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Objective: To establish and validate a new clinical-radiomics nomogram based

on the fat-suppressed T2 sequence for differentiating luminal and non-luminal

breast cancer.

Methods: A total of 593 breast cancer patients who underwent preoperative

breast MRI from Jan 2017 to Dec 2020 were enrolled, which were randomly

divided into the training (n=474) and test sets (n=119) at the ratio of 8:2.

Intratumoral region (ITR) of interest were manually delineated, and peritumoral

regions of 3 mm and 5 mm (PTR-3 mm and PTR-5 mm) were automatically

obtained by dilating the ITR. Intratumoral and peritumoral radiomics features

were extracted from the fat-suppressed T2-weighted images, including first-

order statistical features, shape features, texture features, and filtered features.

The Mann-Whitney U Test, Z score normalization, K-best method, and least

absolute shrinkage and selection operator (LASSO) algorithm were applied to

select key features to construct radscores based on ITR, PTR-3 mm, PTR-5 mm,

ITR+PTR-3 mm and ITR+ PTR-5 mm. Risk factors were selected by univariate

and multivariate logistic regressions and were used to construct a clinical model

and a clinical-radiomics model that presented as a nomogram. The performance

of models was assessed by sensitivity, specificity, accuracy, the area under the

curve (AUC) of receiver operating characteristic (ROC), calibration curves, and

decision curve analysis (DCA).

Results: ITR+PTR-3 mm radsore and histological grade were selected as risk

factors. A clinical-radiomics model was constructed by adding ITR+PTR-3mm

radscore to the clinical factor, which was presented as a nomogram. The clinical-

radiomics nomogram showed the highest AUC (0.873), sensitivity (72.3%),

specificity (78.9%) and accuracy (77.0%) in the training set and the highest AUC

(0.851), sensitivity (71.4%), specificity (79.8%) and accuracy (77.3%) in the test set.

DCA showed that the clinical-radiomics nomogram had the greatest net clinical

benefit compared to the other models.
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Conclusion: The clinical-radiomics nomogram showed promising clinical

application value in differentiating luminal and non-luminal breast cancer.
KEYWORDS

breast cancer, MRI, radiomics, luminal breast cancer, peritumoral
1 Introduction

Breast cancer is the most common cancer among women

worldwide and seriously endangers women's physical and mental

health (1, 2). Molecular subtypes play a crucial role in guiding

clinical treatment decisions and assessing prognosis in breast cancer

(3, 4). Breast cancer can be classified into luminal and non-luminal

types according to hormone receptor status (5). Luminal cancers,

which generally express estrogen and progesterone receptors,

respond well to endocrine therapies and typically have a favorable

prognosis (6, 7). In contrast, non-luminal cancers, including the

human epidermal growth factor receptor2 (HER2)-overexpressing,

and triple-negative types, do not respond to hormone therapies

and generally have poorer outcomes (8). However, HER2-

overexpressing cancers can have improved prognosis with

targeted HER2 therapies. Additionally, non-luminal cancers show

higher responsiveness to neoadjuvant therapies, achieving

pathological complete response rates of 20-40% (9, 10). Therefore,

accurate assessment of molecular subtypes of breast cancer before

surgery is essential to develop personalized treatment strategies and

improve prognosis. However, the primary method to distinguish

luminal from non-luminal breast cancer, immunohistochemical

analysis of core needle biopsy tissue, is invasive, and time-

consuming (11). Furthermore, given the heterogeneity of breast

cancer, a single biopsy sample may not be representative of the

entire lesion (12–14). Therefore, there is a need for a noninvasive

and efficient method to differentiate luminal and non-luminal

molecular subtypes in breast cancer patients before surgery.

Although mammography, ultrasound, and MRI are common

techniques used for the diagnosis and treatment evaluation of breast

cancer, these traditional techniques cannot provide accurate

evaluation for differentiating luminal and non-luminal molecular

subtypes. Radiomics provides a new way for precision medicine and

personalized treatment by extracting high-throughput image

features that are invisible to the naked eye to comprehensively
factor receptor2; BPE,

al intensity curve; BI-

, axillary lymph node;

dicine; PACS, picture

on of interest; ITR,

ore, Radiomics score;

; AUC, area under the

rve analysis.
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quantify tumor heterogeneity (15–17). It has been demonstrated

that radiomics has significant clinical potential in breast cancer

diagnosis, efficacy assessment, and prognosis prediction (18).

