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Purpose: Patients diagnosed with High Grade Gliomas (HGG) generally tend to

have a relatively negative prognosis with a high risk of early tumor recurrence (TR)

after post-operative radio-chemotherapy. The assessment of the pre-operative

risk of early versus delayed TR can be crucial to develop a personalized surgical

approach. The purpose of this article is to predict TR using MRI radiomic analysis.

Methods: Data were retrospectively collected from a database. A total of 248

patients were included based on the availability of 6-month TR results: 188 were

used to train the model, the others to externally validate it. After manual

segmentation of the tumor, Radiomic features were extracted and different

machine learning models were implemented considering a combination of T1

and T2 weighted MR sequences. Receiver Operating Characteristic (ROC) curve

was calculated with relative model performance metrics (accuracy, sensitivity,

specificity, positive predictive value (PPV) and negative predictive value (NPV)) at

the best threshold based on the Youden Index.

Results: Models performance were evaluated based on test set results. The best

model resulted to be the XGBoost, with an area under ROC curve of 0.72 (95% CI:

0.56 - 0.87). At the best threshold, the model exhibits 0.75 (95% CI: 0.63 - 0.75) as

accuracy, 0.62 (95% CI: 0.38 - 0.83) as sensitivity 0.80 (95% CI: 0.66 - 0.89 as

specificity, 0.53 (95% CI: 0.31 - 0.73) as PPV, 0.88 (95% CI: 0.72 - 0.94) as NPV.
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Conclusion: MRI radiomic analysis represents a powerful tool to predict late

HGG recurrence, which can be useful to plan personalized surgical treatments

and to offer pertinent patient pre-operative counseling.
KEYWORDS
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Introduction

Despite recent advances in surgical technology and genetic

discoveries, patients diagnosed with High Grade Gliomas (HGG),

which is considered as grade 4, generally have a dismal prognosis

with high risk of early tumor recurrence (TR) after post-operative

radio-chemotherapy (1–4).

Compelling evidence, based on objective tumoral volume

analysis, supports the role of the extent of resection (EOR) in

HGG patients as the first step of patients management (5, 6).

Recent technological innovations have increased the safety of

surgical resection, while expanding surgical options and indications

for HGG surgical treatment (7, 8): several techniques can be

currently used during the surgical procedure, such as

intraoperative ultrasound (iUS), cortical mapping, sodium

fluorescein (9) and 5-ALA fluorescence, with the aim of fostering

higher rates of total resection and so increasing the survival chance

(10–19).

Surgical treatment, however, can be rarely considered as radical,

due to the infiltrating tumor nature, its multifocal presentation, and

ill-defined tumor margins.

Although the Stupp protocol was introduced as post-operative

standard treatment more than 15 years ago, alternative recent

approaches have not been developed so far, and the 5-year

survival has not significantly changed in these last decades (20).

Unfortunately, the infiltrative growth, the rapid proliferative

rate of malignant cells and the appearance of treatment-resistant

cell clones shortly after initial therapy tend to recur within 2 cm of

resection margins, independently by the initial EOR exhibited by

the patient (21). In this challenging setting, assessment of pre-

operative risk of early versus delayed TR assumes a crucial role to

develop a personalized surgical approach (with respect to surgery

versus biopsy).

A presurgical identification of HGG patients with high risk of

recurrence after 6 months from surgery may have several

advantages (22): first of all, a more aggressive surgical resection

may be pursued in patients with low risk of TR, planning the use of

all intra-operative tools and strategies that allow a maximal safe

resection. Furthermore, deep genetic sequences may be considered

to assist clinicians during postsurgical decision-making involving

patients with high risk of TR.
02
In addition, detection of early TR risk should encourage efforts

to better understand the role of early intensified bridging therapies

for HGG between surgery and postsurgical treatments (23).

Radiomics is a field of medical imaging that focuses on the

extraction and advanced analysis of large amounts of quantitative

features frommedical images called “radiomic features”. The goal of

radiomics is to convert medical images into high-dimensional data

that can be analyzed to uncover underlying patterns related to

disease characteristics, prognosis, and treatment response (24).

