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VASARI 2.0: a new updated MRI
VASARI lexicon to predict
grading and IDH status
in brain glioma
Alberto Negro1*, Laura Gemini1, Mario Tortora2, Gianvito Pace1,
Raffaele Iaccarino1, Mario Marchese3, Andrea Elefante2,
Fabio Tortora2, Vincenzo D'Agostino1 and members of ODM
Multidisciplinary Neuro-Oncology Group
1NeuroRadiology Unit, Ospedale del Mare, Azienda Sanitaria Locale Napoli 1 Centro (ASL NA1 Centro),
Naples, Italy, 2Department of Advanced Biomedical Sciences, University of Naples Federico II,
Naples, Italy, 3Department of Health Medicine and Science “Vincenzo Tiberio”, University of Molise,
Campobasso, Italy
Introduction: Precision medicine refers to managing brain tumors according to

each patient’s unique characteristics when it was realized that patients with the same

type of tumor differ greatly in terms of survival, responsiveness to treatment, and

toxicity of medication. Precision diagnostics can now be advanced through the

establishment of imaging biomarkers, which necessitates quantitative image

acquisition and processing. The VASARI (Visually AcceSAble Rembrandt Images)

manual annotation methodology is an ideal and suitable way to determine the

accurate association between genotype and imaging phenotype. Our work

proposes an updated version of the VASARI score that is derived by changing the

evaluation ranges of its components in an effort to increase the diagnostic accuracy

of the VASARI manual annotation system and to find neuroimaging biomarkers in

neuro-oncology with increasing reliability.

Materials andmethods:We gathered the histological grade andmolecular status

of 126 patients with glioma (Men/Women = 75/51; mean age: 55.30) by a

retrospective analysis. Two residents and three neuroradiologists blindedly

examined each patient using all 25 VASARI characteristics, after having

appropriately modified the reference ranges in order to implement an

innovative VASARI lexicon (VASARI 2.0). It was determined how well the

observers agreed. A box plot and a bar plot were used in a statistical analysis to

assess the distribution of the observations. After that, we ran a Wald test and

univariate and multivariate logistic regressions. To find cutoff values that are

predictive of a diagnosis, we also computed the odds ratios, confidence intervals,

and evaluation matrices using receiver operating characteristic curves for each

variable. Finally, we performed a Pearson correlation test to evaluate whether the

variable grades and IDH were correlated.

Results: An excellent Intraclass Correlation Coefficient (ICC) estimate was

obtained. In this study, five features were part of the predictive model for

determining glioma grade: F4, enhancement quality [area under the curve

(AUC): 0.87]; F5, tumor-enhancing proportion (AUC: 0.70); F6, tumor–non-

enhancing proportion (AUC: 0.89); F7, necrosis proportion (AUC: 0.79); and
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F17, diffusion characteristics (AUC: 0.75). Furthermore, six features were found to

predict IDH mutation status: F4, enhancement quality (AUC: 0.904); F5, tumor-

enhancing proportion (AUC: 0.73); F6, tumor–non-enhancing proportion (AUC:

0.91); F7, necrosis proportion (AUC: 0.84); F14, proportion of edema (AUC: 0.75);

and diffusion characteristics F17 (AUC: 0.79). VASARI 2.0 models showed good

performances according to the AUC values, which are also compared with

traditional VASARI scores.

Discussion and conclusion: Glioma grade and isocitrate dehydrogenase (IDH)

status can be predicted using specific magnetic resonance imaging (MRI)

features, which have significant prognostic consequences. The accuracy of

texture-derived metrics from preoperative MRI gliomas and machine learning

analysis for predicting grade, IDH status, and their correlation can be enhanced

by the suggested new and updated VASARI manual annotation system. To help

with therapy selection and enhance patient care, we intend to create prediction

models that incorporate these MRI findings with additional clinical data.
KEYWORDS

VASARI, MRI, glioma, IDH status, grade tumor, neuroradiology
1 Introduction

The cerebral glioma, a sizable and heterogeneous family of brain

tumors with various features, is the most prevalent primary

malignant brain tumor that exhibits variable treatment response

and patient prognosis (1). Given the considerable variations in the

care of these many glioma subtypes, an accurate diagnosis is

essential. Glioblastoma and oligodendroglioma, for instance,

respond very differently to treatment. Furthermore, tumors

belonging to the same histologic subtype could exhibit distinct

behaviors in other patient cohorts. Previously, the phenotypic

characteristics of the cells were used to identify the tumor grade,

but, today, this seems too simplistic (2), and it is not possible to

identify these distinctions between the different glioma subtypes

based on the purely histology-driven older classification system.

Part of the challenge was that many gliomas can contain mixed cell

types, which result in high inter-observer variability of diagnosis

among neuropathologists (3).

Thus, a paradigm change in the diagnosis and categorization of

gliomas has resulted from new discoveries on their genetic composition.

The updated glioma classification system incorporates molecular

markers into tumor subgrouping, which has been shown to better

correlate with tumor biology and behavior as well as patient prognosis

than the previous purely histology-based classification system (4). The

isocitrate dehydrogenase (IDH) gene changes and the co-deletion of

chromosomal arms 1 and 19 (1p/19q) are the two main alterations

taken into account when differentiating tumors in the World Health

Organization (WHO) classification (5). It could be comparable to

biomarkers that influence the prognosis and biological behavior of a

patient. For instance, it has been demonstrated that IDH gene family
02
mutations offer higher overall survival in high-grade gliomas than their

IDH–wild-type counterparts, regardless of the histological grade (6–8).