Although dynamic contrast-enhanced (DCE)-MRI-based

radiomics has been shown to differentiate molecular subtypes of

breast cancer by capturing dynamic changes (19), T2-weighted

imaging has high accuracy and sensitivity for assessing normal

anatomical structures and identifying various pathological changes

without the need for contrast agents, especially for patients with

contraindications to contrast agents (20). Hence, our study aims to

differentiate luminal and non-luminal breast cancer by establishing

the radiomics features based on the fat-suppressed T2 sequence.

Previous studies mainly focused on the intratumoral region but

ignored the peritumoral region. However, the microenvironment

surrounding the tumor plays a crucial role in tumor growth,

invasion, and metastasis (21, 22). Therefore, it is important to

consider the microenvironment surrounding the tumor in the study

of breast cancer. At present, there are still few studies published on

the use of both intratumoral and peritumoral radiomics features for

preoperative differentiating luminal and non-luminal molecular

subtypes. The purpose of this study was to establish a new

clinical-radiomics nomogram based on the fat-suppressed T2

sequence for preoperative differentiating luminal and non-luminal

breast cancer, as well as to provide a reference for individualized

treatment and prognostic assessment of breast cancer.
2 Methods

2.1 Patient population

The study was approved by the Ethics Committee of Henan

Provincial People’s Hospital (No: 2022-124), and the participants

informed consent requirement was waived. 605 patients who

underwent initial MRI examinations in our hospital from Jan 2017

to Dec 2020 were retrospectively enrolled. Patients with definite

pathological results were included in this study, while patients with

missing data, or who underwent biopsy (5 patients), or

chemoradiotherapy before MRI examination (7 patients) were

excluded. In total, 593 patients were finally enrolled, including 421

patients with luminal type and 172 patients with non-luminal type.

The luminal type included 108 cases of luminal A type and 313 cases

of luminal B type; the non-luminal type included 103 cases of triple-

negative type and 69 cases of HER2 over-expression type. The data of
frontiersin.org
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patients were divided into a training set (n=474) and a test set (n=119)

at the ratio of 8:2. The flowchart of this study is shown in Figure 1.
2.2 Fat-Suppressed T2-weighted
imaging acquisition

Breast MRI examination was performed by 3.0T MR imaging

devices and dedicated breast phased-array surface coils (GEMedical

Systems Discovery MR750, Milwaukee). The MRI protocol

included an unenhanced T1-weighted sequence, a fat-suppressed

T2-weighted sequence, and enhanced axial T1-weighted sequences.

The main MRI sequence scanning parameters were as follows: T1-

weighted FSE (fast spin-echo) sequence (TR/TE, 680/10ms; slice

thickness, 5.0mm; field of view, 751×340mm; matrix scan, 512×512)

and T2-weighted FSE-IDEAL ASSET (fast spin-echo with iterative

dixon water-fat separation with echo asymmetry and least-squares

estima and array spatial sensitivity encoding technique) sequence

(TR/TE,4000/80ms; slice thickness, 5.0mm; field of view,

751×340mm; matrix scan, 512×512; NEX, 1), and DCE scanning

was performed using T1-weighted VIBRANT(volume imaging for

breast assessment) technique (TR/TE,3.8/1.6 ms; slice thickness,

1.1 mm; field of view, 751×340 mm; matrix scan, 512×512; phase,

8). The contrast medium (Gado-linium-DTPA; Magnevist,

Schering, Germany, 0.2 mmol/kg) was intravenous administered

as a bolus injection to the patients undergoing contrast-enhanced

MRI, followed by a 20 ml saline flush.
2.3 Clinical characteristics

Clinical characteristics were obtained from the electronic

medical records, including patient age, menstrual status,
Frontiers in Oncology 03
histological grade, and some radiological characteristics which

included location, lesion size, background parenchymal

enhancement (BPE), time-signal intensity curve (TIC), and MRI-

reported axillary lymph node (ALN) status. Radiological

characteristics were analyzed by 2 radiologists with more than 5

years of experience in breast imaging. They were blinded to the

pathological results, and a consensus decision was made in cases of

discrepancy. All the original images acquired after scanning were

transmitted to the AW4.6 postprocessing workstation. Based on the

second edition of the breast imaging reporting and data system (BI-

RADS) for breast MRI, TIC was classified into 3 classical types: type

I-inflow type, type II-platform type and type III-outflow type, and

BPE was classified into 4 classical types: type I-minimal type, type

II-mild type, type III-moderate type and type IV-marked type.
2.4 Image segmentation

From the picture archiving and communication systems (PACS),

images of axial fat-suppressed T2-weighted sequences were extracted

and then saved in DICOM format. By utilizing ITK-SNAP software

(Version 3.8.0, http://www.itk-snap.org), the intratumoral region

(ITR) was manually delineated slice-by-slice by a breast

radiologist with over 5 years of experience who was blinded to

the clinicopathological information of the patients, while avoiding

the areas of cystic necrosis or hemorrhage. If there were multiple

lesions on MRI, the ROI of the largest lesion was delineated.

