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The role of short-chain fatty
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and treatment of cancer
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Pei Jiang2*, Lei Qin3* and Qiujie Zhang4*
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Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Jining, China, 3Department of
Gastrointestinal Surgery, Jining NO.1 People’s Hospital, Jining, China, 4Department of Oncology,
Jining No.1 People’s Hospital, Jining, China
Short-chain fatty acids (SCFAs), which are saturated fatty acids consisting of six or

fewer carbon atoms, have been found to be closely associated with the biological

behavior of malignant tumors. This manuscript provides a comprehensive review

on the role of SCFAs in regulating cell cycle, apoptosis, tumor angiogenesis,

epithelial-mesenchymal transition, protein regulatory pathways, and histone

regulation in promoting the development of malignant tumors. Furthermore,

we discuss the potential therapeutic strategies targeting SCFAs for treating

malignant tumors. This review offers a theoretical foundation for investigating

the mechanisms by which SCFAs impact malignant tumors and provides insights

into developing novel treatment targets.
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1 Introduction

Short-chain fatty acids (SCFAs) are saturated fatty acids consisting of six or fewer

carbon atoms. Due to their low molecular weight, they readily volatilize at room

temperature and are also referred to as volatile fatty acids (VFAs) (1). The majority of

SCFAs in the human body are metabolic byproducts resulting from the fermentation of

dietary fiber by anaerobic bacteria or yeast in the colon. The types and quantities of SCFAs

primarily rely on the composition of gut microbiota, digestion time, host microbial

metabolism flux, and fiber content in the host’s diet. Acetate, propionate, butyrate, and

isovalerate (lactate) are among the most prevalent SCFAs. Acetate and propionate are

predominantly produced by Bacteroides while butyrate is synthesized by Firmicutes (2).

SCFAs play a crucial role in maintaining energy supply, regulating motility, and

safeguarding mucosal barrier integrity within the intestine (3).
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In recent years, the role of SCFAs in tumor pathogenesis has

garnered significant attention, with a particular focus on Valproic

Acid (VPA), Butyric Acid, Acetate Salt, and Propionate, as shown in

Table 1. These SCFAs have been extensively studied for their anti-

tumorigenic properties and underlying mechanisms. However,

despite the compelling evidence presented by these compounds,

research exploring the effects of other SCFAs, such as Caproic Acid
Frontiers in Oncology 02
(4) and Succinate (5), on tumor growth and progression remains

relatively scarce, particularly in terms of elucidating their specific

mechanisms of action. Therefore, this review has unveiled the role

of mainly SCFAs in malignant tumor biology, as in Figure 1.
2 The role of SCFAs in cell cycle and
apoptosis of cancer

The hallmark of tumor cells is aberrant proliferation, and the

cell cycle is tightly regulated through the modulation of proteins

(Cyclin), Cyclin-dependent kinases (CDKs), and Cyclin-dependent

kinase inhibitors (CKIs) to govern cellular growth and division.

Cyclin assumes a pivotal role throughout the entirety of the cell

cycle process, ensuring precise regulation at distinct stages of cell

cycle progression while mediating checkpoint functions (6). These

three regulatory factors primarily achieve their functions through

Rb pathway and p53 pathway (7, 8). Research has demonstrated

that SCFAs can induce cell cycle arrest and inhibit cell proliferation

in tumor cells by modulating factors associated with the cell cycle.

Valproic acid (VPA) induces the expression of p21 and

topoisomerase II (a/b), where p21 acts as a conventional cell

cycle inhibitor, restraining the activity of cycDl-CDK4 and cycE-

CDK2, thereby leading to G1 phase arrest (Figure 2) (9). Studies

conducted by Bacon C L (10) have revealed that exposure to VPA

significantly upregulates Cyclin D3 expression during mid-G1

phase and translocates it into the nucleus in glioma cells. Cyclin

D plays a pivotal role as a core component driving cellular division

throughout the cell cycle, with Cyclin D1 typically expressed during

early G1 phase and Cyclin D3 expressed during late G1 phase

(Figure 2) (11), suggesting that elevated levels of Cyclin D3

expression and ectopic activation are crucial determinants for
FIGURE 1

The role of short chain fatty acid metabolism in the pathogenesis of cancer.
TABLE 1 The mechanism of SCFAs depending on the cancer type.

