival assessment, and treatment.

As the largest organelle in eukaryotic cells, the endoplasmic

reticulum (ER), a membrane structure composed of branching

tubules and flattened cisternae, is the main site for protein

synthesis, processing, and transportation (9). However, the

protein processing capacity of the ER is limited. When the

protein folding capacity of the ER is exceeded, the cell is

considered to be in an ER stress state (10). Many factors can

affect the ER and lead to ER stress, thereby reducing the efficiency

of protein folding, including oxidative stress, nutrient deprivation,

protein toxicity, hypoxia and metabolic stress, and disrupted

calcium balance (11, 12). It is generally believed that the three

branches of transmembrane ER sensors, IRE1a, PERK, and ATF6,

trigger ER stress. These three receptors continuously monitor

misfolded proteins and when they reach a certain concentration,

the sensors trigger the ER stress response (13). Some studies have

confirmed that chronic ER stress is a typical feature of many

diseases, including cancer (14).

In tumors, the high metabolism and proliferation of tumor cells

lead to ischemia and hypoxia within the tumor, causing tumor cells

to enter a state of sustained ER stress, which in turn affects tumor

invasion and angiogenesis (15, 16). One branch of the ER, based on

expression in cancer cells, can accelerate protein synthesis, folding,

and secretion, increasing endoplasmic reticulum (ER) stress (15).

Multiple studies have reported high levels of activation and

expression of ER markers, including one major branch (IRE1a,
PERK, and ATF6) and the related molecular chaperone GRP11, in

many human cancers (lymphoma and myeloma) and solid tumors

(breast, gastric, lung, liver, esophageal, and colon cancers) (17, 18).

Research on ER stress (ERS) in cancer or tumors can help advance

cancer or tumor therapy, and ERS can serve as a novel therapeutic

target for cancer or tumors (9).

In this study, we developed an ER stress-related risk model that

not only accurately predicts the prognosis of osteosarcoma patients

but also distinguishes the immune features of osteosarcoma.

Furthermore, we constructed a forest plot that combines the

prognostic model with clinical pathological factors (age, gender,

race, tumor metastasis, and primary tumor location) and found its
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performance in estimating the 1-year, 3-year, and 5-year survival

rates of osteosarcoma patients to be outstanding.

We analyzed clinical samples of the 7 genes used to build the

model and identified key genes that may serve as independent

prognostic indicators. Additionally, we examined the clinical

pathological significance of these key genes using public datasets

and the use of a large number of tissue samples validated differences

in expression between osteosarcoma and normal tissue. The study

results highlight a key factor that integrates endoplasmic reticulum

stress with tumor-specific expression differences, shedding light on

a direction for further understanding the specific mechanisms and

potential therapeutic approaches for osteosarcoma.
2 Method

2.1 Dataset and data collection

The mRNA microarray data was downloaded from the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/

geo/), with the accession number GSE14359. GeneCards (https://

www.genecards.org/) is a searchable comprehensive database that

provides user-friendly information about all annotated and

predicted human genes. ER stress-related genes were extracted

from GeneCards, and genes with a correlation score of ≥0 were

selected. The TARGET database is derived from the XENA website,

which compiles data from many databases and performs reasonable

batch effect processing (https://xena.ucsc.edu/). Data preprocessing

and differential gene expression (DEG) screening were performed

using the limma R package from Bioconductor 3.8 (https://

www.bioconductor.org/packages/release/bioc/html/limma.html)

for quantile normalization of raw data and subsequent data

processing to identify DEGs between osteosarcoma tissue and

normal osteoblasts, as described above. The t-test was used to

evaluate the DEGs between the two groups, and the false

discovery rate (FDR) of the P-value was corrected using the

Benjamini-Hochberg (BH) procedure. Only genes with a |log2

fold change (FC)| > 1 and FDR < 0.05 were selected. The PCA

plot was used to analyze the reproducibility within sample groups

and the differences between groups. Hierarchical clustering was

used to analyze the differential gene expression patterns between the

two sample groups. A volcano plot was used to visualize the

significant DEGs after filtering.
2.2 Functional and pathway enrichment
analysis of DEG

clusterProfiler V3.8 is an R package that relies on biological

ontologies. It not only automatically performs the biological term

classification process and gene cluster enrichment analysis, but also

provides visualization modules for displaying the analysis results. In

this study, the clusterProfiler package was used for gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis of the identified DEGs.
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2.3 Protein-protein interaction network