Validation of the delineated ITRs was performed by an associate

chief physician with over 10 years of experience in breast radiology.

If there was a discrepancy between the ROIs delineated by the two

radiologists, a third radiologist with twenty years of experience

performed ROI segmentation again and determined the final ROI.

The peritumoral regions (PTRs) were obtained by morphologically
FIGURE 1

Flow chart for selection and grouping of populations according to inclusion and exclusion criteria.
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dilating the ITR outward by 3 mm and 5 mm using the uRP

platform (uAI research portal, https://www.uii-ai.com/en/uai/

scientifific-research), a clinical research platform incorporating AI

module algorithms (23). Any portions of the PTR extending beyond

the breast parenchyma were manually removed. Each lesion

obtained 3 primary ROIs: the ITR, a PTR-3 mm, and a PTR-5

mm. Additionally, two new combined ROIs were created by

merging ITR with the 3 mm and 5 mm PTRs, respectively, to

form ITR+PTR-3 mm and ITR+PTR-5 mm regions. (Figure 2).
2.5 Radiomics feature extraction
and selection

The radiomics features calculated from the original MRI images

were extracted from the 5 ROIs: ITR, PTR-3 mm, PTR-5 mm, ITR

+PTR-3 mm and ITR+ PTR-5 mm using the built-in package

PyRadiomics (https://pyradiomics.readthedocs.io/en/latest/

index.html) through the uRP platform, including first-order

statistical features, shape features, texture features which mainly

included Gray Level Cooccurence Matrix (GLCM), Gray Level

Run Length Matrix (GLRLM), Gray Level Size Zone Matrix

(GLSZM), and filtered features. To calculate filtered features, the

first-order and texture features of the MRI images were obtained by

various filtering methods such as mean filtering, Gaussian filtering,
Frontiers in Oncology 04
logarithmic filtering, and wavelet transform, which are described in

the Supplementary Data Sheet 1. Finally, for each patient, a total of

2264 features from the fat-suppressed T2-weighted sequence were

extracted from intratumoral and peritumoral areas, separately.

All extracted features were analyzed as follows. First, the Mann-

Whitney U test was performed to select important features that

distinguish between luminal and non-luminal features. Second, Z

score normalization, a calculation with a mean of 0 and a standard

deviation of 1, was used to reduce feature dimensionality

differences. Then, high p value features were filtered using K-Best

(i.e., F value method, K=10). Finally, the radiomics features with the

strongest predictivity with differentiating luminal and non-luminal

breast cancer were selected by the least absolute shrinkage and

selection operator (LASSO) algorithm. The detailed features are

shown in the Supplementary Data Sheet 1.
2.6 Construction of the radiomics score

The radiomics features with the strongest predictivity with

differentiating luminal and non-luminal breast cancer were used

to construct radscores from ITR, PTR-3 mm, PTR-5 mm, ITR

+PTR-3 mm, and ITR+PTR-5 mm, respectively. These radscores

were calculated for each patient by the linear combination of

selected features and weighted by the respective LASSO coefficients.
FIGURE 2

The ROI segmentation of breast cancer lesion (yellow: ITR; blue: PTR-3 mm; purple: PTR-5 mm). (A) The original breast mass; (B) ITR; (C) PTR-3
mm; (D) PTR-5 mm; (E) ITR+PTR-3 mm; (F) ITR+PTR-5 mm.
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2.7 Establishment and validation of the
clinical-radiomics nomogram

Furthermore, to improve the prediction performance, we

further introduced the clinical factors (such as patient age,

menstrual status, tumor location, lesion size, BPE, TIC, MRI-

reported ALN status, and histological grade) that were correlated

with differentiating luminal and non-luminal breast cancer into our

predictive models. All clinical factors and radscores based on ITR,

PTR-3 mm, PTR-5 mm, ITR+PTR-3 mm, and ITR+PTR-5 mm

were evaluated using univariate logistic regression analysis to

identify the independent predictors. Multivariate logistic

regression analysis was performed to construct the clinical-

radiomics model as the predictive model. A nomogram based on

the clinical-radiomics model was created to visualize the results for

individualized assessment of differentiating luminal and non-

luminal breast cancer.