Cancer type SCFAs Mechanism Reference

Lung cancer Propionate Apoptosis and cell
cycle arrest

(21)

Breast cancer Butyric
acid

Receptor of GPR109A (36)

Colon cancer Butyrate Receptor of GPR109A (33)

Acetylation of histone (42)

Histone deacetylase (40)

Hepatocarcinoma
cells

VPA Cell cycle arrest (14)

Pancreatic cancer VPA Cell cycle arrest, apoptosis (9)

Renal
cell carcinoma

VPA Epithelial–mesenchymal
transition

(29)

Prostatic cancer VPA Epithelial–mesenchymal
transition

(28)

Cervical cancer VPA Angiogenesis (25)

Glioma VPA Cell cycle arrest (G1) (10)

Glioblastoma VPA Acetylation of histone (41)
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VPA-induced G1 phase arrest. Through the Warburg effect,

differentiated tumor cells primarily rely on glycolysis to meet

their energy demands. It has been discovered that Cyclin D3 can

phosphorylate and deactivate PFK1 (phosphofructokinase 1) and

PKM2 (pyruvate kinase m2), consequently inhibiting glycolysis

during G1 phase while weakening energy supply to tumor cells

(12, 13). The molecular mechanisms underlying short-chain fatty

acid-induced cell cycle arrest may vary depending on the specific

type of cells, as VPA treatment has also been observed to induce G2/

M phase arrest in lung cancer cells (13), whereas liver cancer cells

treated with VPA experience both G2/M phase arrest and G0/G1

phases arrest (Figure 2) (14). Similarly, butyrate strongly arrested

the cell cycle at G2 phase and promoted apoptosis, leading to tumor

cell death (15, 16).

Cellular apoptosis is considered to be a crucial mechanism for

preventing tumorigenesis; however, one hallmark feature of tumor

cells is their ability to suppress apoptosis (17). In tumor cells, the

equilibrium between pro-apoptotic and anti-apoptotic proteins

such as the Bcl-2 protein family and IAPs becomes disrupted,

resulting in attenuated caspase activity. The study revealed that

SCFAs can modulate apoptosis-related proteins and impact the

cellular apoptosis process. There are two primary pathways for

initiating cell apoptosis: intrinsic and extrinsic pathways, both of

which activate the Caspase family of proteases. Caspase has the

ability to hydrolyze over 400 types of proteins, thereby accelerating

cell death (18). Butyrate triggers the endogenous apoptotic pathway

by regulating Bcl-2 activity, a mitochondrial-mediated apoptotic

regulatory factor, upregulating BH3-only transcriptional activators,

releasing pro-apoptotic factors BAX and BAK to form oligomers,
Frontiers in Oncology 03
increasing mitochondrial outer membrane permeability, releasing

cytochrome C and Smac/DIABLO apoptotic factors from

mitochondria. These apoptotic factors facilitate activation of

Caspase 9 followed by activation of Caspases 3 and 7 leading to

cellular apoptosis (19). In most cases, all apoptotic signals converge

on the final executor Caspase-3; thus detecting the content or

activity level of cleaved Caspase-3 reflects the progression of

cellular apoptosis (20). Kim K et al. (21) discovered that

propionate treatment significantly decreased Survivin expression

levels while increasing p21 protein expression levels in H1299 and

H1703 cells; early-stage and late-stage apoptotic cells were more

abundant in SP-treated groups compared to control groups; caspase

3/7 activity was also notably increased.
3 The role of SCFAs in angiogenesis
of cancer

Tumor growth and metastasis rely on angiogenesis, with VEGF

playing a crucial role in promoting vascular formation and tumor

cell proliferation. Targeting pro-angiogenic genes is an effective

therapeutic strategy for inhibiting tumor progression (22). The

research findings indicate that short-chain fatty acids (SCFAs)

possess potential as anti-angiogenic drugs due to their impact on

the expression of vascular endothelial growth factor (VEGF).