Additionally, the degree of cellular differentiation and the molecular

state have an impact on the course of treatment. For instance, low-

grade gliomas are often not treated with adjuvant radiotherapy and/or

chemotherapy. Clinicians found that patients’ responses to treatment,

the severity of side effects, and even prognosis could differ even when

they shared the same tumor. This implies that therapeutic care tailored

to the needs of particular people or “precision medicine” may be the

direction of the future (9–11). The method most frequently used today

for identifying gliomamutations is immunohistochemical analysis after

biopsy or surgical resection (12). By categorizing radiological gliomas in

a non-invasive way with relevant prognostic consequences, clinical

therapeutic planning may be recommended (13). Magnetic resonance

imaging (MRI) is used as a gold standard for radiological examination

of gliomas. Because there are no objective measurements that can be

extensively duplicated and validated, determining the tumor grade

accurately is far from simple (14).

Whereas advanced MRI techniques (e.g., diffusion Magnetic

Resonance Imaging (dMRI), Perfusion Magnetic Resonance

Imaging (pMRI), and Magnetic Resonance Spectroscopy (MRS))

are more specific to biophysical, cellular, and microstructural

processes, conventional MRI methods (e.g., T1-weighted and T2-

weighed sequences) give macrostructural anatomical evidence.

Unlike standard MRI techniques, which only yield relative image

contrasts, these advanced techniques have the potential to be (semi)

quantitative. For the purpose of acquiring imaging biomarkers,

sensitivity, specificity, and quantification are crucial (15). While a

number of recent investigations have concentrated on applying

sophisticated MRI methods (such as perfusion, spectroscopy, and
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machine learning approaches) for radiogenomic purposes (16–18),

standard MRI sequences continue to be the gold standard for the

investigation and characterization of brain tumors.

An optimal and adequate method to identify the right correlation

between imaging phenotype and genotype, based on the evaluation of

specific radiological characteristics, mainly conventional MRI

features, and, at the same time, to standardize the assessment of

gliomas is represented by the VASARI manual annotation system.

A collection of standardized descriptors called VASARI

(Visually AcceSAble Rembrandt Images) MRI characteristics is

used to describe brain tumors on contrast-enhanced MRI

imaging. These characteristics aid in the diagnosis, grading, and

prognostication of gliomas by offering qualitative and quantitative

information regarding the visual appearance and properties of the

tumor (19). The location, shape, enhancement quality, necrosis

proportion, edema proportion, and other geometric parameters of

the tumor are all included in the VASARI features (20).

Since its development in 2016, VASARI score has undergone a

development from the number of the features, now 25, to the field of

application in neuro-oncology.

Certain specific MRI features [enhancement quality (F4),

tumor-enhancing proportion (F5), tumor–non-enhancing

proportion (F6), and necrosis proportion (F7)] have been shown

in our previously published study (21) to be predictive of the grade

and IDH status of gliomas, with significant prognostic implications.

Inter-observer agreement and multicenter collaborations are

made possible by the reliability and consistency in the

interpretation of MRI scans made possible by the standardization

of the VASARI features (22, 23). The communication between

radiologists, oncologists, and other medical professionals involved

in the treatment of patients with glioma is improved when VASARI

elements are used in structured reporting systems (24). To increase

the precision of glioma grading, prognosis prediction, and
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treatment response assessment, they have been used in machine

learning algorithms and radiomics studies (24, 25). Predictive

models to inform therapy choices and patient care can be created

by merging VASARI variables with additional imaging features and

clinical data (26, 27).

Such a model’s potential resides in its capacity to evaluate tumor

features objectively. In actuality, although VASARI started out as a

visual assessment scale, a numerical estimate of the features under

consideration can be obtained by using “regions of interest” (ROIs)

to calculate the areas of the various tumor components. However,

we think that such a system is not useful in terms of outpoint

prediction and is too sophisticated and challenging for doctors to

utilize, especially in light of the outcomes documented in the

literature and our earlier study.

In this regard, we propose a new VASARI glioma score, which

we refer to as VASARI 2.0. This system evaluates only those tumor

features that can be objectively described by ROI (manual

segmentation) and that predict the outpoint (IDH status and

grade) with area under the curve (AUC) > 0.8. For this purpose,

we modify the evaluation intervals/ranges as explained in the

following (Table 1), all in order to provide the scientific

community with a system suitable with clinical practice.
2 Materials and methods

2.1 Ethics statements

The Institutional Review Board accepted the study because the

surgery was routinely carried out and was not considered

experimental. Each patient completed and signed a proper written

informed consent. There was no indication of a conflict of interest

from the writers. No funding was given to support this study.
TABLE 1 Modified ranges between VASARI and VASARI 2.0.

