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Genomic alterations in the
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normal mucosa to metastasizing
oral squamous cell carcinoma
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Filipe Garrett Vieira4, Finn Cilius Nielsen4, Katalin Kiss5,
Christian Grønhøj1 and Christian von Buchwald1

1Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet,
University of Copenhagen, Copenhagen, Denmark, 2Department of Clinical Physiology and Nuclear
Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark, 3Department Clinical
Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research,
Copenhagen University Hospital, Hvidovre, Denmark, 4Department of Genomic Medicine,
Rigshospitalet, University of Copenhagen, Copenhagen, Denmark, 5Department of Pathology,
Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Introduction: The aim of this study was to investigate the genomic changes that

occur in the development from dysplasia, cancer and to regional metastases in

patients with oral cavity squamous cell carcinoma (OSCC).

Material and methods:We included OSCC patients with lymph nodemetastases at

diagnosis, treated with primary surgery at Rigshospitalet, University of Copenhagen in

the period 2007-2014. The resected tumor specimens were evaluated by a

pathologist, who marked areas of morphologically normal tissue and dysplasia

surrounding the cancer, two areas from the cancer tissue, and one area within the

lymph node metastases. From these areas a punch biopsy was taken, and DNA from

each samplewas extracted and sequenced using Illumina’s TSO500HT cancer panel.

Results: From 51 OSCC patients, 255 samples were included, comprising a wide

variety of genomic alterations. Substantial intratumor heterogeneity was found. The

most commonly mutated gene was TP53, mutated in 65% of all samples. Only two

patients had no TP53 mutation in any samples. We found that morphologically

normal appearingmucosa aswell as surrounding dysplasia also containedmalignant

mutations, supporting the theory of field cancerization. There was a significant

lower average tumor mutational burden (TMB) in the lymph node metastases

compared to the primary tumors, supporting the theory of clonal selection.

Conclusion: Substantial inter- and intratumor genomic heterogeneity was

found. Mutation of TP53 was the most common and was present in all but two

patients. Our data strongly supports the theory of clonal selection and the theory

of field cancerization.
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1 Introduction

Every year, nearly 400,000 patients are diagnosed with oral

cavity squamous cell carcinoma (OSCC) worldwide (1). In

Denmark, OSCC is the second most common head and neck

cancer with an increasing incidence over the past decades,

currently at 3.5 per 100,000 per year (2). OSCC is often

associated with tobacco use and excessive alcohol consumption,

which are also known to have a synergistic effect on the malignant

development (3–5).

Studies have demonstrated that the genetic alterations in head

and neck squamous cell carcinomas are heterogeneous without

common mutational signatures (6–8) a finding which might be

explained by the carcinogenic effect of tobacco and alcohol

introducing random DNA alterations. Substantial intratumor

genomic heterogeneity has previously been reported for head and

neck cancer as well as squamous cell lung carcinoma, which also is

frequently associated with tobacco smoke (6, 7, 9, 10).

OSCC often evolves in a stepwise progression from mucosal

dysplasia to invasive carcinoma. However, not all cases of dysplasia

undergo malignant transformation—in the cases where this occurs,

dysplasia is often present adjacent to the malignant tissue (11).

Metastatic spread of OSCC is most frequently to regional lymph

nodes of the neck and, if feasible, surgery including cervical lymph

node dissection is first-line treatment (12).

In this study, using paired tissue samples from surgically

resected primary tumor and lymph node metastases from patients

with OSCC, our aim was to investigate the genomic alterations that

occur in the development from dysplasia to cancer, and further on
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to lymph node metastases. In doing so, identifying potential driver

mutations which could provide us with a better understanding of

the developmental process leading to OSCC.

2 Material and methods

OSCC patients with lymph node metastases at diagnosis treated

with primary surgery were identified from the COrCa database,

which is a consecutive, population-based database of 1399 OSCC

patients treated at Rigshospitalet, University of Copenhagen in the

period from 2007 to 2014 (13). Clinical data on the patients were

obtained through the COrCa database. Patients with lichen planus

were excluded.
2.1 Tissue samples

Formalin-fixed paraffin embedded (FFPE) resected tumor

specimens and lymph node metastases were identified from the

local pathology archive at Rigshospitalet. Tumor specimens were

handled according to standard operating procedures and evaluated

by a pathologist, who marked areas containing 1) normal tissue in

the periphery of the resected specimen, 2) dysplastic tissue

surrounding the cancer, 3) two areas from the cancer tissue, and

4) lymph node metastases. From these areas a punch biopsy from

the corresponding paraffin block was obtained (Figure 1). In the

normal tissue, the punch biopsy was 2 mm in diameter, and from

the remaining areas 1 mm in diameter. All biopsies were transferred

to Eppendorf tubes.
FIGURE 1

Surgical specimen containing morphologically normal tissue (1), dysplastic tissue (2), tumor (3), and lymph node metastasis (4)
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2.2 Sequencing data generation
and analysis