The STRING database (www.string-db.org) is an online

database designed to identify PPI pairs and construct PPI

networks from large protein functional groups. The STRING

database was used to retrieve PPIs for the DEGs identified, and

PPI pairs with a comprehensive score greater than 0.9 were selected.

The Cytoscape software was then used to construct the PPI network

of the DEGs, where each node represented a protein, and the

number of edges corresponded to the degree of interaction.

CytoNCA V2.16 is a Cytoscape plugin used for network centrality

analysis, which can be used to identify key nodes (genes) in the

network. In this study, four typical centrality indices were used to

identify key genes: eigenvector centrality, degree centrality,

betweenness centrality, and closeness centrality. Finally, the top

12 genes in the PPI network were identified as key genes based on

their centrality values.
2.4 Construction and validation of ER
pressure-related risk characteristics

We first obtained the intersection of differentially expressed

genes (DEGs) and ER stress-related genes to obtain a set of

differentially expressed ER stress-related genes (DERs). Using the

survival R package, we performed univariate Cox regression and

Kaplan-Meier (KM) analysis to identify DERs associated with

overall survival (OS) time of patients, including the TGRGET

dataset. Only genes with p-values ≤ 0.05 in both analyses were

included in the next step.

Using the glmnet R package in the TGRGET database, we

performed LASSO regression analysis on the cross genes related to

OS in the above dataset to narrow down the range of prognostic-

related genes. Then, we used the Akaike information criterion

(AIC) method in the survival package to perform multivariate

Cox regression analysis. Based on the linear integration of the

regression coefficients obtained from multivariate Cox regression

analysis and the expression levels of selected DERs, we established

the optimal ER stress-related risk feature.

The experience here refers to the expression values of ER stress-

related genes and the corresponding regression coefficients

calculated through multivariate Cox regression analysis. The

TARGET database was randomly divided into two databases,

with TARGET-A used as the training set and TARGET-B used as

the validation set.
2.5 Survival analysis

The Kaplan-Meier survival analysis was conducted using the

survival and survminer packages in R to compare the overall survival

(OS) among different groups of glioma patients. The survivalROC

package in R was used to establish time-dependent receiver

operating characteristic (ROC) curves to examine the accuracy of

risk features in predicting the outcome of glioma patients. The larger
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the area under the ROC curve (AUC), the stronger the predictive

ability of the risk model. The Pheatmap package in R was used to

create a risk map, displaying the distribution of survival status

among different risk groups of samples.
2.6 Functional enrichment analysis

The GSVA package in R was utilized to estimate gene ontology

(GO) biological processes and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways associated with risk features. The

GSVA package scores the GO biological processes and KEGG

pathways in each sample, and by comparing the score differences

among different risk groups, we identified different biological

processes enriched in the high-risk and low-risk groups. The

limma package in R was employed to identify differentially

expressed genes and gene sets in different populations. To further

validate the GO processes and KEGG pathways associated with the

signature, the clusterProfiler package in R was used to perform GO

and KEGG analyses on differentially expressed genes. All heatmaps

were created using the Pheatmap package in R.
2.7 Independent prognostic effects of risk
features and development of a histogram

To determine if ER stress-related risk features are dependent on

other clinical pathological factors (including age, gender, race,

tumor metastasis, and tumor primary site) for predicting the OS

of patients, univariate and multivariate Cox regression analyses

were performed using the survival package in R. The results of the

independent prognostic factor analysis were displayed in the form

of a forest plot using the forest package in R. Column line charts

were used to create personalized prediction models by visually

displaying the probability of clinical events based on the predicted

model. Age, gender, race, tumor metastasis, tumor primary site, and

ER stress-related risk score were combined, and column line charts

were developed using the survival and rms packages in R.
2.8 Transcriptional quantitative polymerase
chain reaction