The aim of this study is to develop a Machine Learning (ML)

model based on radiomics features extracted from MRI images able

to stratify the risk of TR (within 6 months) in newly diagnosed

HGG and support clinicians in the decision-making process.
Materials and methods

Patient population and image data

This retrospective study was focused on patients affected by

high grade glioma, which is defined as grade 4, enrolled in two

Institutions: Fondazione Policlinico Universitario Agostino Gemelli

IRCCS in Rome (FPG) and Santa Maria della Misericordia in

Udine (SMM).

The experimental protocol adopted in this study was approved

by the Ethical Committee of Policlinico Universitario Agostino

Gemelli IRCCS.

The informed consent was obtained for all the patients included

in the study.

Patients from FPG were treated from January 2016 to December

2019, patients from SMM from November 2014 to June 2020. Tumor

grading was defined considering the 2021 WHO staging (25).

Inclusion criteria were: age >/= 18 years; no previous surgery; no

preoperative chemo- or radiotherapy; at least 6 months of follow up;

objective evaluation of preoperative tumor volume on MRI images in

DICOM format based on post-contrast T1-weighted MRI sequences

and T2-weighted MRI sequences; objective estimation of EOR on

post-contrast T1-weighted MRI sequences; revision of

histopathological specimens by using the new 2021 WHO

Classification of Tumors of the Central Nervous System; MGMT

promoter methylation and IDH1/IDH2 mutation status assessment.
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All the patients were subjected to the following therapeutic

approach: one month before the surgical procedure, all the patients

were scanned with an MR acquisition, which was carried out using

the GE and Philips scanners 1.5 T in Rome and the Siemens scanner

1.5 T in Udine.

Patients with the following criteria were excluded from the

study: diagnostic images blurred or some of required

sequences missing.

As for surgery, all the patients underwent the following

procedure: the surgical technique was carried out with an

intraoperative protocol that involved the use of contrast

enhancement ultrasounds (CEUS) and the fluorescence of 5-

aminolevulinic acid (5-ALA). Neuro-navigation system was used

in all cases, while the intra-operative neurophysiological monitoring

was performed in all cases of proximity of the tumor to the cortico-

spinal tract. Awake surgery was selected for patients that presented

HGG in the dominant hemisphere, close to the inferior front-

occipital fasciculus (IFOF) or the superior longitudinal fasciculus

(SLF). In a subgroup of selected patient (young age, tumor not close

to ventricular system) Carmustine Wafers (CWs) were implanted

after surgical tumor removal and intra-operative pathological

confirmation of HGG. CWs were not utilized when tumor

removal required the creation of a large opening of ventricle and/

or the basal cistern.

All methods were performed in accordance with the national

guidelines and regulations and in accordance with the Declaration

of Helsinki.
Image acquisition

All examinations were performed using a 1.5 T MR scanner

(Siemens Aera in Udine and GE—Optima mr450 and Philips-

Ingenia in Rome) with an eight-channel head coil. All study

protocols included axial T2-weighted TSE/FSE images with a slice

thickness between 4 and 5 mm and post-contrast volumetric T1-

weighted images MPRAGE/FSPGR/WATS with a slice thickness

between 1 and 1.2 mm. Imaging parameters are described

in Table 1.
Image pre-processing and radiomic
features extraction

Presurgical MRI performed on 1.5T scanners in FPG and SMM

of HGG were analyzed by three neuroradiologists who assessed

image quality, excluding patients with images degraded by artifacts

or who did not present axial 3D T1 weighted post contrast and axial

2D T2 weighted. Manual segmentation of the tumoral areas was

performed by one Neuroradiologist with the software “3D Slicer

image computing platform” with ROIs drawn separately on T1 and

T2W images as follows: on axial 3D T1 weighted contrast images

post-contrast, the ROI on the “enhancing” component of the tumor

was delineated, while on axial 2D T2 ROIs were outlined on the
Frontiers in Oncology 03
TABLE 1 Technical details of MR sequences.