F4
Enhancement

quality

F5
Enhanced area

F6
No-enh area

F7
Necrosis area

F14
Edema area

F17
Diffusion
quality

VASARI 2.0

1. Absent 1. Absent or <5% 1. Absent or <5% 1. Absent or <5% 1. Absent or <5% 1. Augmented

2. Minimal 2. 6–25 2. 6–25 2. 6–25 2. 6–25 2. Reduced

3. Avid 3. 26–50 3. 26–50 3. 26–50 3. 26–50 3. Mixed

4. 51–75 4. 51–75 4. 51–75 4. 51–75

5. 76–95 5. 76–95 5. 76–95 5. 76–95

6. >95% 6. >95% 6. >95% 6. >95%

VASARI

1. Absent 3. <5% 3. <5% 2. No 2. No 2. Augmented

2. Minimal 4. 6%–33% 4. 6%–33% 3. <5% 3. <5% 3. Reduced

3. Avid 5. 34%–67% 5. 34%–67% 4. 6%–33% 4. 6%–33% 4. Mixed

6. 68%–95% 6. 68%–95% 5. 34%–67% 5. 34%–67%

7. 96%–99%

8. 100%
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2.2 Patient population

Retrospective analysis of patients who underwent MRI for pre-

surgical glioma evaluation between 2018 and 2021 has been done on

the database at our institution. Additionally, pathology reports were

gathered to determine the glioma grade. According to the following

criteria, a number of patients were disqualified from the study: (a)

poor acquisition quality imaging; (b) no intravenous contrast; (c)

medications prior to the MR examination, such as steroid

medication that may alter edema and contrast enhancement; and

(d) lack of a pathology report. In the end, 126 individuals with

glioma were included. The study group included 51 women and 75

men, ages 14 to 84 (further information in Table 2).
2.3 Image acquisition

MRI at 1.5 T (Magnetom Amyra; Siemens Medical Systems,

Erlangen, Germany) was used for the imaging. In addition to T2-

weighted images with dark fluid on the axial planes, the MR
Frontiers in Oncology 04
technique also includes T1-weighted images taken before and after

the administration of gadolinium-based contrast media. In addition

to this, we also carried out Diffusion Weighted Imaging (DWI) and

Susceptibility Weighted Imaging (SWI) on the axial plane, as well as

T1-w and T2-w sequences on additional planes. These were the

precise imaging parameters: (1) axial T1-weighted MR: repetition

time of 250 ms, echo time of 2.46 ms, slice thickness of 5 mm, matrix

dimensions of 320 × 256, and field of view of 220 × 220 mm2; (2) axial

T2-weighted MR: repetition time of 6000 ms, echo time of 93 ms,

slice thickness of 5 mm, matrix dimensions of 320 × 288, and field of

view of 198 × 220 mm; and (3) axial T2WI dark-fluid MR: repetition

time of 8000 ms, echo time of 97 ms, slice thickness of 5 mm, matrix

dimensions of 320 × 224, and field of view of 181 × 220 mm.
2.4 Magnetic resonance imaging
assessment and analysis

The VASARI lexicon can be easily understood by following the

specific guide downloadable from the public website of The Cancer
TABLE 2 Demographic data about our study population.

Glioma grade

Demographic data 1 (n = 3) 2 (n = 21) 3 (n = 18) 4 (n = 84) Total (126)

Age (yr.) < 50 3 10 8 18 39

> 50 0 11 10 66 87

Sex Male 2 8 11 54 75

Female 1 13 7 30 51

Location Frontal 0 12 9 28 49

temporal 0 7 4 17 28

Insular 2 2 1 6 11

Parietal 0 0 1 22 23

Occipital 0 0 2 2 4

Brain steam 1 0 1 5 7

Other (cerebellum) 0 0 0 4 4

Side Right 0 11 5 47 63

Left 2 0 2 5 9

Central/Bilateral 1 10 11 32 54

Eloquent area No 2 15 13 45 75

Motor speech 1 2 1 7 11

Receptive speech 0 4 2 16 22

Motor area 0 0 1 15 16

Visual area 0 0 1 1 2

IDH status Positive 2 13 3 4 22

Negative 1 8 15 80 104
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Imaging Archive, in the specific section “Supporting Documentation

and Metadata” (https://wiki.cancerimagingarchive.net/display/

Public/VASARI+Research+Project).

We considered that the entire lesion was made up of necrotic

tissue, edema, enhancing area, and non-enhancing area in

accordance with the VASARI approach. Furthermore, we

extracted the score system and morphological features. Therefore,

an enhancing area was defined as any region of the tumor that

shows a discernible increase in signals on the post-contrast T1-

weighted pictures in comparison to those in the pre-contrast. Any

region displaying T2-weighted hyperintensity (less than the

intensity of the Cerebral Spinal Fluid (CSF) fluid) and

corresponding T1-weighted hypointensity, as well as a mass effect

and architectural distortion, such as blurring of the gray-white

interface, was deemed to be a non-enhancing area. An irregular

border, a high signal on T2-weighted and proton density imaging,

and either no enhancement at all or a significantly decreased

enhancement are characteristics of a necrotic section of the

tumor. By calculating the ratio of the total lesion area to the

necrosis area (internal to it), a quantitative evaluation of the

necrosis was produced. On the T2-, T1-, and SWI T2*–weighted

sequences, a bleeding was detected and assessed in connection with

the existence of hemoglobin breakdown products. Based on an

apparent diffusion coefficient (ADC) map, the diffusion

characteristics are classified as mostly facilitated or restricted in

the enhancing or non-contrast–enhanced tumor (nCET) region of

the tumor. They are described as mixed when there is a roughly

equal amount of both limited and assisted diffusion.

Three neuroradiologists, two residents and one senior,

independently evaluated the imaging characteristics.
2.5 Statistical analysis

The aims of the statistical analysis were as follows: 1) analyze

the statistically significance of each variable with respect to the

prediction of the variable levels; 2) analyze the statistically

significance of each variable with respect to the prediction of the

variable IDH; and 3) analyze the relationship between IDH

and GRADE.