We obtained three osteosarcoma specimens (n=3) from the

Department of Spine and Bone Oncology of Wuhan University and

sent them to Wuhan Sevier Biotechnology Co., LTD., for RNA

extraction. The action of endogenous genomic DNA was removed

by a specific DNA enzyme (Thermo Scientific, K2981) and then

cDNA was synthesized by RevertAid RT reverse transcription kit

(Thermo Scientific, K1691). Finally, mRNA was quantified by

quantitative real-time PCR using SYBR Color qPCR mixture

(Vazyme, Jiangsu, China) and LightCycler480 real-time

fluorescent quantitative PCR system. The PCR primer sequence is

shown in Table 1. Comparative calculation of relative mRNA−DDCt
method was used.
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2.9 Immunohistochemistry

We obtained pathological slides of 70 cases of osteosarcoma and

21 cases of adjacent cancer tissues, purchased from Zhongke

Guanghua (Xi’an) Intelligent Biotechnology Co., Ltd. The slides

were baked at 60°C for 30 minutes and then underwent routine

deparaffinization and hydration. Antigen retrieval buffer (pH 6.0

citrate buffer) was added to a pressure cooker for retrieval, heated at

medium heat for 10 minutes until boiling, followed by a 5-minute

cooling period, and then transferred to medium-low heat for

another 5 minutes for antigen retrieval. After cooling to room

temperature, the slides were washed with phosphate-buffered saline

(PBS) for 5 minutes × 3 times. Endogenous peroxidase was blocked

with 3% H202-methanol at room temperature for 30 minutes,

followed by a PBS wash for 5 minutes × 3 times. Normal non-

immune animal serum was added and incubated at room

temperature for 10 minutes; the serum was then removed and

primary antibody Anti-STC2 (proteintech, 10314-1-AP, 1:300) was

added and incubated overnight at 4°C. The slides were washed with

0.1% Tween-20 PBS for 5 minutes × 3 times, followed by the

addition of enzyme-labeled polymer secondary antibody and

incubation in a humid chamber at 37°C for 30 minutes. After

washing with 0.1% Tween-20 PBS for 5 minutes × 3 times, DAB

staining was performed for 5 minutes, and the reaction was stopped

with distilled water. Counterstaining was carried out with

hematoxylin, followed by rinsing, differentiation, and thorough

rinsing with running tap water. The slides were then dehydrated,

cleared, and mounted with neutral gum.

The evaluation criteria for the IHC experiment are as follows: After

locating the staining results on the chip point by point, the cell staining

intensity is determined as follows: no staining is considered negative (-),

light brown staining is considered weak positive (+), brown staining is

considered positive (++), and dark brown staining is considered strong

positive (+++). The number of positive cells is determined as the ratio

of target cells expressing the target protein to all target cells.
2.10 Big data analysis of osteosarcoma: the
relationship between STC2
and osteosarcoma

The big data of osteosarcoma is sourced from research

institutions in 86 countries and regions worldwide. It includes
Frontiers in Oncology 04
detailed clinical information data of 495 osteosarcoma patients

from three osteosarcoma research projects. The osteosarcoma

tissues of these patients have undergone high-throughput

detection of genomics, transcriptomics, proteomics, metabolomics,

and microbiomics, resulting in a comprehensive, high-quality

dataset that provides detailed insights into the molecular biology

and clinical practice of osteosarcoma. This dataset is of great

importance as a research resource for osteosarcoma.
2.11 Statistical analysis

R software (version 3.6.3) and GraphPad Prism v7.00

(GraphPad Software Inc.) were used as statistical analysis tools

for this study. Quantitative data are presented as mean ± standard

error of the mean (SEM) or standard deviation (SD). The Wilcoxon

test was used to compare statistical differences between two groups,

and the Kruskal-Wallis H test was used to compare multiple groups.