The performance of the models was assessed by sensitivity,

specificity, accuracy, and area under the curve (AUC) of receiver

operating characteristic (ROC). The calibration of the models was

assessed using calibration curves. Decision curve analysis (DCA)

compared the net clinical benefits of all the models across a range of

threshold probabilities.
2.8 Statistical analysis

Statistical analysis was performed using SPSS software (V.26.0)

and R software (V. 4.3.1). For the continuous variables,

Kolmogorov-Smirnov and Levene were used for normality and

homogeneity of variance tests, and the continuous variables that

conformed to the normal distribution were expressed as (c
_
± s), and

the independent sample t-test was used for comparison between the

two groups. The continuous variables conforming to the skewed

distribution are expressed as M (Q1, Q3), and the Mann-Whitney U

test was used to compare the two groups. The chi-square test was

used for comparisons between categorical variables. The AUCs of

different models were compared by the DeLong test. A p < 0.05 was

considered statistically significant.
3 Results

3.1 Clinical findings

A total of female 593 breast cancer patients were enrolled in this

study, including 421(71%, 421/593) luminal breast cancer patients

and 172 (29%,172/593) non-luminal breast cancer patients. The

differences in clinical characteristics between training and test sets

are shown in Table 1. There were no significant differences in

the clinical characteristics between the training and test sets (all

p > 0.05). There were significant differences in terms of lesion size,

MRI-reported ALN status, and histological grade between luminal

and non-luminal breast cancer patients (all p < 0.05), but there were

no significant differences in the other characteristics (p > 0.05).
Frontiers in Oncology 05
3.2 Feature extraction and selection

A total of 2264 radiomics features were extracted from each

ROI, including 18 first-order statistical features, 14 shape features,

72 texture features, and 2160 filtered features (i.e., high-order

statistical features). Finally, 4, 3, 4, 5, and 2 radiomics features

were selected as the optimal features based on ITR, PTR-3mm,

PTR-5mm, ITR+PTR-3mm, and ITR+PTR-5mm images,

respectively, using the LASSO regression method (Table 2).
3.3 Radscore evaluation

The formulas for ITR, PTR-3 mm, PTR-5 mm, ITR+PTR-3 mm

and ITR+PTR-5 mm radscore were as follows:

ITR _ radscore = 0:1072� wavelet _ glrlm _wavelet _ LLH_

RunVariance + 0:0471

�wavelet _ ngtdm _wavelet _ LLL _ Contrast

− 0:0270� wavelet _ glrlm _wavelet _ LLL _

GrayLevelNonUniformityNormalized − 0:0412

� wavelet _ firstorder _ wavelet _ LLL _

Uniformity + 0:2890

PTR − 3mm_ radscore = 0:0621� log _ firstorder _ log _

sigma _ 4 _ 0 _mm_ 3D _

MeanAbsoluteDeviation + 0:0501

� discretegaussian _ firstorder _MeanAbsolute−

Deviation + 0:0296� curvatureflow _

firstorder _ Variance + 0:2890

PTR − 5mm_ radscore = 0:0539� recursivegaussian _

firstorder _Maximum

+0:0461� curvatureflow _ firstorder _

MeanAbsoluteDeviation + 0:0326� log _

firstorder _ log _ sigma _ 2 _ 0 _mm_ 3D_

Variance + 0:0120� discretegaussian _ firstorder

_ Variance + 0:2890

ITR + PTR − 3mm_ radscore = 0:1512� normalize _

glrlm _ LongRunLowGray−

LevelEmphasis + 0:0571� wavelet _ ngtdm _

wavelet _ LLL _Contrast − 0:0047� wavelet

_ glcm _wavelet _ LLL _ ldmm − 0:0084

� normalize _ glrlm _ LongRunHighGrayLevel−

Emphasis − 0:0739� wavelet _ glcm _

wavelet _ LLL _ Idn + 0:2890

ITR + PTR − 5mm_ radscore = 0:1281� normalize _

glrlm _ LongRunLow−

GrayLevelEmphasis − 0:0918� wavelet _

glcm _wavelet _ LLL _ ldmm + 0:2890
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The AUCs for ITR, PTR-3mm, PTR-5mm, ITR+PTR-3mm,

and ITR+PTR-5mm radscore were 0.734, 0.769, 0.767, 0.858, 0.813

in the training set and 0.700, 0.729, 0.719, 0.813, 0.779 in the test set,

respectively (Figure 3).
3.4 Construction and evaluation of the
clinical-radiomics nomogram