To consider only relevant columns in the dataset, a sub-dataset

was created, only with the following columns: GRADE, F4, F5, F6,

F7, F14, F15, and F24, and another column was added to the dataset

named “levels.” This variable is binary, with level = 0 denoting a

grade of 1 or 2 (low grade) and level = 1 denoting a grade of 3 or 4

(high grade). The variable “IDH mutate” has been turned into a

dummy binary variable too (IDH 0 = non-mutate = neg; IDH 1 =

mutate = pos).

To see whether the variable GRADE and IDH are correlated, we

built a contingency table where, on one side, there are the levels of

GRADE and, on the other, the IDH, negative or positive. Then, we

also did the Pearson correlation test and built a correlation plot.

As is often the case in real datasets, the VASARI dataset that we

analyzed is highly imbalanced (80% vs. 20%) and is of high grade, so

we divided the dataset into train (70%) and test (30%), and, then, we

balanced the training data in such a way that we obtained 2,000
Frontiers in Oncology 05
observation and perfectly balanced classes (p = 0.5). Then, we

proceeded to the analysis of the statistically significant variables in

the prediction of levels. As the first step in this part of the analysis,

we conducted a multiple logistic regression using the dichotomic

variable levels as response variable and each variable as covariate on

the balanced training set. We also conducted a Wald test on the

categorical variables to confirm statistical significance.

We computed the odds ratios (OR) and confidence intervals for

each variable and evaluated the matrices with ROC curves.

After the balancing of the classing, we finally conducted a

multiple logistic regression using all the variables in the dataset to

have an idea of which variable is statistically significant and to see

how does our classifier performs having the whole set of

information in the prediction of IDH. We then applied this

model to the test set to evaluate the predictive performance in the

analysis of the relationship between IDH and GRADE.

We compared the results with the same value obtained in our

previous studies using the gold standard for VASARI score and

traditional statistics method; in particular, we focused on the AUC

value to compare diagnostic accuracy.

The analysis has been done on the software R, using the package

ROSE for the balancing purpose.

Applying more or less complex machine learning methods to

this type of data is very risky because the more unbalanced the

classes, the greater the risk of having results biased by lack of

observation in one class.

More specifically, the classification problem’s confusion matrix

indicates how well our model classifies the target classes, and it is from

this confusion matrix that we derive the model’s accuracy, which is

determined by dividing the total number of predictions made by the

model correctly by the total number of predictions. Thus, in cases

where a class has few observations, it may be categorized as the most

popular class, potentially yielding a high accuracy score. For example,

one of the most often used parametric techniques for binary

classification is logistic regression, which is heavily biased in cases

when the classes are not balanced because it underestimates the

conditional probabilities of the rare class. To solve these problems,

many methods have been proposed in the literature, such as

oversampling, undersampling, SMOTE (Synthetic Minority

Oversampling Technique), and ROSE (Random Over-Sampling

Examples). In this paper, we chose to use the most recent ROSE

technique. It is a bootstrap-based method that helps with binary

classification when there are uncommon classes present. By creating

synthetic examples from a conditional density estimate of the two

classes, it can handle both continuous and categorical data. We

selected this approach because of the strong theoretical

underpinnings of ROSE. It also draws synthetic examples from an

estimate of the conditional density underlying the data, thus providing

confidence that the distribution of the data into the classes has not

changed because the balancement has been performed.
3 Results

In previous studies, it has been demonstrated that some of that

specific MRI features [enhancement quality (F4), tumor-enhancing
frontiersin.org

https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
https://doi.org/10.3389/fonc.2024.1449982
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Negro et al. 10.3389/fonc.2024.1449982
proportion (F5), tumor–non-enhancing proportion (F6), and

necrosis proportion (F7)] can be used to predict the grade and

IDH status of gliomas, with important prognostic implications. The

standardization and improvement of these data can be used for

programming machine learning software (28).
3.1 Part 1: preliminary analysis and
relationship between GRADE/levels
and IDH

We obtained a clear relation between a negative IDH and high

GRADE. In fact, 75.2% of observations have a negative IDH and a

high grade (= 3 or 4) with a p-value of 2.2e−16 < 0.05, so the

coefficient is statistically significant. We obtained a correlation

coefficient of −0.661, meaning that these two variables are

significantly negatively correlated. The resulting confidence

interval is [−0.750, −0.550], respectively, at 2.5% and 97.5%.

These results are shown in Figure 1.
3.2 Part 2: analysis of the statistically
significant variables in the prediction of
levels/grade

We applied this model to the test set to evaluate the predictive

performances, and we obtain accuracy = 0.811, sensitivity = 0.781, and

specificity = 1, with AUC = 0.906. We proceeded with the analysis of

the statistical significance of each variable in the prediction of levels.We

obtained that variable F4 is significant with a p-value = 2.7e−10 < 0.05

with no significant differences between levels 1 and 3. For every one

unit increase in F4 = 2, the odds of being in the level = 1 (high grade)

increases by a factor of 4.699.

We calculated the predicted probabilities to be in the high-level

grades (vs. low level) at each level of F4: F4 = 3 has 100% probability

to be in the high level (grades 3 and 4), whereas the probability for

the other two levels is much lower (5% and 20%). This model has

accuracy = 0.811, sensitivity = 0.781, and specificity = 1.000, with

AUC = 0.869, which is superior to that of the first study (0.73).

Variable F5 is statistically significant with a p-value < 2e−16 <

0.05 with significant differences between levels 2 and 6 of the F5

variable and cutoff level F5 = 4.

For every one unit increase in F5 = 3, the odds of being in the

level = 1 (high grade) increases by a factor of 0.49.