Statistical significance was defined as P <.05. Other plots were

constructed using R software or GraphPad Prism. The Fisher’s exact

test and chi-square test were used to analyze the correlation between

STC2 protein expression intensity and categorical clinical factors.

3 Results

3.1 Identification of DEG

After data normalization, differential gene expression analysis

was performed using a dataset containing 18 osteosarcoma samples

and 2 non-tumor primary osteoblast control samples. The heatmap

shows a large number of differentially expressed genes, with a clear

distribution between groups (Figure 1A). The PCA plot

demonstrates significant differences between sample groups and

good repeatability within groups (Figure 2B). Based on the criteria

of logFC=1 and P.Value=0.05, a total of 22,283 DEGs were

identified. Among these genes, 1,124 were upregulated, and 849

were downregulated (Figure 1C).
3.2 Enrichment analysis of KEGG and
GO pathways

To further investigate the potential functions of DEGs at a more

practical level, the latest versions of the GO and KEGG pathway
TABLE 1 Primers for quantitative RT-PCR.

Gene Forward Primer Sequence (5′-3′) Reverse Primer Sequence (5′-3′)

ACTB AGATCAAGATCATTGCTCCTCCT ACGCACCTCAGTAACAGTCC

STC2 CCTGCAGAATACAGCGGAGA GCCCCGAATCTCACAAGAGT

TNFRSF11B AGACGTCATCTAAAGCACCCTG TCCTCACACAGGGTAACATCTATTC

SCD5 CTTGGCCTCTATTCTCCGCTA ATTATGGAAGCCTTCACCAATGGC

GRN AGTCGGACGCAGGCAGA GTTGTGGGCCATTTGTCCAG

PLCB1 GGTGCAGTATATCAAGAGGCTAGA CTGCAGCTTGGGCTTTTCAT

GLB1 TTGCGCAATGCCACCCA CAGGGCACATACGTCTGGAT

CRAT CCGAAGGCTCTAGCAAGGAC CAGAGGCTTCACCACGGTC
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databases were utilized to analyze genes and determine the potential

functions of DEGs. The KEGG results revealed enrichment mainly

in the PI3K/AKT pathway, MAPL pathway, Rap1 pathway, and

focal adhesion pathway related to cell migration (Figure 1D). These

pathways have a certain impact on the occurrence and development

of osteosarcoma (OS), with the PI3K signaling pathway potentially

playing a crucial role in OS development. Previous studies have

reported the significant role of the PI3K signaling pathway in cell

proliferation (23, 24), which is vital for the development of OS. The

GO enrichment analysis indicated significant enrichment of DEGs

in 1294 biological processes (BPs), 85 molecular functions (MFs),

and 100 cellular components (CCs). The GO results mainly involve

cell chemotaxis, leukocyte migration, and regulation of leukocyte

migration (Figure 1E).
3.3 Identification of differential genes and
ER stress-related genes to establish a risk
correlation model

A total of 7,070 ER stress-related genes were extracted from the

GeneCards database with a relevance score of ≥0. By intersecting

these genes with the 1,973 differential genes obtained earlier, a
Frontiers in Oncology 05
DERs gene set consisting of 963 genes was generated. Univariate

Cox regression and KM analysis were conducted on these genes.

The TARGET database was randomly divided into two subsets,

namely TARGET-A and TARGET-B. In the TARGET-A dataset, 59

genes were found to be significantly associated with osteosarcoma

(OS) patients (Figure 2A). The overlapping genes (59 genes) were

included in the LASSO regression analysis to prevent overfitting

issues in risk features (Figure 2B). The AIC method of multivariate

Cox regression analysis was applied to the genes returned by the

LASSO regression analysis (7 genes) to construct the optimal

model, which included STC2, TNFRSF11B, SCD5, GRN, PLCB1,

GLB1, and CRAT (Figure 2C).
3.4 Establish and evaluate risk
characteristics related to ER stress