Based on the univariate and multivariate logistic regression

analyses, two risk factors (ITR+PTR-3mm radscore and histological

grade) were obtained for differentiating luminal and non-luminal

breast cancer (Table 3). A clinical model was constructed by

histological grade. A clinical-radiomics model was constructed by
Frontiers in Oncology 06
adding ITR+PTR-3mm radscore to the clinical factor. The

nomogram is constructed for visualizing the clinical-radiomics

model (Figure 4). The sensitivity, specificity, accuracy, and AUC

for the nomogram were 72.3%,78.9%,77.0% and 0.873 in the training

set and 71.4%, 79.8%, 77.3%, and 0.851 in the test set (Table 4). The

DeLong test showed that the AUCs of the ITR, PTR-3mm, PTR-

5mm, and clinical model were significantly different from that of the

nomogram in the test set (p = 0.001, p=0.021, p=0.020, and p = 0.001,

respectively), and the results are shown in Figure 5. The calibration

curves indicated that there was good agreement between the

predicted risk and the observed probability across the whole dataset

(Figure 6). The decision curves showed that the nomogram had the

best clinical net benefit across threshold probabilities of 0.01-0.99 and

the widest applicable range compared to other models (Figure 7).
TABLE 1 Comparison of Clinical Characteristics Between Luminal and Non-luminal Breast Cancer Groups in the Training and Test sets.

Characteristics

Training Set (n=474) Test Set (n=119)

luminal
(n=337)

non-luminal
(n=137)

p luminal (n=84)
non-luminal

(n=35)
p

Age [ year=M(Q1,Q3)� 48.00 (41.50,55.00) 49.00 (41.00,55.00) 0.615 49.00 (44.25,55.00) 53.00 (43.00,57.00) 0.611

Menstrual status (%) 0.068 0.236

Premenopausal 203 (60.2%) 70 (51.1%) 46 (54.8%) 15 (42.9%)

Postmenopausal 134 (39.8%) 67 (48.9%) 38 (45.2%) 20 (57.1%)

Location (%) 0.254 0.129

Left 172 (51.0%) 62 (45.3%) 40 (47.6%) 22 (62.9%)

Right 165 (49.0%) 75 (54.7%) 44 (52.4%) 13 (37.1%)

Lesion size [cm =M(Q1,Q3)� 2.00 (1.50,2.80) 2.50 (1.90,3.15) 0.002 1.95 (1.50,2.50) 3.00 (1.80,4.10) 0.001

BPE (%) 0.466 0.803

Minimal 43 (12.8%) 22 (16.1%) 12 (14.3%) 6 (17.1%)

Mild 200 (59.3%) 72 (52.6%) 46 (54.8%) 20 (57.1%)

Moderate 81 (24.0%) 39 (28.5%) 25 (29.8%) 8 (22.9%)

Marked 13 (3.9%) 4 (2.9%) 1 (2.9%) 1 (1.2%)

TIC type (%) 0.198 0.594

I 26 (7.7%) 14 (10.2%) 9 (10.7%) 5 (14.3%)

II 155 (46.0%) 51 (37.2%) 37 (44.0%) 12 (34.3%)

III 156 (46.3%) 72 (52.6%) 38 (45.2%) 18 (51.4%)

MRI-reported ALN status (%) 0.005 0.021

Positive 137 (40.7% 75 (54.7%) 31 (36.9%) 21 (60.0%)

Negative 200 (59.3%) 62(45.3%) 53 (63.1%) 14 (40.0%)

Histological grade (%)

I 22 (6.5%) 10 (7.3%) <0.001 4 (4.8%) 3 (8.6%) <0.001

II 239 (70.9%) 56 (40.9%) 62 (73.8%) 12 (34.3%)

III 76 (22.6%) 71 (51.8%) 18 (21.4%) 20 (57.1%)
BPE, background parenchymal enhancement; TIC, time-signal intensity curve; ALN, axillary lymph node.
The bold values presented indicate statistically significant p-values.
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4 Discussion

In this study, intratumoral and peritumoral radiomics models

based on the fat-suppressed T2 sequence were developed that are

capable of accurately differentiating luminal and non-luminal breast

cancer. Furthermore, a nomogram constructed by combining

intratumoral and peritumoral radscore and clinical characteristics

was clinically useful in helping therapeutic strategy optimization.