SIEMENS AERA 1,5 T

Sequence T1-MPRAGE T2-TSE

Echo time 2,74 ms 95 ms

NEX 1 2

Repetition time 2200 ms 2380 ms

No. of sections 256 23

Receiver bandwidth 190 Hz/Px 163 Hz/Px

Echo train length – 28

FOV 250 mm 230mm

Section thickness 1 mm 5 mm

Section spacing 0 1,3 mm

Matrix size 256x232 208x320

Phase direction RL RL

PHILIPS Ingenia 1,5T

Sequence T1 WATS T2 TSE

Echo time 6.2ms 100 ms

NEX 1 3

Repetition time 13 ms 3651 ms

No. of sections 155 36

WFS 216.6 Hz/Px 212.3 Hz/Px

TFE factor 195 23

FOV 250mm 240mm

Section thickness 1 mm 4 mm

Section spacing 0 0.4 mm

Matrix size 252x200 513x331

Phase direction RL RL

GE Optima 1,5 T

Sequence T1 FSPGR T2 FSE

Echo time 2.2ms 130 ms

NEX 1 2

Repetition time 7.7 ms 3867 ms

No. of sections 150 34

Receiver bandwidth 22.73 Hz/Px 31.25 Hz/Px

Echo train length – 21

FOV 250mm 240mm

Section thickness 1.2 mm 4 mm

Section spacing 0 0.4 mm

Matrix size 288x288 356x288

Phase direction RL RL
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solid component of the tumor and the infiltrative one, excluding the

frankly edematous areas (with higher signal in T2) (Figure 1).

Before any analysis, the program anonymizes any DICOM.

Image pre-processing and radiomic analyses were performed

using Python 3.7.

Image pre-processing was performed via N4 bias field

correction to correct low frequency intensity non uniformity and

subject-specific Z-score normalization to normalize MR intensity

scales and allow inter-patients comparison.

For each patient, a total of 100 radiomic features (26)were extracted

from the specific ROI defined in each pre-processed MR sequence.

Features were extracted in their 3D version using PyRadiomics (27).

Extracted features belonged to three families: morphology-

based (14), first order (18) and second order (68). For the second

order features we used a bin width discretization strategy with a bin

width value of 25. Morphology-based features capture geometric
Frontiers in Oncology 04
characteristics of the ROI. First order features describe statistical

properties of the grey level histogram, offering global metrics for the

distribution of the grey levels within the ROI. Second order features

provide localized measures of grey level distribution within the ROI.
Radiomic features selection and modeling

The training set included the patients enrolled in Rome, while

the test set included the patients enrolled in Udine. We decided to

follow this approach to develop a prediction model using data from

one hospital and test its generalizability on data from a different

hospital, for external testing to pursue a TRIPOD 3 approach (36).

Each radiomic feature was normalized using the z-score in the

training set, and the z-score parameters of the training set were used

to normalize the features in the test set.
FIGURE 1

Segmentation of the tumoral areas: in image (A), delineation of the ROI on 3D T1 W post contrast images on the “enhancing” component of the
tumor. In image (B), the ROI on axial 2D T2w images is delineated for the solid and infiltrative components of the tumor.
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After features extraction, feature selection and radiomics

modeling was performed on the training set only. The

reproducibility of radiomic features was evaluated with respect to

the MRI scanner manufacturer using the t-test. Features that

resulted not reproducible (p-value < 0.05) were excluded from the

following analysis.

Further feature selection methods were applied to prevent

overfitting, reduce linear correlations among variables and obtain

a minimal and stable set of radiomic features. These methods

included the univariate analysis with the Wilcoxon-Mann-

Whitney statistical test (WMW, significance level of 0.05) and the

computation of the Pearson correlation coefficient (PCC) with the

exclusion of features that were highly correlated with any other

feature (PCC > 0.9).

Different machine learning models, namely regularized logistic

regression, random forest, XGBoost and Support Vector Machine

(SVM) were trained on the selected radiomic features extracted

from axial 3D T1w and axial 2D T2w.