The cancer genome atlas osteosarcoma data was used to

construct risk features. Time-dependent ROC curves were utilized

to evaluate the efficiency of prognostic prediction for ER stress-

related risk features. In the TARGET-A dataset, the AUC for 1-year,

3-year, and 5-year overall survival (OS) were 0.80, 0.93, and 0.96

respectively; while in the TARGET-B dataset, the AUC for
B C

D E

A

FIGURE 1

Identification of 1973 differentially expressed genes and KEGG, GO enrichment analysis. (A) Heatmap of differentially expressed genes, (B) PCA plot,
(C) volcano plot. (D) Bubble plot of KEGG enrichment analysis signaling pathways, (E) Bubble plot of GO enrichment analysis biological processes. In
(A), the blue group represents non-tumor primary osteoblasts, the red group represents osteosarcoma, with red indicating high expression and blue
indicating low expression. In (B), the grouping is the same as in (A); this plot shows strong repeatability within the normal and tumor groups, with
large differences between groups. In (C), black dots represent genes with no differential expression, red dots represent upregulated DEGs, and blue
dots represent downregulated DEGs.
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predicting 1-year, 3-year, and 5-year OS were 0.95, 0.92, and 0.92

(Figure 2D). Samples in TARGET-A and TARGET-B were

stratified into low-risk and high-risk groups based on the median

risk score of each cohort. KM analysis revealed that patients in the

low-risk group had better outcomes than those in the high-risk

group (Figure 2E). In the TARGET-A dataset, the three-year OS

rates for the high-risk and low-risk groups were 40.44% vs 86.55%,

while in the TARGET-B cohort, they were 52.77% vs 93.75%.

Figure 2F depicts a traditional tripartite linkage illustrating the

comparison of survival and mortality outcomes after stratifying into

high and low-risk groups based on risk scores.
3.5 A high ER stress-related risk score
showed immunosuppressive characteristics

The process of immune system eradication of tumors involves the

cancer-immunity cycle. We explored the expression characteristics of
Frontiers in Oncology 06
genes that promote this cycle in the TARGET dataset. These genes

were obtained from the Tumor Immune Phenotype (TIP) website

(http://biocc.hrbmu.edu.cn/TIP/index.jsp). As shown in Figures 3A,

B, most of these genes are downregulated in the high-risk group,

inhibiting the cycle of immune system eradication of tumors. The

immune checkpoint ligand CD274 (programmed death-ligand 1,

B7-H1) inhibits anti-tumor immunity by interacting with the

PDCD1 (programmed cell death 1, PD-1) receptor on T

lymphocytes in various tumors (19, 20).

In addition to the above-mentioned inhibitors of the cancer-

immunity cycle, immune checkpoints can also suppress the ability

of the immune system to clear tumors. In recent years, immune

checkpoints have emerged as potential therapeutic targets in many

malignant tumors and play a crucial role in tumor immunotherapy.

A comparison of immune checkpoint expression between the high-

risk and low-risk groups in the TARGET cohort is shown in

Figures 3C, D. Considering the critical role of TNFSF9 in tumor

immune suppression and immunotherapy, we studied the
B

C

D

E

F

A

FIGURE 2

Identification of prognostic genes for developing a risk model and assessing the prognostic predictive ability of endoplasmic reticulum stress-related
risk features. (A) LASSO coefficient spectrum of 59 genes in the TARGET-A dataset. (B) Selection of the optimal parameter (l) in the LASSO model.
(C) Selection of <7> genes to determine prognostic features. (D) ROC curves of 7 gene markers in the TARGET-A and TARGET-B cohorts. (E) KM
curves of prognostic features in the TARGET-A and TARGET-B cohorts (C, D) (log-rank test). (F) Risk score distribution in the TARGET-A and
TARGET-B cohorts. Chinese glioma genome map; ER, endoplasmic reticulum; LASSO, Least Absolute Shrinkage and Selection Operator; ROC,
Receiver Operating Characteristic; Cancer genome atlas LASSO, Least Absolute Shrinkage and Selection Operator; OS, Overall Survival; TARGET, The
Cancer Genome Atlas.
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relationship between its expression levels and ER stress-related risk