In the non-luminal group, the percentages of MRI reported-

positive ALN (Training set: 54.7% > 40.7%; Test set: 60.0% > 36.9%)

and histological grade III (Training set: 51.8% > 22.6%; Test set:

57.1% > 21.4%) were higher than those in the luminal group, lesion

size was also larger in the non-luminal group (Training set:
Frontiers in Oncology 07
2.50>2.00; Test set: 3.00>1.95), and all the differences were

statistically significant (all p < 0.05). In addition, ITR+PTR-3mm

radscore and histological grade were determined as the risk factors

by using univariate and multivariate logistic regression (p < 0.05).

This is consistent with Feng’s study for choosing histological grade

as a risk factor (24), probably due to histological grade as one of the

prognostic indicators of breast cancer (25), with higher grades,

indicating a worse prognosis, so the grades of non-luminal breast

cancer tend to be higher than that of luminal breast cancer.

Furthermore, in addition to histological grade, our study also

found ITR+PTR-3mm radscore as a risk factor, which may be

related to the fact that the ITR+PTR-3mm radscore may be

indicative of a more extensive tumor environment, potentially
TABLE 2 Radiomics features for each model.

Model Classification Feature name Coefficient

ITR Filtered feature wavelet_glrlm_wavelet-LLH-RunVariance
wavelet_ngtdm_wavelet-LLL-Contrast
wavelet_glrlm_wavelet-LLL-GrayLevelNonUniformityNormalized
wavelet_firstorder_wavelet-LLL-Unifomity

0.1072
0.0471
-0.0270
-0.0412

PTR-3mm Filtered feature log_firstorder_log-sigma-4-0-mm-3D-MeanAbsoluteDeviation
discretegaussian_fistorder_MeanAbsoluteDeviation
curvatureflow_firstoder_Variance

0.0621
0.0501
0.0296

PTR-5mm Filtered feature recursiveguassion_firstorder_Maximum
curvatureflow_firstorder_MeanAbsoluteDeviation
log_firstorder_log-sigma-2-0-mm-3D-Variance
discretegaussian_fistorder_Variance

0.0539
0.0461
0.0326
0.0120

ITR+PTR-3mm Filtered feature normalize_glrlm_LongRunLowGrayLevelEmphasis
wavelet_ngtdm_wavelet-LLL-Contrast
wavelet_glcm_wavelet-LLL-Idmn
normalize_glrlm_LongRunHighGrayLevelEmphasis
wavelet_glcm_wavelet-LLL-Idn

0.1512
0.0571
-0.0047
-0.0084
-0.0739

ITR+PTR-5mm Filtered feature normalize_glrlm_LongRunLowGrayLevelEmphasis
wavelet_glcm_wavelet-LLL-Idmn

0.1281
-0.0918
FIGURE 3

The ROC curves of all the models were used to differentiate luminal and non-luminal breast cancer in the training (A) and test (B) sets. ROC, receiver
operating characteristic; AUC, the area under the curve of ROC.
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TABLE 4 Predictive Performances Among Different Models.

Models Training Set (n=560) Test Set (n=140)

AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC

ITR 0.734 (0.687-0.781) 68.6% 64.7% 65.8% 0.700 (0.593-0.807) 62.9% 65.5% 64.7%

PTR-3mm 0.769 (0.723-0.815) 71.5% 62.3% 65.0% 0.729 (0.629-0.829) 65.7% 61.9% 63.0%

PTR-5mm 0.767 (0.721-0.814) 61.3% 74.2% 70.5% 0.719 (0.621-0.817) 71.4% 60.7% 63.9%

ITR+PTR-3mm 0.858 (0.824-0.891) 72.3% 73.0% 72.8% 0.813 (0.735-0.891) 77.1% 69.0% 71.4%

ITR+PTR-5mm 0.813 (0.774-0.853) 77.4% 67.4% 70.3% 0.779 (0.690-0.867) 68.6% 64.3% 65.5%

Nomogram 0.873 (0.841-0.906) 72.3% 78.9% 77.0% 0.851 (0.778-0.925) 71.4% 79.8% 77.3%

Clinical 0.711 (0.661-0.762) 64.2% 69.7% 68.1% 0.665 (0.542-0.789) 60.0% 72.6% 68.9%
F
rontiers in Oncolo
gy 08
AUC, area under the receiver operating characteristic curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy.
FIGURE 4

The nomogram of the model based on the ITR+PTR-3mm radscore and clinical characteristic. The radiomics nomogram integrated the ITR+PTR-
3mm radscore with the histological grade in the training cohort.
TABLE 3 Logistic Regression Analysis for Clinical Characteristics.