Butyrate salts can downregulate VEGF expression by inhibiting

the binding affinity of Sp1, a transcription factor, to the promoter

region of neuropilin-1 (NRP-1), thereby reducing its capacity for

expression. NRP-1 acts as a co-receptor for VEGF and enhances the
FIGURE 2

The role of VPA in the regulation to cancer cell cycle involved in the mechanism of cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1451045
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hou et al. 10.3389/fonc.2024.1451045
interaction between VEGF165 and EGFR-2, promoting chemotaxis

and mitogenesis in endothelial cells induced by VEGF165, thus

facilitating VEGF-mediated angiogenesis (23, 24). Valproic acid

(VPA) exhibits time-dependent inhibition of HIF-1a, VEGF, and
tumor necrosis factor (TNF) expression in cervical cancer cells

through suppression of PI3K/Akt and ERK1/2 signaling pathways.

Additionally, it suppresses endothelial cell migration and regulates

tumor neovascularization (25).
4 The role of SCFAs in epithelial-to-
mesenchymal transition of cancer

Epithelial-to-mesenchymal transition (EMT) is a biological

process wherein epithelial cells undergo a specific program to

acquire mesenchymal characteristics, playing a crucial role in

conferring migration and invasion abilities upon malignant tumor

cells derived from epithelium. EMT leads to the loss of certain

epithelial cell traits, resulting in decreased expression levels of key

epithelial genes such as E-cadherin, ZO-1, and occludin.

Consequently, there is reduced contact with surrounding and

stromal cells, diminished intercellular interactions, and acquisition

of mesenchymal cell features. Concurrently, the expression levels of

mesenchymal genes like N-cadherin, vimentin, and fibronectin

increase during this process. This ultimately enhances cell

migration and motility while promoting increased invasive

capacity and detachment capability. These effects can be mediated

through the classical Smad pathway (26, 27). VPA exhibits the ability

to downregulate SMAD4 protein levels—a pivotal factor in TGF-b-
induced EMT—and effectively inhibits metastatic potential in

prostate cancer (28) as well as renal cancer cells (29).
5 The role of SCFAs in protein
pathways of cancer

The G-protein coupled receptors (GPCRs), also known as seven-

transmembrane receptors, constitute the largest family of cell surface

receptors in eukaryotes and participate in numerous cellular signaling

pathways. Several members of the GPCR family have been implicated

in tumor initiation and progression, including SMO protein - a pivotal

component of the Hedgehog signaling pathway that, when aberrantly

activated, can contribute to various cancers such as basal cell carcinoma

and rhabdomyosarcoma (30). The chemokine receptor CXCR4 is

frequently overexpressed in tumors and is believed to play a crucial

role in angiogenesis, tumor cell migration, invasion, and metastasis

(31). Short-chain fatty acids (SCFAs) serve as natural ligands for

GPCRs. Upon binding, they further activate signal cascades mediated

by phospholipase C, mitogen-activated protein kinases (MAPKs),

phospholipase A2, and nuclear factor kB (32). In colon cancer cells,

SCFAs can inhibit cell proliferation through NF-КB, MAPKs ERK1/2

PI3K, and Wnt signaling pathways while inducing apoptosis and cell

cycle arrest (33, 34). GPCRs expressed in breast cancer cell lines can

elevate intracellular calcium concentration upon binding with SCFAs

thereby activating the p38 MAPK pathway to suppress tumor cell
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proliferation (35). Moreover, GPCRs like GPR109A selectively bind to

butyric acid which mediates its anticancer activity thus reducing

invasive capabilities of breast cancer cells (36).
6 The role of SCFAs in histones
regulation mechanism of cancer

Proteins are small, alkaline proteins found in the chromatin of

eukaryotic cells that, together with DNA, form nucleosomes.

Modifications such as methylation, acetylation, phosphorylation,

and ubiquitination of histones can alter chromatin structure and

play a pivotal role in epigenetic regulation (37, 38). Acetylation is

one of the most prevalent modifications of histones and its extent is

finely regulated by the metabolic state of organisms. Histone

acetylation facilitates the dissociation of DNA from histone

octamers, thereby loosening the structure of nucleosomes. This

enables specific binding of various transcription factors and

coactivators to DNA binding sites, activating gene transcription.