scores. We found a significant positive correlation between TNFSF9

expression levels and risk scores (Figure 3F), with higher expression

levels observed in the high-risk group compared to the low-risk

group (Figure 3D). We also examined the expression levels of some

conventional immune checkpoint genes, such as CD44 (21), CD48

(22), CD274 (19), LAG3 (23), NRP1 (24), HAVCR2 (25), LGALS9

(26), LAIR1 (27), which showed a significant negative correlation

with risk scores (Figures 3E–G). These data suggest that ER stress-

related risk features can accurately predict the immune

characteristics of gliomas.
3.6 Construction of line diagrams and
feature verification

In addition to ER stress risk scores, there are many known

prognostic factors for osteosarcoma, such as age, gender, race,
Frontiers in Oncology 07
metastasis status, and primary site. Therefore, it is necessary to

examine whether ER stress risk features can independently

predict prognosis. In the training cohort of TARGET,

univariate Cox analysis shows a positive correlation between ER

stress-related risk scores and the overall survival (OS) of

osteosarcoma patients. Furthermore, age, gender, race,

metastasis status, and primary site are also significantly

associated with OS (Figure 4A). Subsequent multivariate Cox

regression analysis indicates a significant association between ER

stress-related risk features, metastasis status, and OS (Figure 4B).

These findings suggest that the ER stress-related risk features

constructed using the TARGET dataset are independent

prognostic factors for osteosarcoma patients.

By integrating ER stress risk features, age, gender, race,

metastasis status, and primary site, we constructed a nomogram

to predict 1-year, 3-year, and 5-year OS in the TARGET dataset. In

the nomogram, each signature is assigned a score based on its

contribution to the risk of OS (Figure 4B). Additionally, metastasis
B

C D

E F G

A

FIGURE 3

(A, B) Expression of negative regulators of cancer-immunity cycle in low-risk and high-risk groups in TARGET database (Wilcoxon test). (C, D)
Expression of immune checkpoints in low-risk and high-risk groups in TARGET database (Wilcoxon test). (E–G) Correlation between endoplasmic
reticulum stress risk score and expression of multiple important genes in TARGET cohort (Pearson correlation analysis).
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status is considered as an independent risk factor, and survival and

expression analyses are conducted (Figures 4C, D).
3.7 Differential expression of STC2
in osteosarcoma

Our forest plot revealed 7 genes closely associated with patient

survival. To further validate the correlation between these genes and

osteosarcoma, we obtained the RNA expression of these 7 genes from

samples of osteosarcoma patients through RT-qPCR. We found that

genes with a hazard ratio >1 (STC2 and TNFRSF11B) were expressed at

higher levels in tumor tissues compared to normal tissues, with a

significant and meaningful increase (Figure 5A). There was no

difference in the expression of PLCB1 and CRAT between tumor and

normal tissues. Therefore, we speculate that STC2 and TNFRSF11Bmay

play a more critical role in the progression of osteosarcoma. STC2, a

glycoprotein, is expressed in a wide range of tumor cells and tissues such

as human breast, colon, stomach, esophagus, prostate, kidney, liver,

bone, ovary, and lung, with its overexpression promoting cell

proliferation, migration, and immune response.

Subsequently, using a large number of clinical samples, we

conducted IHC staining and found that STC2 expression in tumor

tissues was significantly higher than in adjacent non-cancerous tissues

(Figure 5B). Through pathologist’s metastasis analysis and statistics, we

confirmed the high expression of STC2 in tumor tissues (Figure 5C).