The predictive models aimed to address a binary classification

problem for the prediction of the 6-months progression free

survival: class 0 denoted patients without 6-months TR, class 1

denoted patients with 6-months TR.

For each machine learning model, hyper-parameters tuning was

performed with a grid search strategy using 3-fold cross-

validation (28).

The developed models were externally evaluated on the testing

set in terms of discriminative ability and predictive performance. In

particular, the area under the curve (AUC) of the receiver operating

characteristics (ROC) curve was calculated, and the model

performance metrics based on the classification matrix were

computed at the best cut-off threshold, identified by maximizing

the Youden Index calculated on the training set. The metrics

investigated were accurancy, sensitvity, specificity, positive and

negative predictive values (PPV and NPV). 95% confidence

intervals (CI) of AUC and classification metrics were computed

according to bootstrap (29) and Jeffreys (30) methods, respectively.
Results

Patients population

When performing radiomic analysis and modeling, the initial

dataset consisting in 273 patients affected by HGG of first diagnosis

and undergone respective surgery followed by Stupp protocol, was

shrunk to 248 patients on the basis of the availability of the 6-month

TR outcome.

Data were split into train (approx. 75%) and test (approx. 25%)

sets resulting in 188 patients from Rome and 60 patients from

Udine, respectively.

Demographic and clinicopathological characteristics of the

included patients are reported in Table 2.

In the training set 109 patients were classified as class 0 and 79

patients as class 1. In the test set, 44 patients belonged to class 0 and

16 to class 1 (Figure 2).
Frontiers in Oncology 05
Radiomic features selection

Features selection was applied to features extracted from T1w

and T2w sequences.

As for T1w sequence, the t-test evaluating features stability with

respect to the manufacturer shrank the number of features from 100

to 58, further reduced by the WMW test and PCC which led to four

stable relevant features, reported in Table 3 with their

corresponding WMW test p-values.

As for T2w sequence, 85 features out of 100 showed stability

with respect to the manufacturer but only one of them was

significant at univariate analysis, as reported in Table 3.

Thus, Table 3 included all the features used for the

radiomics modeling.

Boxplots of the selected features showing stability with respect

to the outcome are shown in Figure 3, with corresponding p-values

resulting from the WMW test.
Modeling

A combined T1w&T2w (T1wT2w) modeling method was

implemented, consisting in grouping the T1wT2w relevant

features in a unique input dataset (see Table 3).

The cross-correlation matrix of the T1wT2w significant features

is reported in Figure 4.

Table 4 reports the discriminative and predictive performance

metrics for all the implemented ML models trained on T1w and

T2w for both training and validation sets.

Based on the metrics evaluated on the test set, the best model

resulted to be the XGBoost, with a test set AUC of 0.72 and 95% CI

of 0.56 - 0.87, and an accuracy of 0.75 with a 95% CI of 0.63 - 0.85.

This model obtained high values for the specificity equal to 0.80

(95% CI: 0.66 - 0.89), and NPV equal to 0.85 (95% CI: 0.72 – 0.94).

The other models showed the problem of model over-fitting to

the training data (i.e. Random Forest) or poor model performance

for the training and test data (i.e. regularized logistic regression

and SVM).
Discussion

Machine learning approach

Today MRI has a primary role in diagnosis, planning and

monitoring of HGG patients: clinicians typically use brain MRI to

evaluate radiological HGG features such as size, location, edema

and enhancement characteristics. MRI features are today not

sufficient to predict the risk of recurrence in HGG (31, 32):for

this reason, there is a huge need to assess additional imaging

biomarkers via computational methods (33, 34).

In the last years, a radiology-based approach focusing on

prognosis prediction has gained an important burst fostered by

the fast development of advanced computational tools able to

manage a significant amount of MRI and clinical data.
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Radiomics has recently emerged as a powerful data-driven

approach that can offer insights into clinically relevant questions

related to diagnosis, prediction, prognosis, as well as treatment

response assessment (35).