F5 = 5 and F6 = 6 have a probability to be in the high level

(grades 3 and 4) of 73% and 63%, whereas the probability for the

other three levels is much lower (19%, 73%, and 63%).

This model has accuracy = 0.672, sensitivity = 0.908, and

specificity = 0.438, with AUC = 0.712.

Variable F6 is statistically significant with a p-value = 0.01409

< 0.05.

For every one unit increase in F6 = 2, the odds of being in the

level = 1 (high grade) increases by a factor of 1. We also obtained

that there is a significant difference between the F6 = 3 and F6 = 4

(p-value = 0.0049 < 0.05). We calculated the predicted probabilities
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to be in the high-level grades (vs. low level) at each level of F6:

F6 = 1, F6 = 2, and F6 = 3 have a probability to be in the high level

(grades 3 and 4) of 100%, whereas the probability for the other

levels is much lower (24.1%, 15.9%, and 0%, respectively). We can

also clearly identify a cutoff level for this variable. This model has

accuracy = 0.757, sensitivity = 0.719, and specificity = 1.000, with

AUC = 0.8969. Also, this result is superior to that of our first study.

Variable F7 is statistically significant with a p-value = 2e−16 >

0.05, but none of the levels of F7 is statistically significant. For every

one unit increase in F7 = 2, the odds of being in the level = 1 (high

grade) increases by a factor of 3.35; whereas for every one unit

increase in F7 = 4, the odds of being in the level = 1 (high grade)

increases by a factor of 3.22e+09.

Moreover, we calculated the predicted probabilities to be in the

high-level grades (vs. low level) at each level of F7: F7 = 4, F7 = 5,

and F7 = 6 have the probability to be in the high level (grades 3 and

4) of 100%; whereas when F7 = 1 and F7 = 2, the probability to be in

the high level is 8.9% and 24.6%, respectively. This model has

accuracy = 0.837, sensitivity = 0.906, and specificity 0.400, with

AUC = 0.8 (vs. an AUC of 0.738).

Variable F17 is statistically significant with a p-value = 3.634e

−05 < 0.05. Moreover, there is a significant difference between levels

F17 = 1 and F17 = 2 with a p-value of 0.017 < 0.05 and also between

F17 = 1 and F17 = 3 with a p-value of 0.0017 < 0.05. We can then

identify a cufoff in this case.

For every one unit increase in F17 = 2, the odds of being in the

level = 1 (high grade) increases by a factor of 7.71; whereas for every

one unit increase in F17 = 3, the odds of being in the level = 1 (high

grade) increases by a factor of 18.48.

We can calculate the predicted probabilities to be in the high-

level grades (vs. low level) at each level of F17: F17 = 3 has the

probability to be in the high level (grades 3 and 4) of 74%; whereas

when F17 = 1 and F17 = 2, the probability to be in the high level is

13.4% and 24.3%, respectively.

This model has accuracy = 0.840, sensitivity = 0.921, and

specificity 0.500, with AUC = 0.8.

Variables F14, F15, F18, F19, and F20 were not statistically

significant with a p-value < 0.05. These results are shown in Figure 2.
3.3 Part 3: analysis of the statistically
significant variables in the prediction of
IDH mutation

The pre-processing part is identical to the one described in part

2: We divided the dataset into train (70%) and test (30%), and, then,

we balanced the training data in such a way that we obtained 2,000

observation and perfectly balanced classes (p = 0.5). Then, we

conducted a multiple logistic regression and obtained that all the

variables are statistically significant. We then applied this model to

the test set to evaluate the predictive performances, and we obtained

accuracy = 0.88, sensitivity = 0.6, and specificity = 0.95, with AUC =

0.93. We proceed with the analysis of the significance of each

variable in the prediction of IDH. We obtained that variable F4 is

significant with a p-value = 1.9e−05 < 0.05 with a significant
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difference between F4 = 2 and F4 = 3 (p-value 8.9e−05 < 0.05). The

results of the OR have a key role in interpreting the role of the

variable. In particular, the OR column means that, for every one

unit increase in F4 = 2, the odds of having a positive IDH increases

by a factor of 0.14; whereas for every one unit increase in F4 = 3, the

odds of having a positive IDH increases by a factor of 0.0. Moreover,
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we can calculate the predicted probabilities of having a positive IDH

(vs. negative) at each level of F4: F4 = 3 has 1.2% probability of

having a positive IDH, whereas the probability for the other two

levels is higher (76.9% and 45.2%). This model has accuracy = 0.90,

sensitivity = 0.9, and specificity 0.90, with AUC = 0.904, which is

superior to that of our first study (0.73).
FIGURE 2

Through logistic regression using the dichotomous variable (high or low grade) as the response variable and F4 as the covariate, we obtained that
variable F4 is significant with a p-value = 0.000157 < 0.05. We also compared the performance of VASARI 2.0 with that of traditional VASARI in
predicting grade.
FIGURE 1

In our analysis, we obtained a clear relationship between negative IDH and high GRADE. In fact, 75.2% of the observations have negative IDH and
high grade (= 3 or 4) with a p-value of 2.2e−16 < 0.05, so the coefficient is statistically significant. We obtained a correlation coefficient of −0.661,
which means that these two variables are significantly negatively correlated. The resulting confidence interval is [−0.750, −0.550] at 2.5% and 97.5%,
respectively. Statistical analysis by contingency table, which is then confirmed by Pearson’s test, obtained a statistically significant correlation
between IDH mutation and glioma grade: In 75% of the observations, we found IDH WT and high grade.
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Variable F5 is statistically significant with a p-value = 0.04386 <

0.05 with a significant difference also between F5 = 3 and F5 = 4

with a p-value = 3.6e−11 < 0.05 and between F5 = 3 and F5 = 5 with

a p-value = 0.0077 < 0.05. Hence, we can conclude that the cutoff

level for variable F5 is F5 = 3. The OR column showed that, for

every one unit increase in F5 = 2, the odds of having a positive IDH

increases by a factor of 4.978539e−08; whereas for every one unit

increase in F5 = 7, the odds of having a positive IDH increases by a

factor of 5.524675e−16. These values are so low because F5 = 1 is

taken as baseline, where only positive values are observed.