By analyzing cancer databases, we examined the variation statistics of
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STC2 in multiple cancer types (Figure 5D), the gene expression of

STC2 in relation to TNM Stage (Figure 5E), and its association with

primary, metastatic, and recurrent cases (Figure 5F).
4 Discussion

A large body of evidence suggests that a certain level of

endoplasmic reticulum (ER) stress promotes cancer progression

through mechanisms such as cell proliferation, metastasis, vascular

resistance, and treatment resistance (15, 16). The tumor

microenvironment emphasizes the disruption of protein homeostasis

that can generate ER stress, which can be counteracted by triggering the

unfolded protein response (UPR) (28). At the same time, a certain

degree of ER stress can activate cell protective mechanisms, thereby

promoting the cell’s immune response (29). Furthermore, cancer cells

under ER stress release unknown factors that induce ER stress in

macrophages, leading to the release of pro-inflammatory cytokines. In

various cancers such as lymphoma, neuroblastoma, prostate cancer,

and breast cancer, excessive ER stress can induce carcinogenic

transformation, leading to the overactivation of MYC in normal

epithelial cells, causing protein toxicity stress, reducing cell survival,

and weakening the competitive ability of cancer cells (30). Overall,

these findings suggest that investigating the mechanisms of ER stress in

cancer development and its relationship with the immune

microenvironment may contribute to the prediction of cancer and

ER stress-related immunotherapy.
B

C

D
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FIGURE 4

Creation of column charts. (A) Forest plot of multivariate Cox regression analysis in TARGET cohort. (B) Column chart constructed based on stress
risk features, age, sex, race, metastasis, and primary site. (C, D) KM curves (C) (log-rank test) and beeswarm plots (D) of prognostic features in
TARGET cohort for tumors with and without metastasis.
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In osteosarcoma, ER stress has significant implications for

tumor occurrence, development, and treatment (31–33).

However, the role of ER stress in the anti-tumor immune

response in osteosarcoma is not yet clear. Based on the above

content, we speculate that ER stress may affect the immune features

of the osteosarcoma microenvironment.

In this study, we downloaded samples of osteosarcoma and

osteoblasts from the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo/) under accession number
Frontiers in Oncology 09
GSE14359 and performed differential analysis using the limma R

package, resulting in 1973 differentially expressed genes. We then

performed KEGG and GO enrichment analysis and PPI protein

network construction. We retrieved and downloaded 7070 ER

stress-related genes from the GeneCards website and intersected

them with the 1973 differentially expressed genes to obtain a set of

963 DERs genes. Further LASSO regression analysis and

multivariate Cox regression analysis identified 7 OS-related genes

(STC2, TNFRSF11B, SCD5, GRN, PLCB1, GLB1, CRAT), and an
B C

D

E

F

A

FIGURE 5

Analysis of STC2 in osteosarcoma. (A) Comparison of key gene RNA expression levels obtained from osteosarcoma and normal tissues using RT-
qPCR. (B) IHC staining of STC2 in clinical samples of osteosarcoma and adjacent non-cancerous tissues. (C) Quantitative analysis of IHC staining (***
indicates Wilcoxon test P < 0). (D) Analysis of the variation statistics of STC2 in multiple cancer types. (E) Relationship between STC2 gene expression
and TNM Stage. (F) Association with primary, metastatic, and recurrent cases.
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OS-related prediction model was constructed. The expression levels

of STC2 and TNFRSF11B were positively correlated with a good

outcome, while the expression levels of SCD5, GRN, PLCB1, GLB1,

and CRAT were negatively correlated with a good outcome.

In addition, among the 7 OS-related genes, STC2 (34) and

TNFRSF11B (35, 36) are upregulated to promote cancer

progression, while SCD5 (36) and CRAT (37) inhibit cancer

development through certain mechanisms. STC2 is a glycoprotein

expressed in a broad range of tumor cells and tissues, such as human

breast, colon, stomach, esophagus, prostate, kidney, liver, bone, ovary,

and lung, and its overexpression promotes cell proliferation,

migration, and immune response (34). TNFRSF11B is highly

expressed in colon cancer and inhibits the infiltration of memory

CD4+ T cells in the colon cancer microenvironment, thereby

weakening the immune killing response to cancer cells (35).