From each FFPE tumor specimen, DNA was extracted using

GeneRead DNA FFPE Kit (Qiagen, Hilden, Germany) according to

manufacturer’s instructions, except for twice the amount of proteinase

K and deparaffination solution were used, and samples were left

overnight for proteinase K digestion at 56°C. The libraries were

prepared with Illumina’s TruSight Oncology 500 High-Throughput

(TSO500 HT) cancer panel (containing 523 cancer-relevant genes)

according to the manufacturer’s instructions, using between 113 - 6675

ng of DNA as input material depending on the available amount of

DNA from the biopsies. The libraries were sequenced on an Illumina

NovaSeq 6000 (2x150 basepairs) with a minimum average coverage

>295x (range 295.3-1781.5). Raw sequencing data (.bcl files) were

demultiplexed into individual FastQ read files with Illumina’s bcl2fastq

v2.20.0 (Illumina Inc., SanDiego, CA) based on their unique index, and

each sequencing library quality checked with fastQC v0.11.8.

Sequenced reads were trimmed with BBduk v38.26, mapped to

hg38/GRCh38 reference genome using BWA-MEM v0.7.15, and

alignment quality control performed with mosdepth v0.2.6. Somatic

variants were called for each tumor sample with GATK v4.1.9.0

suite’s Mutect2 using Best Practices guidelines for Tumor-only

analyses (i.e. without a paired Normal sample) and an internal

Panel-Of-Normals comprising 255 non-cancer samples and a

minimum sample count (–min-sample-count) of 11 .

Furthermore, copy number alterations (CNAs) were called using

local TSO500 app v. 2.2.0 as well as TMB estimation. For all relevant

analyses, the germline resource used was generated from all

gnomAD variant sites with a frequency greater than 3%.
2.3 Variant filtering

Filtering was performed using Qiagen Clinical Insight(QCI)

software (Qiagen Bioinformatics, Aarhus, Denmark/Redwood City,

CA, USA) including exclusion of common variants (variants more

common than 0.5% in 1000 genomes project, ExAC, gnomAD, or

NHLBI ESP exome), and a read depth of ≥10x. Only point

mutations and CNAs that were classified as pathogenic or likely

pathogenic using QCI software were included in the further data

analysis and interpretation. Furthermore, CNAs were only reported

if the fold change (fc) were above 2,2 (14).
2.4 Plots

For creation of the oncoplots indels longer than 10 bps, and

variants with a coverage lower than 100x and a VAF lower than 5%

were excluded. Further, all variants present in more than 20% of the

samples were considered as germline or technical artifacts and

therefore, also excluded from downstream analyses.

Oncoplots were generated with maftools R library (15).

Signature plots were created using R package sigminer with hg38

reference genome package BSgenome.Hsapiens.UCSC.hg38 and

Single base substitutions (SBS) mode (16, 17).
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3 Results

In total, tissue samples from 51 patients with OSCC were

included. In all patients, samples of morphologically normal oral

mucosa, dysplastic oral mucosa, the primary tumor, and lymph

node metastases were available, 255 samples in total. The median

age at diagnosis was 63 years (IQR: 56-70), and the majority were

men (n=35, 69%). Most patients were smokers or previous smokers

at diagnosis (n=43, 84%), and 59% had an excessive alcohol intake

or prior excessive alcohol intake (n=30). The tongue and the floor of

the mouth (n=22, 43%, and n=21, 41%) were the most common

sublocations, and most patients were diagnosed in UICC7 T-stage 2

(n=22, 43%) (Table 1).
3.1 Genomic alterations

The number of point mutations and copy number alterations

(CNAs) varied between patients. All patients harbored at least one

pathogenic or likely pathogenic point mutation, however not all had

relevant CNAs.

The highest number of point mutations in one patient was 16,

while the highest number of CNAs in one patient was 13. The

patients with highest number of genetic alterations in total had 21

different point mutations and CNAs.

Several of the genomic alterations present in the malignant

tissue were also seen in the morphologically normal tissue samples
TABLE 1 Baseline characteristics of included patients.