Moreover, we calculated the predicted probabilities of having a

positive IDH (vs. negative) at each level of F5: F5 = 1, F5 = 2, and

F5 = 3 have a high probability to have a positive IDH of 100%, 67%,

and 81%, respectively, whereas the probability for the other three

levels is much lower (53.3%, 14%, and ~0%). This modes has

accuracy = 0.808, sensitivity = 0.48, and specificity 0.890, with

AUC = 0.73.

Variable F6 is statistically significant with a p-value = 5.162e−0

5< 0.05 with a significant difference between levels F3 and F4 with a

p-value of 2e−16 < 0.05 and between F5 and F6 with a p-value of

1.1e−14 < 0.05. With these results, we may identify two

different cutoffs.

The OR column showed that, for every one unit increase in

F6 = 2, the odds of having a positive IDH increases by a factor of 1;

whereas for every one unit increase in F6 = 4, the odds of having a

positive IDH increases by a of 6.704338e+08.

Moreover, we calculated the predicted probabilities to be in the

high-level grades (vs. low level) at each level of F6: F6 = 4, F6 = 5,

and F6 = 6 have the highest probability to have a positive IDH:

68.1%, 75.5%, and 97.4%, respectively, whereas the probability for
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the other levels is 0%. This model has accuracy = 0.86, sensitivity =

0.90, and specificity = 0.85, with AUC = 0.9125 (vs. AUC = 0.7648).

We obtained that variable F7 is statistically significant with a p-

value = 2.31e−06 < 0.05 and a significant difference between F7 = 3

and F4 = 4 (p-value = 0.00085 < 0.05). Another significant

difference is between F7 = 2 and F7 = 4. We can then conclude

that we have a cutoff for values higher than F7 = 3. The OR column

showed that, for every one unit increase in F7 = 2, the odds having a

positive IDH increases by a factor of 2.083333e−01. Moreover, we

can calculate the predicted probabilities to have a positive IDH at

each level of F7: F7 = 1, F7 = 2, and F7 = 3 have a probability of

having a positive IDH of 61.5%, 25%, and 21.2%, respectively,

whereas F7 = 4, F7 = 5, and F7 = 6 have a probability of having a

positive IDH mush lower: 0%. This model has accuracy = 0.740,

sensitivity = 1.000, and specificity = 0.675, with AUC = 0.835 (vs.

AUC = 0.789).

Variable F14 is barely statistically significant with a p-value =

0.0648 > 0.05 with no significant difference between the levels in

F14. The OR column showed that, for every one unit increase in

F14 = 2, the odds having a positive IDH increases by a factor of 0.25;

whereas for every one unit increase in F14 = 3, the odds of being in

the odds having a positive IDH increases by a factor of 0.625.

Moreover, we can calculate the predicted probabilities to have a

positive IDH at each level of F14: F14 = 3 has the highest probability

of having a positive IDH with the 38.5%; whereas F14 = 2, F14 = 4,

and F14 = 5 have a probability of having a positive IDHmuch lower:

20%, 8.8%, and 12.5%, respectively. This model has accuracy =

0.780, sensitivity = 0.600, and specificity 0.825, with AUC = 0.75.

Variable F17 is statistically significant with a p-value = 9.372e−06

< 0.05 and a significant difference between the levels in F17 = 1 and
FIGURE 3

Through univariate logistic regression to evaluate the influence of variables in predicting/IDH levels, we obtained that variable F6 is statistically
significant with a p-value = 0.0032 < 0.05. We also performed a Wald test on variable F6, which concluded that this variable is statistically significant
(p-value = 0.01409 < 0.05). We also compared the performance of VASARI 2.0 with that of traditional VASARI in predicting IDH status.
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F17 = 2 with a p-value of 0.00049 < 0.05. The OR column showed

that, for every one unit increase in F17 = 2, the odds having a positive

IDH increases by a factor of 0.11; whereas for every one unit increase

in F17 = 3, the odds of being in the odds having a positive IDH

increases by a factor of 0.05. Moreover, we can calculate the predicted

probabilities to have a positive IDH at each level of F17: F17 = 3 has

the lowest probability of having a positive IDH with the 8.7%;

whereas F17 = 1 has a higher probability of having positive IDH:

65%. This modes has accuracy = 0.860, sensitivity = 0.400, and

specificity 0.975, with AUC = 0.7925.

Other features, qualitative or non-statistically significant, were

not taken into account. These results are shown in Figure 3.
4 Discussion

In our study, we confirm that there is a positive statistical

evidence between some VASARI features and IDH and glioma

grade (Figure 1). The most significant variables in the prediction of

IDH are F4 (AUC: 0.904), F5 (AUC: 0.73), F6 (AUC: 0.91), F7

(AUC: 0.84), F14 (AUC: 0.75), and F17 (AUC: 0.79).