Parameters Univariate analysis p value Multivariate analysis p value

OR 95%CI OR 95%CI

ITR radscore 1.646 1.438,1.884 <0.001* NA NA NA

PTR-3mm radscore 1.674 1.422,1.971 <0.001* NA NA NA

PTR-5mm radscore 1.656 1.407, 1.949 <0.001* NA NA NA

ITR+ PTR-3mm radscore 3.694 2.424, 5.631 <0.001* 3.163 1.959, 5.107 <0.001

ITR PTR-5mm radscore 1.758 1.542, 2.006 <0.001* NA NA NA

Age 1.000 0.998, 1.002 0.614 NA NA NA

Menstrual status 0.689 0.462, 1.029 0.068 NA NA NA

Location 0.793 0.532, 1.181 0.254 NA NA NA

Lesion size 1.002 1.000, 1.004 0.002* NA NA NA

BPE 0.704 0.394, 1.257 0.235 NA NA NA

TIC Curve 0.611 0.297, 1.259 0.182 NA NA NA

MRI-reported ALN status 1.744 1.198, 2.669 0.004* NA NA NA

Histological grade 2.138 1.790, 2.555 <0.001* 1.785 1.392, 2.289 <0.001
OR, odds ratio; CI, confidence interval; BPE, background parenchymal enhancement; TIC, time-signal intensity curve; ALN, axillary lymph node.
The bold values presented indicate statistically significant p-values.
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correlating with a higher risk of recurrence or poorer response to

standard therapies. However, this is different from Huang’s study

(26), which screened for no risk factors, which may be due to

differences in the subjects and MRI sequences, which only focused

on intratumoral radiomics regions and selected DCE-MRI

sequences. Therefore, ITR+PTR-3mm radscore and histological

grade could be used as the predictors in our model.

Radiomics methods have been reported to preoperatively

differentiate luminal and non-luminal breast cancer in certain

malignant tumors (24, 26). However, further study on the value

of fat-suppressed T2 sequence for preoperatively differentiating

luminal and non-luminal breast cancer is still needed. In our

study, the AUCs for ITR, PTR-3mm, PTR-5mm, ITR+PTR-3mm,
Frontiers in Oncology 09
and ITR+PTR-5mm radscores based on the fat-suppressed T2-

weighted images were 0.734, 0.769, 0.767, 0.858 and 0.813 in the

training set and 0.700, 0.729, 0.719, 0.813 and 0.779 in the test set,

respectively. Our intratumoral+peritumoral model is comparable to

that of Huang et al. (0.813、0.779 VS 0.80) (26), and the AUC of

our intratumoral or peritumoral model alone was slightly lower

than its AUC (0.700、0.729、0.719<0.80), which utilized DCE-

MRI-based radiomics features to distinguish between luminal and

non-luminal breast cancers. Feng et al. used a nomogram

combining clinical factors with a radiomics score based on the

DCE-MRI features of the intratumoral subregion to distinguish

between luminal and non-luminal breast cancers (24), with an AUC

of 0.830 in the training set and 0.879 in the test set, which were
FIGURE 6

Calibration curves of all the models in the training (A) and test (B) sets. The calibration curves show the agreement between the predicted probability
of differentiating luminal and non-luminal breast cancer and the actual outcomes.
FIGURE 5

Heatmaps of Delong test between any two models in the training (A) and test (B) sets.
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comparable to our study (training set:0.873; test set:0.851).

Although different imaging sequences were used. In our study,

the fat-suppressed T2 sequence was employed to emphasize

differences in tissue contrast, which may capture additional

aspects of tumor heterogeneity not as evident in DCE-MRI. The

comparable performance of our nomogram suggests that T2-

weighted imaging can be as effective as DCE-MRI when

combined with radiomics analysis, possibly due to the unique

tissue characteristics highlighted in this sequence. This

underscores the potential of using alternative MRI sequences in

clinical-radiomics models to improve diagnostic accuracy and adapt

to specific clinical needs, enhancing personalized treatment

planning for breast cancer patients.

The peritumor microenvironment can also reflect the biological

characteristics of the tumor to a certain extent (27). Previous studies

have demonstrated the strong predictive effect of peritumoral

radiomics features in the diagnosis of breast cancer, lymph node

metastasis status, molecular typing, neoadjuvant chemotherapy

efficacy, HER2 expression status, KI-67 expression level,

lymphovascular invasion and programmed cell death ligand 1 (PD-

L1) expression status (28–35). Our study found that the AUCs of

both the PTR-3 mm and PTR-5 mm radiomics models were higher

than that of the ITR model, with the PTR-3 mm model exhibiting a

higher AUC than the PTR-5 mm model. This may be related to the

smaller peritumoral radius increasing the sensitivity to the lesion,

thereby improving the predictive performance of the model, which is

consistent with the findings of Park et al. on the value of predicting

neoadjuvant chemotherapy (NAC) pathological complete response

(31), they demonstrated that the predictive performance of the PTR-1

mm radiomics model was higher than that of the PTR-3 mm

radiomics model, regardless of the early stage of the enhanced scan

(AUC:0.940>0.900) or the late stage of the enhanced scan

(AUC:0.890>0.720), or the T2WI sequence (AUC:0.920>0.870).