N

Sex

Male
Female

35 (69%)
16 (31%)

Median age at diagnosis [IQR] 63 [56 – 70]

T-stage

T1 (≤2cm)
T2 (>2cm, ≤4 cm)
T3 (>4cm)
T4a/b/x (invading nearby structures)
Unknown

12 (24%)
22 (43%)
7(14%)
5 (10%)
5 (10%)

Anatomical location

Tongue
Floor of mouth
Other (mucosa buccalis, retromolar, gingiva)

22 (43%)
20 (39%)
9 (18%)

Smoking status

Never smoker
Former smoker
Current smoker

Unknown

6 (12%)
9 (18%)
34 (67%)
2 (4%)

Alcohol consumption

Normal intake
Prior excessive intake
Excessive intake
unknown

19 (37%)
8 (16%)
22 (43%)
2 (4%)
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of the same patients, and only six patients (12%) had no genomic

alterations in their morphologically normal tissue sample. The

remaining had at least one point mutation; no patients had only

CNAs in their morphologically normal tissue sample.

Comparing matched tumor samples substantial intratumor

heterogeneity was found. Only eight patients (16%) shared all

genomic alterations in their matched tumor samples, and even in

these cases the VAF and fold changes were different between the

two samples.
3.2 Point mutations

The overall average tumor mutational burden (TMB) score per

sample was 4.5 mut/Mb. For the different tissue categories, the

highest average TMB score was 6.1 mut/Mb for tumor samples,

while normal tissue samples had the lowest average TMB score at

1.9 mut/Mb. Lymph node metastases had significantly lower

average TMB score than tumor samples. There were significant

differences in TMB score between all tissue categories, except

between dysplasia and lymph node metastasis (Figure 2).

Most variants were missense mutations, followed by frameshift

and stop gain mutations. Alteration of TP53 was the most frequent,

altered in 65% of all samples. Other commonly mutated genes were

FAT1 (32%) and CNAQ (30%). Based on VAF of the most

commonly mutated genes in the different tissue categories,

CDKN2A appears to be a late event, occurring in the primary
Frontiers in Oncology 04
tumor, while TP53, FAT1, QNAC, NOTCH1 and BCR are early

events, arising in the morphologically normal tissue and dysplasia

(Table 2, Figure 3).
3.3 TP53

TP53 mutations were very frequent; only two patients (4%) did

not have any TP53 mutations in any sample—the remaining

patients had between one and seven different mutations in TP53.

The most common variant, present in eight patients, was a well-

known hotspot missense mutation (c.524G>A p.R175H). The

normal tissue samples of 22 patients (41%) contained TP53

mutations, in most cases in very low frequencies around 1-2%,

and only in few cases the frequency increased noteworthy going

through the pre-cancer, tumor, and metastasis tissue.

The patients (N=28, 55%) with no TP53 mutations in their

normal tissue who gained the mutation in the pre-cancer or tumor

tissue often had higher frequencies and increasing frequencies

throughout the development of the cancer.
3.4 Copy number alterations

Amplifications were seen in 31 different genes, the most common

was FGF3, seen in 20 patients (39%), followed by FGF19, and CCND1

seen in 18 (35%) and 26 (51%) patients, respectively. Opposite to the
FIGURE 2

Tumor mutation burden (TMB) in morphologically normal mucosa, dysplasia, carcinoma, and lymph node metastases.
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frequent presence of point mutations in normal tissue, amplifications

were not seen in the normal tissue samples for any patient and did

often not occur before tumor samples.

The highest fold change was seen for FGF3 in a lymph node

metastasis sample, at 16.4. FGF3 had the highest fold change in

dysplasia and tumor samples as well, 7.4 and 12.3, respectively. Other

genes showing high fold change were FGF19 (highest 14.4 in a lymph

node metastasis sample), CCND1 (highest 14.3 in a lymph node

metastasis samples), and EGFR (highest 11,0 in a tumor sample).
3.5 Gene set enrichment during transition
from normal epithelium to dysplasia
and cancer