The most significant variables in the prediction of levels are F4

(AUC: 0.87), F5 (AUC: 0.7), F6 (AUC: 0.89), F7 (AUC: 0.79), and

F17 (AUC: 0.75).

The statistical significance for all the features is increased using

VASARI 2.0 compared to result obtained with traditional VASARI

ranges, demonstrating how the new proposed VASARI lexicon

promotes an increase in the sensitivity, specificity, and AUC of these

features to increase the statistical significance with AUC > 0.8 and to

make this system more suitable for clinical practice. We can

distinguish low-grade gliomas from high-grade gliomas using this

model. Numerous studies have assessed the application of the

VASARI Lexicon in the categorization of cerebral gliomas (29–34).

Due to a much more extensive destruction of the blood–brain barrier

in high-grade gliomas compared to that in low-grade gliomas, our

study, for instance, produced similar results to those in the work done

by Su et al., in which the enhancement quality and the proportion

enhancing were significantly higher in high-grade gliomas (33). High-

grade gliomas exhibit much higher cell growth proliferation. In the

context of tumor tissue, new, irregular, and aberrant vessels form very

rapidly, without an adequate blood–brain barrier, a process known as

neoangiogenesis. Newly formed vessels are much more permeable

than normal vessels. Therefore, in an MRI study after intra venous of

contrast agent, the solid tumor component appears much brighter or

“enhanced” in the resulting images, given that the contrast agent can

cross the blood–brain barrier very easily, escaping from the blood

vessels into the surrounding tumor tissue. Furthermore, areas of

necrosis can very often be found in high-grade gliomas, given that

they have a very high rate of proliferation and cell growth, which is

associated with an inadequate blood supply. These necrotic

phenomena, therefore, contribute to the breakdown of the blood–

brain barrier, allowing a greater leakage of contrast agents into the

tumor tissue and promoting greater further enhancement (31, 32). In

high-grade gliomas, there are often infiltrative lesional margins in the

surrounding healthy tissue. In MRI, all this appears as an area of

pathological alteration of the signal intensity, with hyperintensity in
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the Fluid Attenuated Inversion Recovery (FLAIR)-weighted

sequences, much larger and more extensive than the pathological

area visible on the T1-weighted MRI sequences. Our study supports

this theory by showing that the infiltrative T1/FLAIR ratio has a high

predictive value for glioma grade (OR = 41.99, p = 0.001). The fast and

uncontrolled phenomenon of neoangiogenesis is indirectly indicated

by the presence of hemorrhagic components and necrosis in the

context of high-grade gliomas. The newly created blood vessels are

easily injured and do not have an unevenmorphology, which results in

bleeding. In our study, the presence of necrosis was a strong predictive

factor with an OR of 13.57 (p < 0.001) for high-grade glioma, a result

that is consistent with previous research findings (30–34).

In our study, we found that edema proportion was a significant

factor. These findings, in line with other recent studies, highlight

that mass effect is an important predictor of astrocytoma grade.

Tumor perilesional cerebral edema correlates with the WHO

pathological grading as recently demonstrated (35). Measuring

areas of non-enhancing tumor have been highlighted by The

Response Assessment in Neuro-Oncology Working Group (36).

Astrocytomas represent very heterogeneous neoplasms. The

component characterized by contrast enhancement does not

always contain anaplastic parts, unlike the component without

contrast enhancement, which often contains both anaplastic parts

and low-grade parts. The evaluation of the nCET component,

therefore, is very important both in the diagnosis and in the

follow-up to better assess the therapeutic monitoring of

astrocytoma. However, understanding the real extent of a high-

grade astrocytoma by evaluating the nCET proportion is very

difficult given the extremely heterogeneous nature of the tumor

and the extreme difficulty in delineating its peripheral margins. In

reality, all this represents a false dichotomy, given that, in

infiltrating gliomas, there is an “infiltrative edema,” consisting of

tumor cells and edema in the background of the brain.

Furthermore, even with the use of sophisticated techniques like

T2 mapping, diffusion tensor imaging, and perfusion imaging, it

remains difficult to differentiate pure vasogenic edema from

infiltrative edema. In this work, using multivariate analysis based

on VASARI, we showed that nCET percentage was a predictive

factor of grade 4 astrocytoma. The new classification of tumors of

the central nervous system published in 2021 highlights the

importance of evaluating the molecular status, particularly, and

first of all, the IDH mutation. Usually, one of the two IDH genes,

IDH1 and IDH2, is affected by the mutation. The mutation most

frequently found in gliomas is that affecting the IDH1 gene.

Typically, a specific mutation (R123H) occurs that causes a

single–amino acid change in the active enzyme site. The mutated

IDH enzyme promotes the conversion of alpha ketoglutarate into 2-

hydroxyglutarate, an oncological metabolite that induces cancer

formation (6). The presence of the IDH mutation is associated with

a significantly better prognosis compared to IDH–wild-type

gliomas, and its identification is, therefore, very important for the

classification of cerebral gliomas and for clinical therapeutic

management. In our study, six VASARI features were found to

predict IDH mutation status: F4, enhancement quality (AUC:

0.904); F5, tumor-enhancing proportion (AUC: 0.73); F6, tumor–

non-enhancing proportion (AUC: 0.91); F7, necrosis proportion
frontiersin.org

https://doi.org/10.3389/fonc.2024.1449982
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Negro et al. 10.3389/fonc.2024.1449982
(AUC: 0.84); F14, proportion of edema (AUC: 0.75); and F17,

diffusion characteristics (AUC: 0.79). Our study confirms the results

of our recently published study for VASARI characteristics and

demonstrates an increase in their diagnostic accuracy, especially

regarding F4 and F6 with an AUC value greater than 85%, in line

with the ESR statement on the validation of imaging biomarkers

(European Society of Radiology, 2020). Olar et al. identified a

significant correlation between proportion of enhancing tumor

and IDH mutation. In the study, the researchers studied the role

that the IDHmutation may have in the grading and mitotic index in

grade II–III diffuse astrocytomas, and their results demonstrated

that the IDH mutation determines the effect of mitotic index on

patient outcome (37, 38). IDH–wild-type gliomas usually have a

higher contrast enhancement than IDH-mutant gliomas (39–43),

and IDH wild-type gliomas have undefined margins (44). Weighted

FLAIR sequences are very useful for evaluating areas with

pathological signal intensities. In the case of IDH–wild-type

gliomas, the areas with pathological signal hyperintensity in the

weighted FLAIR sequences, which extend beyond the margins of

enhancement, usually represent the infiltrative edema component,

characterized by the presence of infiltration of tumor cells in the

peripheral tissue (31). Using multivariate analysis, we discovered

that, in our cohort, the percentage of necrosis accurately predicts

the status of IDHmutation. In our investigation, necrosis accounted

for less than 25% of the total tumor volume in IDH-mutant cohorts

and more than 50% in IDH-wild phenotypes. These results support

the conclusions of multiple investigations. IDH-mutants were

frequently linked to a cutoff necrosis of less than 33% of the

tumor, according to Park et al. (45). Excessive tumor necrosis in

IDH–wild-type gliomas is determined by increased hypoxia, which

is brought on by intravascular thrombosis and the coagulation

pathway activation (45–47). Furthermore, our results highlight two

other VASARI features that can be used in the prediction of IDH

status, which were not highlighted in our recently published work,

namely, F14 (proportion of edema) and F17 (diffusion

characteristics). In IDH-mutant gliomas, absent edema or edema

with an extension smaller than that of the solid tumor component

was found; whereas in IDH–wild-type gliomas, the extension of the

edematous alteration was greater than or equal to the volume of the

tumor. Similar results were documented in the studies by Lasocki

et al. (40) and Patel et al. (48). Lasocki et al. found a cutoff value of

33% to distinguish IDH-mutant gliomas from IDH–wild-type

gliomas. Furthermore, the presence of cysts was documented

more frequently in IDH-mutant gliomas, in line with other

published studies (49). In several other studies, IDH-mutant

gliomas had higher average ADC values than IDH–wild-type

gliomas, underlining that their edematous component is usually

less infiltrative and destructive (50–54). Nowadays, the main

attraction of the scientific interest is radiomic and machine

learning that has been applied to tumor grading and diagnosis,

tumor segmentation, non-invasive genomic biomarker

identification, detection of progression, and patient survival

prediction. It has been suggested that machine learning models

are capable of more accurate prognosis prediction than
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histopathological categorization. These considerations could be

the starting point for subsequent studies. The standardization and

improvement of these data can be used for programming machine

learning software (55). In the field of brain tumor, interest in

machine learning methods is increasing, especially in diagnosis

and pre-surgery planning though un-invasive histopathological

categorization. Radiomics may be able to determine a tumor’s

response to treatment, make an accurate diagnosis, and forecast a

prognosis (56). In addition to offering extra prognostic data,

radiomic analysis’ ability to non-invasively differentiate between

various glioma molecular subtypes would aid in the choice of

targeted chemotherapy for patients with numerous genetic

mutations and possibly high-grade tumor types (57–59).

Additionally, it would improve surgery, which is necessary to

maintain median survival (60). Therefore, treatment responses,

progression-free survival, and overall survival can all be more

accurately predicted with the application of radiomic risk models

(61, 62). It is possible to evaluate the effectiveness of anti-angiogenic

therapy without endangering the patient by non-invasively

acquiring the radio-genomic profile of a tumor (63). Our study

has some limitations that need to be clarified and discussed: a single

retrospective center study and a small sample size. This would not

allow a validation of the new VASARI 2.0 method proposed by use

on a large scale quickly. However, the number of cases is in line with

for the type of analysis described. Future studies with multi-center

data or larger cohorts needed for a full validation of the new

VASARI lexicon that we proposes, in order to eliminate the risk

of data bias, which could affect the generalizability of the study

results. However, there are also strong points for the use of the

proposed VASARI 2.0 lexicon in daily clinical radiological practice.

It does not require specific software to automate the scoring process.

There are methodological innovations in the evaluation of the MRI

VASARI features, thanks to adequate changes in the reference

intervals as reported in Table 1. Familiarization with this new

lexicon is easy. It can be easily used in daily clinical practice also

because it can be of valid help in capturing the most salient aspects

to be described in the report. It can represent a valuable tool for

producing a structured and standardized report with the aim of

offering with simplicity and clarity all the salient information

needed by the neuro-oncology core group (oncologist,

radiotherapist, neurosurgeon, and neuoradiologist). It would be

desirable to conduct a large-scale multi-center study to then draft a

new VASARI lexicon guide based on the validation results.
5 Conclusion

The evaluation of gliomas with modified ranges/score of

VASARI 2.0 allows the prediction of the outpoint (IDH status

and grade) with AUC > 0.8, higher than that of traditional VASARI.

Thus, the new score could be used in pre-surgical evaluation of

gliomas in a method both suitable with clinical practice and that can

also be the starting point for subsequent studies of radiomics and

machine learning.
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