Furthermore, when combined with intratumoral region, the

AUC of PTR-3 mm reached 0.858 (training set) and 0.813 (test set)

and the AUC of PTR-5 mm reached 0.813 (training set) and 0.779

(test set) in our study. In addition, the ITR+ PTR-3 mm and ITR+
Frontiers in Oncology 10
PTR-5 mm models showed improved sensitivity, specificity, and

accuracy compared to the ITR model. Besides, the AUC of the ITR

+PTR-3 mm model was higher than that of the ITR+PTR-5 mm

model. This may be related to the fact that the ITR+PTR-3 mm

model captures a more optimal balance of relevant tumor

characteristics by focusing on a narrower peritumoral margin,

which can more accurately reflect the invasive properties of the

tumor. In contrast, the ITR+PTR-5 mm model, by incorporating a

wider margin, may include more non-tumor tissue, potentially

diluting the precision of the radiomic features. This suggests that

a tighter peritumoral margin in radiomics analysis may yield better

diagnostic performance by focusing on more critical tumor-

related changes.

The nomogram was established by incorporating radscore with

ITR+PTR-3 mm and histological grade in our study, which also was

a visual representation of the combined model. The nomogram in

our study showed higher predictive efficacy than that of

independent method of radiomics radscore and clinical feature

model, and the sensitivity, specificity, accuracy, and AUC for the

nomogram were 72.3%, 78.9%, 77.0%, and 0.873 (95% CI: 0.841-

0.906) in the training set and 71.4%, 79.8%, 77.3%, and 0.851 (95%

CI:0.778-0.925) in the test set, respectively. However, although the

nomogram exhibited higher AUC values compared to the ITR

+PTR-3mm and ITR+PTR-5mm models (AUC: 0.851 VS 0.813、

0.779), the differences were not statistically significant (p = 0.235、

0.106). This may be attributed to the limited number of risk factors

included, which, although significant, may not capture enough

variability to demonstrate clear superiority over simpler models in

the test set. Additionally, the sample size and potential overfitting

could have affected the statistical power needed to discern subtle

improvements. Future studies may benefit from incorporating a

broader set of risk factors and employing larger, more diverse

datasets to enhance model robustness and detect statistically

significant differences in performance. DCA also showed that the

nomogram had the best clinical net benefit and widest applicable

range compared to the other models, which indicates that the

nomogram has promising clinical application value.
FIGURE 7

The decision curves of all the models in the training (A) and test (B) sets, with threshold probability on the x-axis and net benefit on the y-axis. The
nomogram showed the highest net benefit within the threshold probability range of 0.01-0.99, with the widest applicable range.
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There were some limitations in our study. First, the ROI outline

of breast cancer lesions is manually delineated by radiologists,

which is time-consuming, subjective, error-prone, and not

scalable with increasing data volumes. Therefore, an automated,

standardized, repeatable, and validated segmentation method

would be more practical for future use. Second, as a single-center

retrospective study, there may be selection bias. The results need

external validation, which would be conducted using datasets from

multiple institutions in the subsequent studies. Third, the use of a

single 3T GE MR scanner introduces limitations due to potential

differences in scanner hardware and imaging protocols among

different vendors and field strengths, such as 1.5T scanners. These

discrepancies might impact the reproducibility of our radiomics

features. To enhance the robustness and general applicability of our

models, future research should investigate these findings using a

variety of scanner types across multiple clinical settings. Finally, the

peritumoral region was obtained by dilating the tumor 3 mm and

5 mm in this study, but whether this is the optimal peritumoral

region requires further refinement of the expanded range

and validation.
5 Conclusion

In conclusion, our study suggests that intratumoral and

peritumoral radiomics methods based on the fat-suppressed T2

sequence are helpful for preoperative accurately differentiating

luminal and non-luminal breast cancer, especially the clinical-

radiomics nomogram could provide a new strategy for

personalized treatment of breast cancer patients in clinical practice.
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