To characterize the biological processes during transition from

normal epithelium to dysplasia and cancer in OSCC, we finally

performed a gene set enrichment analysis employing gene

expression data from Khan et al. (GSE227919), examining a cohort

(n=66) of patients with early oral lesions consisting of premalignant
Frontiers in Oncology 05
lesions (hyperkeratosis and dysplasia) and OSCC as well as normal

controls. We examined the gene ontology biological processes C5

collection as described (18). As shown in (Figure 4) there is an

upregulation of gene sets involved in epithelium to mesenchymal

transition (EMT) during progression to dysplasia, whereas, the

progression from dysplasia to carcinoma mainly involves clonal

expansion characterized by upregulation of check point and mitotic

signaling (Panel B). This tendency is also apparent in the volcano plot

where keratins are prominent in dysplasia and in the two-way

clusters showing the clear mitotic profile in the carcinoma (C).
4 Discussion

Using targeted DNA sequencing, we analyzed 255 paired tissue

samples from 51 patients with OSCC. From each patient samples were

obtained from morphologically normal mucosa, mucosal dysplasia,

two samples from the primary cancer, and lymph node metastases. In

line with previous studies, the mutational landscape of OSCC tumors

as well as dysplasia and lymph node metastases was heterogeneous,

with OSCC tumors also demonstrating substantial intratumor

heterogeneity (6, 7, 10, 19). Several of the mutations found in the

dysplasia and primary tumor samples were also found in the

surrounding morphologically normal tissue, supporting the theory of

field cancerization, in which the long-term exposure to carcinogens

such as tobacco induces potentially carcinogenic genomic alterations in

cells throughout the exposed mucosa (11, 20, 21). - leaving the mucosa

which has not undergonemalignant transformation in increased risk of

doing so over time owing to the accumulation of genomic alterations,

which clinically manifests asmultifocal carcinoma and/or a tendency to

mucosal recurrence outside of the initial T-site (22).

Our data indicate that mutation of TP53, as well as FAT1, GNAQ,

NOTCH1, and BCR seems to be early events, arising in the

morphologically normal tissue and dysplasia. We found TP53 to be

the most frequently mutated gene identified in 49 patients (96%). TP53
FIGURE 3

Oncoplot including all samples and 40 most frequently mutated genes, including information on type of mutation, and clinical data on patients.
TABLE 2 Frequency of the most common mutations during the various
stages of OSCC development.

Normal
tissue
N (%)

Dysplasia
N (%)

Tumor
N (%)

Lymph node
metastasis

N (%)

TP53 12 (23.5) 24 (47.1) 39 (76.5) 39 (76.5)

FAT1 9 (17.6) 12 (23.5) 34 (66.7) 20 (39.2)

GNAQ 11 (21.6) 19 (37.3) 29 (56.9) 17 (33.3)

CDKN2A 4 (7.8) 6 (11.8) 32 (60.7) 19 (37.3)

NOTCH1 8 (15.7) 18 (35.3) 24 (47.1) 11 (21.6)

BCR 12 (23.5) 12 (23.5) 24 (47.1) 11 (21.6)

LRP1 8 (15.7) 8 (15.7) 23 (45.1) 11 (21.6)
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is a well-known tumor suppressor gene associated with many different

types of cancer, and has been reported as the most frequently mutated

gene in OSCC (23–30). TP53 encodes p53 that plays an important role

in activating DNA repair and arresting cell growth, as well as inducing

apoptosis in cells with DNA damage.Mutation of TP53 has been linked

with the multistep process of EMT, including acquiring the ability to

break down extracellular matrix, tumor invasion, as well as intra- and

extravasation (31, 32). In line with this, mutation of TP53 has been

shown to be associated with increased migratory and invasive potential

and may increase risk of malignant transformation to OSCC when

found in dysplasia (25, 32).

Like TP53,NOTCH1, and FAT1, are involved in EMT through the

NOTCH/Jagged pathway and FAT1/HIPPO pathway, respectively

(33–35). Knockdown of GNAQ has been shown to induce

mesenchymal stem cell like properties in lung cancer cells (36, 37).

Mutation of CDKN2A appears to be a late event, occurring in the

primary tumor. CDKN2A affects cell cycle regulation, and encodes

both p16(INK4a), which is an inhibitor of cyclin dependent kinase

(CDK) and p14(ARF), a p53 stabilizer (38, 39). Germline mutation of

CDKN2A has been linked with early onset OSCC (38).

In this way, the variant data implies that EMT in the dysplastic

foci precedes clonal expansion of malignant cells in the tumor. The

general view is in line with the gene expression data from Khan et al
Frontiers in Oncology 06
(19), where a gene set enrichment analysis (GSEA) showed that

premalignant lesions were enriched in gene signatures associated

with cellular plasticity with partial EMT phenotypes, and immune

response. Our stepwise analysis of data from Khan et al. indicates

that going from normal tissue to dysplasia is characterized by EMT

and that tumors exhibit a strong mitotic component compared to

the dysplastic foci.