Transcriptionally active regions exhibit a high density of acetylated

core histones while inactive regions have a low density. Conversely,

histone deacetylases (HDACs) exert opposing effects by compacting

DNA and inhibiting transcription processes (39). Histone

acetylation and deacetylation modifications serve as major

regulators for gene expression control. Alterations in nucleosome

structure are crucial for precise gene expression in eukaryotic cells.

Targeting HDACs holds significant potential for anti-tumor

activity; HDAC inhibitors induce chromatin remodeling through

increased levels of histone acetylation, rectifying epigenetic errors,

promoting anti-tumor activity, and enhancing expression levels of

tumor suppressor genes to inhibit cancer cell proliferation (40).

The HDACIs encompass a variety of compounds with diverse

structures, including short-chain fatty acids like butyrate salts, butyrate

esters, and valproic acid. Treatment with VPA in glioblastoma cell lines

resulted in enhanced acetylation of histone H4 (41). Similarly,

treatment with butyrate in colon cancer cells led to increased

acetylation of histone H3, indicating the inhibition of HDACs within

these cells (42). HDACIs exert their effects by regulating the extent of

DNA wrapping around histones. Histone deacetylases remove acetyl

groups from histones, resulting in tightly wrapped DNA that is less

accessible to transcription factors. Consequently, this leads to the

suppression of protein expression associated with cell cycle arrest

and apoptosis in damaged cells as well as a decrease in the

expression of tumor suppressor genes and other anti-cancer genes,

thereby promoting cancer development (40). Butyrate salts can impede

CRC cell migration and invasion by blocking the activation of HDAC3,

which subsequently reduces phosphorylation levels of Akt1 and erk1/2

leading to inhibited cell motility (43).
7 The role of SCFAs in treatment
of cancer

Supplementation with exogenous bacteria that produce short-

chain fatty acids has been demonstrated to augment the efficacy and
frontiersin.org
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sensitivity of chemotherapy, radiotherapy, or immunotherapy in

the treatment of malignant tumors, while concurrently mitigating

treatment-related toxicity. Notably, butyrate salts have been

observed to deplete vancomycin-sensitive bacteria in lung cancer

and potentiate the anti-tumor activity of radiation therapy (44).

VPA synergistically enhances the cytotoxicity of temozolomide in

high-grade glioma cell lines. The combination of valproic acid and

arsenic trioxide induces G2/M phase arrest and promotes apoptosis

cell death, effectively inhibiting lung cancer cell growth by

modulating the cell cycle. In vivo studies have substantiated a

synergistic anti-tumor effect (45).

SCFAs exhibit a dose-dependent inhibition on colony

formation and proliferation of colorectal cancer cells, regulate the

composition of colonic microbiota in colon cancer, and enhance the

proportion of SCFA-producing bacteria. Faecalibaculum rodentium

and its human homolog biformholdemanella are two microbial

strains discovered to possess anti-colon tumor properties (46). They

demonstrate the ability to produce SCFAs in both mouse and

human experiments, control protein acetylation and tumor cell

proliferation by suppressing calcium-regulated phosphatase

secretion while activating NFATc3, as well as inhibit the growth

of tumor cell lines or patient tumor samples in vitro (47). Therefore,

inducing an increase in SCFA content within the intestinal tract

may potentially serve as an adjuvant therapy for colorectal cancer.

Butyrate can attenuate oxidative stress on the gastric mucosa,

upregulate the expression of GPR109A, decrease the levels of pro-

inflammatory factors such as TNF-a and IL-1b, and play a crucial

role in gastric mucosal repair. Studies have demonstrated that oral

supplementation of butyric acid bacteria post-gastrectomy can

enhance intestinal SCFA content through fermentation of various

carbohydrates, leading to reduced expression of inflammatory cells

and factors, improved immune function, decreased postoperative

complications, and enhanced recovery in patients following gastric

cancer surgery (48). Moreover, there is evidence supporting that

acetate salts possess dose-dependent apoptotic effects on gastric

cancer cells and mesothelioma cells with heightened sensitivity

towards human tumor cells. Local application of acetate

combined with chemotherapy may represent a viable treatment

approach and novel therapeutic strategy for drug-resistant

mesothelioma (49). Tri-butyrylglycerol (a classical derivative of

short-chain fatty acids) inhibits the activity of gastric cancer cells

in a dose-dependent manner. Appropriate supplementation may

exert preventive effects against gastric cancer (50). Kim et al. (51)

discovered through plasma level analysis that propionate levels were

significantly elevated in patients with gastric cancer, suggesting its

potential as a novel biomarker for evaluating disease progression.