In this investigation radiomic analysis and modeling were

performed with the aim to select the most significant and robust

MRI features able to predict which patients affected by HGG at first

diagnosis would develop progression within 6 months or later.

Prediction performance resulting from training was also externally

tested following a TRIPOD 3 study approach, according to the

original TRIPOD guidelines (36). Clustering was not accounted for

in this study limiting model predictive performance and
Frontiers in Oncology 06
generalizability (48, 49). Future work may be conducted to

evaluate the presence of potential cluster effects.

The 6-months TR time-point was chosen as cut-off value to

discriminate patient with early TR from those with later TR for two

main clinical reasons: it matches the standard timing of post-

operative radiological assessment after conventional postsurgical

treatments and it makes homogenous the study populations before

the non-standardized rescue therapies at tumor recurrence.

Thus, detecting patients with low risk of TR after 6 months

from surgery encourage neurosurgeons to extent tumor resection

with the aim of exploiting the most modern intraoperative tools and

strategies that allow a maximal safe resection.
TABLE 2 Baseline characteristics of the study population.

Parameters Trainig set (Rome) Test set (Udine) Total

Initial patients 206 67 273

No FU 18 7 25

Patients included 188 60 248

Mean age (years) 62.84 ± 4.86 62.52 ± 5.32 62.76 ± 4.98

Sex

Male 119 (63.3%) 36 (60%) 155 (62.5%)

Female 69 (36.7%) 24 (40%) 93 (37.5%)

Side

Left 77 (41%) 28 (46.7%) 105 (42.3%)

Right 111 (59%) 32 (53.3%) 143 (57.7%)

Tumor site

Precentral 63 (33.5%) 18 (30%) 81 (32.7%)

Postcentral 50 (26.6%) 16 (26.7%) 66 (26.6%)

Temporal/insular 75 (39.8%) 26 (43.3%) 101 (40.7%)

5-ALA

yes 126 (67%) 47 (78.3%) 173 (69.8%)

no 62 (32%) 13 (21.7%) 75 (31.2%)

Biological features

MGMT methylation (yes vs no) 124 vs 64 (66% vs 34%) 40 vs 20 (66.7% vs 33.3%) 164 vs 84 (66.1% vs 33.9%)

IDH 1/2 mutation (yes vs no) 8 vs 180 (4.3% vs 95.7%) 3 vs 57 (5% vs 95%) 11 vs 237 (4.4% vs 95.6%)

Ki-67 (mean) 24.25 (3-90) 41,2 (5-75) 29 (4-80)

OS

Alive (yes vs no) 53 vs 135 (28.2% vs 71.8%) 6 vs 54 (10% vs 90%) 59 vs 189 (23.8% vs 76.2%)

Average of FU times (months) 13.4 (0-35) 17.1 (0-29) 14.3 (0-31)

PFS

Class 0 (no 6-months TR) 109 (58%) 44 (73.3%) 153 (61.7%)

Class 1 (6-months TR) 79 (42%) 16 (26.7%) 95 (38.3%)
Characteristics of the study population are described using means ± s.d. (standard deviation) or median and range for continuous variables, number of cases with relative percentages reported in
parentheses for categorical variables. Bold values are the corresponding value to Figure 2.
(FU, follow-up; 5-ALA, 5-aminolevulinic acid; MGMT, O-6-Methylguanine-DNA Methyltransferase; IDH, Isocitrate dehydrogenase 1; OS, overall survival; PFS, progression free survival; TR,
tumor recurrence).
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We found that, among all features’ families, morphological

features show most of the predictive power and that smaller

features values decrease the probability to observe 6-month tumor

recurrence in patients.

The best model resulted to be the XGBoost (eXtreme Gradient

Boosting), an optimized distributed gradient boosting library

designed to be highly efficient, flexible and portable. It

implements ML algorithms under the Gradient Boosting

framework, providing distributed gradient-boosted decision tree

(GBDT). Boosting is an ensemble learning method that combines a

set of weak base estimators into a strong learner to minimize

training errors. For these reasons, XGBoost is considered to be

one of the leading ML libraries for regression, classification and

ranking problems.