Moreover, TNFRSF11B can also activate Wnt/b-catenin signaling

and promote gastric cancer progression (36). SCD5 is an integral

membrane protein involved in lipid metabolism in the endoplasmic

reticulum, and its presence can optimize the prognosis of breast

cancer and improve the responsiveness to neoadjuvant chemotherapy

(36). The agonist of CRAT can promote the metastasis of melanoma

(37). Therefore, it is not surprising that most of the identified 7 genes

directly or indirectly affect the function of immune cells, indicating

that ER stress may also regulate the immune response to

osteosarcoma. Furthermore, circular RNAs and microRNAs are

closely associated with the prognosis of osteosarcoma. This study

focuses on investigating target genes, and exploring how these genes

are affected can be further explored through non-coding RNAs,

providing deeper insights (38).

Risk scoring is a commonly used method for developing

meaningful signatures. The model developed using the ER stress-

related risk scoring not only accurately predicts the prognosis of

osteosarcoma patients but also distinguishes different molecular

subtypes of gliomas. ROC analysis showed that the gene markers

performed well in predicting the short-term (3 and 5 years) and

long-term (10 years) survival of glioma patients in the TARGET-A

and TARGET-B datasets. KM analysis confirmed that the model

accurately predicts the survival rate of osteosarcoma patients.

Considering the strong impact of these risk features in gliomas,

we further evaluated the mechanisms of these effects. Functional

analysis showed enrichment of biological processes related to cell

chemotaxis, leukocyte migration, and regulation of leukocyte

migration in the high-risk group, indicating an interaction

between ER stress and the immune response in gliomas.

Compared to the low-risk group, the high-risk group exhibited

high expression of cancer immune cycle inhibitors and immune

checkpoint molecules, as well as enrichment of tumor immune

suppressive cells, demonstrating successful classification of the

immune type of osteosarcoma by this model. This suggests that

ER stress can regulate the immune microenvironment of

osteosarcoma, affecting the prognosis of glioma patients, and

confirms our hypothesis regarding the relationship between ER

stress and anti-glioma immune response is correct.

To fully leverage the potential of the risk model, we developed a

forest plot that combines ER stress risk features, age, gender, race,

metastasis status, and primary site. Calibration plots and DCA
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based on the TARGET database demonstrated the excellent

predictive performance of the forest plot. Therefore, our 7 genes

associated with ER stress risk features can predict the overall

survival of osteosarcoma patients and facilitate the selection of

optimal treatment methods. We selected the most representative

gene, STC2, from the 7 genes using RT-qPCR with samples from

local hospitals. Subsequently, through IHC staining with a large

number of samples, we analyzed the high expression of STC2 in

osteosarcoma patients. Finally, we analyzed the relationship

between STC2 and pan-cancer as well as various clinical factors

using large databases.

However, our study also has some limitations. Due to the large

size of osteosarcoma tumor tissues, we can only validate a portion

belonging to the tumor tissue during experimental verification.

Subsequent experiments can improve accuracy by sampling

multiple regions of the larger tissue in different zones. Further

research is needed to confirm the specific functional mechanisms

of ER stress-related risk features in osteosarcoma. Endoplasmic

reticulum stress of osteosarcoma cells can be activated by

exogenous stimulation to determine the downstream phenotype.

Despite its outstanding performance in distinguishing osteosarcoma

survival differences and immune characteristics, the accuracy of the

risk model in discriminating between normal bone tissue and

osteosarcoma tissue requires further investigation. The mouse and

rat osteosarcoma models can be used for multi-species validation.

In conclusion, our study provides important resources for

elucidating the specific role of ER stress in osteosarcoma and

reveals STC2 as an important risk indicator for disease progression,

offering new insights for mechanistic research and treatment of

osteosarcoma from the perspective of endoplasmic reticulum stress.
5 Conclusion

We combined the differentially expressed genes identified

through analysis of the GEO database with endoplasmic

reticulum stress-related genes to construct an osteosarcoma ER

stress prognostic model using the TARGET database as the training

set. We also validated the critical significance of the endoplasmic

reticulum stress-related gene STC2 in osteosarcoma, providing

promising insights for the mechanistic understanding and

treatment of osteosarcoma.
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