Furthermore, it has been found that acetate salts also possess the

ability to downregulate estrogen receptors in breast cancer and

exhibit certain clinical efficacy in treating ER-positive endocrine-

resistant breast cancer patients (52).

It has been confirmed that SCFAs may play an important

regulatory role in the immune system in a complex manner.

Previous studies have found a negative correlation between pre-

treatment serum concentrations of butyrate and propionate and

overall survival and progression-free survival in patients with

metastatic melanoma receiving CTLA-4 monoclonal antibody
Frontiers in Oncology 05
therapy. High levels of butyrate in the blood inhibit the

accumulation of memory T cells and ICOS+ CD4+ T cells

induced by CTLA-4 monoclonal antibody, as well as reduce the

efficacy of CTLA-4 monoclonal antibody in three different tumor

mouse models. Butyrate also inhibits the upregulation of CD80/

CD86 on dendritic cells and ICOS on T cells induced by CTLA-4

monoclonal antibody, while increasing the proportion of Tregs

(53). However, further research has revealed that pectin, a major

soluble fiber extracted from plant cell walls, can alter butyrate levels

in humanized tumor-bearing mice with gut microbiota derived

from colorectal cancer patients. It suppresses tumor growth in

humanized mouse models resistant to anti-PD-1 monoclonal

antibodies due to their gut microbiota composition, suggesting its

potential ability to reverse resistance to anti-PD-1 monoclonal

antibodies in colon cancer patients (53). Combining acetate salts

with PD-1 therapy significantly delays the growth of hepatocellular

carcinoma compared to administering acetate salts alone (54).

Therapeutic supplementation of short-chain fatty acids (SCFAs)

or a high-fiber diet, which enhances endogenous SCFA production,

inhibits osteoclast activity and prevents pathological fractures (55).

In vitro studies by Luu et al. (56) demonstrated that SCFAs

modulate the activity of reprogrammed CD8+ CTLs and CAR-T

cells by inhibiting HDAC, leading to increased production of

effector molecules such as CD25, IFN-g, and TNF-a. This

augmentation strengthens mTOR’s role as a central cellular

metabolic sensor in CD8+ T cells. mTOR influences cytokine

expression in T cells and is involved in immune suppression,

DNA transcription regulation, cell growth, and apoptosis.

Consequently, it enhances the anti-tumor activity of T cells and

significantly amplifies the anti-tumor efficacy of antigen-specific

CTLs targeting ROR1 in melanoma and pancreatic cancer models

using genetically modified mice. These findings have positive

implications for improving the therapeutic efficacy of tumor

immunotherapy and hold promise for optimizing CAR-T cell

therapy as well as other tumor therapies through modulation of

bacterial species within the gut microbiome.
8 Conclusions

SCFAs, primary metabolic byproducts of dietary fiber

fermentation mediated by anaerobic bacteria and yeasts within

the intestinal milieu, exhibit profound biological functions in

human physiology. This comprehensive review meticulously

examines the intricate mechanisms of SCFAs in malignancy,

encompassing their intricate interplay with cell cycle regulation,

apoptosis, tumor angiogenesis, EMT, and histone modulation,

while also elucidating the pivotal roles of SCFAs-associated

metabolic pathways in cancer progression. In summary, SCFAs

occupy a central position in the intricate web of malignancy

initiation, progression, and treatment. Future endeavors aimed at

elucidating the intricate metabolic mechanisms of SCFAs and their

therapeutic potential in cancer will undoubtedly yield invaluable

insights, paving the way for the development of innovative anti-

tumor strategies. By harnessing the power of gut microbiota

modulation and SCFAs production, we may uncover novel
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avenues for the prevention and treatment of malignancies, thereby

revolutionizing the landscape of cancer medicine.
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