Modeling results are reported in Table 3: the developed

XGBoost showed a high value of specificity, which reflects the

model ability in identifying patients with lower risk to experience
Frontiers in Oncology 07
tumor recurrence within 6 months and that might undergo a more

aggressive surgical resection.

High values of specificity were observed in training (84%) and

test set (80%). Features selection applied to this study highlighted

that morphological features hold most of the predictive power in

discriminating patients with positive and negative outcome.

Although it is hard to find a direct biological interpretation of

these findings, it is worth mentioning that radiomic features are not

relevant if considered only “per se”. It is actually important to relate

them to the model context and take linear and non-linear interactions

between variables into account. In this light, a possible explanation can

be given assuming that changes inmorphological featuresmight reflect

tissues structural alterations (e.g. shape, volume etc…) and be more

related to tumor developments. On the other hand, it is also important

to ensure that selected features describing themodel are actually stable,

non-redundant and independent from noise or other non-

relevant variables.
FIGURE 2

Patients classification.
TABLE 3 Relevant features resulting from features selection performed on T1w and T2w sequences and corresponding p-values and used for
radiomics modeling.

MR sequence Feature WMW test p-value

T1w original_shape_MajorAxisLength 0.02

T1w original_shape_Maximum2DDiameterColumn 0.03

T1w original_shape_Maximum2DDiameterSlice 0.04

T1w original_firstorder_TotalEnergy 0.04

T2w Original_first_order_kurtosis 0.03
These features belong to morphology-based (“shape”) and first order families.
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Pre-operative estimation of HGG biological behavior could help

clinicians in detecting cases that could benefit from a maximal safe

resection (e.g. HGG patients with pre-operative estimated of low

risk of early TR).

On the other hand, pre-operative estimation of high risk of early

TR (especially in elderly patients) could drive the choice to biopsy

rather than surgery (37).

In addition, for patients with higher risk of TR, multiple tissue

samplings should be extracted in order to investigate ad hoc target

therapies related to lesions’ high spatial heterogeneity (38).

Our results are aligned with the study performed by Li et al. (39)

with AUC of 0.70 in the training set for the prediction of disease

progression at 6 months that used radiomics features extracted

from multiple MRI sequences (T2 and FLAIR).

Other studies using smaller sample sizes developed MRI-based

radiomics models for the prediction of the progression-free survival

in patients with glioblastoma obtaining similar results. Choi et al.

(40) obtained an integrated time-dependent AUC of 0.62, while

Bathla et al. (41) achieved a C-index up to 0.64.
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This investigation presents several limitations. First of all, this

was a retrospective study including only two centers: further studies

with more heterogeneous datasets would be an interesting point for

future development.

Radiomic features reproducibility can be strongly affected by

image acquisition parameters and scan protocols, which can vary

widely across and within institutions. We took this heterogeneity

into account and in order to evaluate features robustness among

different centers, we performed a t-test analysis with respect to MRI

scanners manufacturers. This allowed to exclude unstable features.

In this light, to minimize data variability, harmonization methods

might be introduced, as proposed by several research groups which

focused on different modified ComBat algorithms (42–46).

Although being very powerful, radiomic analysis offers no

insights toward biological interpretation of the achieved findings

and this study also shows this limitation: many efforts have been

made in these recent years to reintroduce biological meaning into

radiomics. However, some recent studies also suggest that biological

correlation with radiomic features is not mandatory (47).
FIGURE 3

Boxplots of the selected radiomics features used for radiomics modeling showing stability with respect to the outcome with corresponding p-values
resulting from the WMW test. (‘1’=patients with 6-months TR, ‘0’=patients without 6-months TR).
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In addition, considering the integration of features and clinical

variables in a clinical-radiomic model could help improving models’

performance in predicting 6-months TR.

Lastly, we did not assess the overall survival rate for this cohort.

Data regarding selection criteria adopted at TR to plan the salvage

treatment were not available. Each patient underwent an

individualized management at TR, so we have not developed

standardized protocols for treatments at TR. With our sample

size, we did not have the statistical power to tease out the survival

rate for patients undergoing different treatments. A future multi-

center prospective study of HGG recurrence will be necessary to
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properly assess survival rate according to the salvage treatment

adopted at TR.