Previous studies show increased risk of malignant transformation

over time in benign oral lesions with higher grades of dysplasia, but it

has also been suggested that underlying genetic alterations do not

necessarily correlate with histomorphology, as some lesions withmild

dysplasia have demonstrated genetic alterations similar to those

found in lesions with severe dysplasia (40, 41). Patterns of immune

infiltration of OSCCmay also be linked with prognosis in OSCC (42)

– to the best of our knowledge, definitive biomarkers to distinguish

between lesions that remain benign and lesions that will undergo

malignant transformation has yet to be discovered.

In head and neck squamous cell carcinoma (HNSCC),

amplification of 11q13, containing among others CCDN1, FGF3,

and FGF19, is frequent and has been linked with a poor prognosis

(43, 44). The most frequent amplification in our study was FGF3,

seen in 20 patients (39%). This has also been reported as a frequent

amplification in OSCC by Nakagaki et al. and Ribeiro et al., along
FIGURE 4

Biological processes during transition from normal cell to dysplasia and cancer in oral squamous cell carcinoma. (A) Gene set enrichment analysis
(GSEA) of normal oral cells compared with cells undergoing dysplasia (upper panel) and of dysplastic cells compared with squamous cell carcinoma
(lower panel). The normalized dataset was generated by Khan et al.21 and was downloaded from the gene expression omnibus (GEO) (GSE227919).
The GSEA was performed as described20 in Qlucore Omics Explorer 3.9,0 www.qlucore.com employing the gene ontology biological processes C5
collection of 7647 gene sets available at https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp#C5. The table panels show the 10 most
enriched gene sets ranked according to their normalized enrichment score (NER). Moreover, the gene set size and matches, as well, the p and q
values are indicated. (B) Volcano plot of transcripts exhibiting differential expression between normal cells and dysplasia (left panel) and dysplasia
versus cancer (right panel). Upregulated transcripts are show to the right and are marked in red. Outstanding mRNAs are labelled with their gene
name. (C) Two-way hierarchical clusters of the two in most enriched gene sets during the transition from normal cell to dysplasia and from dysplasia
to cancer, respectively. The class is indicated below and shown on the top of the clusters. Sample codes from the study by Kahn et al. is shown
below. (D) Schematic summary of the molecular alterations leading to dysplasia and cancer in oral squamous carcinoma. Mutations occurring during
the transition from normal epithelium to dysplasia and cancer are indicated on the top of the schematic representation of the epithelium and the
accompanying biological processes are shown below.
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with amplification of CCND1, which was also among the most

frequent in our study—co-amplification of FGF3 and CCND1 was

often observed in their cohort as well as in our cohort (28, 45).

CCND1 is also frequently co-amplified with FGF19 in head and

neck squamous cell carcinoma, amplification of which was seen in

18 (35%) of patients in our cohort—FGF19 is involved in HNSCC

tumorigenesis and may be useful as a target for therapy (46).

From a clinical perspective, the results of this study, with clear

support of the theory of field cancerization, might explain the

relatively frequent local recurrences seen in OSCC, even among

patients treated radically with surgery. It also underlines the

importance of smoking cessation after diagnosis of OSCC. With

continued smoking follows a high risk of inducing further

malignant mutations in already exposed mucosa.

Unfortunately, our results also indicates that there are no

obvious common mutational patterns that can serve as a target of

therapy to be used in the broad group of OSCC patients. Targeted

therapy probably needs to be individualized to each specific patient,

based on their specific mutations.

The strengths of this study lie in the large number of patients,

with matched tissue samples from morphologically normal mucosa,

dysplasia, tumor, and lymph node metastasis as well as the

availability of clinical data. As less than 20% of patients with oral

dysplasia will progress to OSCC, future studies should explore

differences in dysplasia in patients that later develop OSCC and

patients that do not develop OSCC to identify potential biomarkers

of increased risk of malignant transformation.
5 Conclusion

Based on targeted DNA analysis of 255 paired samples from 51

OSCC patients, we found substantial inter- and intratumor genomic

heterogeneity. Mutation of the well-known cancer gene TP53 was

present in all but two patients. We found that morphologically normal

appearing mucosa as well as surrounding dysplasia also contained

mutations, supporting the theory of field cancerization and mucosa at

risk. Our data as well as data from a previous study by Khan et al.

indicates that the development from normal tissue to dysplasia is

characterized by EMT, and the development from dysplasia to cancer

are characterized by mutations in regulators of proliferation.
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