The high incidence of early TR should encourage efforts to

better understand the role of early intensified bridging therapies for

HGG between surgery and postsurgical treatments.

In conclusion, the methodology adopted in this investigation is

extremely time-consuming and makes it unsuitable for clinical daily

implementation.Thenext step in thisfield, beyond increasing accuracy

and simplifying the workflow, will be the development of an open

source, easily scalable and efficient artificial intelligence algorithm

requiring simple or null external intervention from physicians.
FIGURE 4

Cross-correlation matrix of the T1wT2w significant features used for radiomics modeling. feat1: original_shape_MajorAxisLength; feat2:
original_shape_Maximum2DDiameterColumn; feat3: original_shape_Maximum2DDiameterSlice; feat4: original_firstorder_TotalEnergy;
feat5: Original_first_order_kurtosis.
TABLE 4 Predictive performance metrics for ML models trained on T1w and T2w for training and validation sets.

AUC Accuracy Sensitivity Specificity PPV NPV

XGBoost

Training
95% CI

0.68
(0.60- 0.75)

0.66
(0.60 - 0.73)

0.42
(0.31 - 0.53)

0.84
(0.77 - 0.90)

0.66
(0.52- 0.78)

0.67
(0.59 - 0.74)

Test
95% CI

0.72
(0.56 - 0.87)

0.75
(0.63 - 0.85)

0.62
(0.38 - 0.83)

0.80
(0.66 - 0.89)

0.53
(0.31 - 0.73)

0.85
0.72 - 0.94)

Regularized Logistic
Regression

Training
95% CI

0.63
(0.55 - 0.70)

0.60
(0.54 - 0.67)

0.57
(0.46 - 0.67)

0.63
(0.54 - 0.72)

0.53
(0.42 - 0.63)

0.67
(0.58 - 0.76)

Test
95% CI

0.52
(0.36 - 0.68)

0.41
(0.30 - 0.54)

0.56
(0.33 - 0.78)

0.36
(0.23 - 0.51)

0.24
(0.13 - 0.40)

0.69
(0.49 - 0.85)

Random
Forest

Training
95% CI

0.99
(0.99 - 1.0)

0.97
(0.95 - 0.99)

0.98
(0.94 - 1.0)

0.97
(0.93 - 0.99)

0.96
(0.90 - 0.99)

0.99
(0.96 - 1.0)

Test
95% CI

0.51
(0.33 - 0.70)

0.38
(0.27 - 0.51)

0.68
(0.44 - 0.87)

0.27
(0.16 - 0.42)

0.25
(0.14 - 0.40)

0.70
(0.47 - 0.88)

SVM

Training
95% CI

0.54
(0.46 - 0.63)

0.60
(0.54 - 0.67)

0.21
(0.14 - 0.32)

0.90
(0.82 - 0.94)

0.59
(0.41 - 0.75)

0.61
(0.53 - 0.68)

Test
95% CI

0.61
(0.45 - 0.76)

0.68
(0.56 - 0.79)

0.25
(0.09 - 0.49)

0.84
(0.71 - 0.93)

0.36
(0.14 - 0.65)

0.75
(0.62 - 0.86)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1449235
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pignotti et al. 10.3389/fonc.2024.1449235
Conclusions

A thorough and reliable ML-model based on combined

T1w&T2w sequences to detect the lower risk of TR in newly

diagnosed HGG was trained and validated on external cohort.

Our results confirm the potential role of pre-operative MRI

analysis beyond the classical anatomical and morphological

parameters. MRI radiomic analysis represents a powerful tool to

predict early HGG recurrence, to plan personalized surgical

treatment and to offer patients pre-operative counseling. In the

future, a prospective multicenter study with a larger sample size is

needed in order to validate our results, to optimize prediction

models for clinical practice, and to overcome the intrinsic

limitations of retrospective studies met so far.
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