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Exploring the impact of HDL
and LMNA gene expression on
immunotherapy outcomes in
NSCLC: a comprehensive
analysis using clinical &
gene data
Jingru Li, Jingting Wang and Bangwei Cao*

Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
Objectives: Analyzing the impact of peripheral lipid levels on the efficacy of

immune checkpoint inhibitor therapy in non-small cell lung cancer (NSCLC)

patient populations and exploring whether it can serve as a biomarker for

broadening precise selection of individuals benefiting from immunotherapy.

Methods: We retrospectively collected clinical data from 201 cases of NSCLC

patients receiving immune checkpoint inhibitor therapy. The clinical information

included biochemical indicators like total cholesterol, triglycerides, high-density

lipoprotein (HDL), and low-density lipoprotein (LDL). We utilized machine

learning algorithms and Cox proportional hazards regression models to

investigate independent predictors for both short-term and long-term efficacy

of immunotherapy. Additionally, we concurrently developed a survival prediction

model. Analyzing the Genes of Patients with Treatment Differences to

Uncover Mechanisms

Results: Correlation analysis revealed a significant positive association between

HDL and ORR, DCR, and PFS. T-test results indicated that the high-HDL group

exhibited higher DCR (81.97% vs. 45.57%) and ORR (61.48% vs. 16.46%). Kruskal-

Wallis test showed that the high-HDL group had a longer median PFS (11 months

vs. 6 months). Utilizing six machine learning algorithms, we constructed models

to predict disease relief and stability. The model built using the random forest

algorithm demonstrated superior performance, with AUC values of 0.858 and

0.802. Furthermore, both univariate and multivariate Cox analyses identified HDL

and LDL as independent risk factors for predicting PFS. In patients with poor

immunotherapy response, there is upregulation of BCL2L11, AKT1, and

LMNA expression.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1448966/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1448966/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1448966/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1448966/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1448966/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1448966/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1448966&domain=pdf&date_stamp=2024-09-24
mailto:oncology@ccmu.edu.cn
https://doi.org/10.3389/fonc.2024.1448966
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1448966
https://www.frontiersin.org/journals/oncology


Li et al. 10.3389/fonc.2024.1448966

Frontiers in Oncology
Conclusion: HDL and LDL are independent factors influencing the survival

prognosis of NSCLC patients undergoing immune checkpoint inhibitor therapy.

HDL is expected to become new biomarkers for predicting the immunotherapy

efficacy in patients with NSCLC. In patients with poor immunotherapy response,

upregulation of the LMNA gene leads to apoptosis resistance and abnormal

lipid metabolism.
KEYWORDS

non-small cell lung cancer, immune checkpoint inhibitor therapy, high-density
lipoprotein, enrich analysis, machine learning, LMNA
1 Introduction

As programmed cell-death 1 (PD-1) and its ligand (PD-L1)

targeted immunotherapy gradually becomes a predominant

treatment modality, particularly for non-driver gene mutation

patients, it significantly improves the survival rates of non-small

cell lung cancer (NSCLC) patients. However, there remains a subset

of individuals exhibiting poor treatment response to immune

checkpoint inhibitor therapy. Currently, indicators such as

Expression of PD-L1 protein (1–3), tumor mutation burden

(TMB) (4) and microsatellite instability (MSI) (5) play a role in

predicting the efficacy of immunotherapy. Nevertheless, these

assessments have drawbacks such as high laboratory requirements

and prolonged testing times, leading to limited clinical application.

Peripheral blood samples, on the other hand, offer convenient

sampling without invasive procedures, reflecting host immune

status information, making them more accessible clinical

indicators for predicting and dynamically monitoring the efficacy

of immunotherapy in NSCLC.

Some studies suggest a connection between lipid metabolism

alterations and the development of tumors. A cohort study indicates

that NSCLC patients commonly exhibit blood lipid abnormalities,

with a particularly close association between reduced levels of HDL

and a higher risk of NSCLC (6). Research also indicates that

compared to normal cells, tumor cells can synthesize more

cholesterol not only to sustain their active proliferation but also

to maintain the stability of the PD-L1 receptor expressed on tumor

cells, which requires cholesterol (7, 8). Meanwhile, HDL and LDL

primarily influence the occurrence and development of cancer

through mechanisms such as modulating cholesterol transport

and regulating inflammatory responses (9). Additionally, several

clinical studies suggest the effectiveness of statin drugs in adjunct

cancer treatment (10, 11). However, the value of blood lipid levels in

the immune prognosis of NSCLC is not yet clear.

This study aims to explore the impact of blood lipid levels on

the efficacy and prognosis of locally advanced and advanced NSCLC

patients receiving immune checkpoint inhibitor therapy. It aims to

construct a clinical prediction model to provide more refined
02
screening indicators for the individualized treatment of

NSCLC patients.
2 Material and methods

2.1 Patients

We retrospectively analyzed 201 advanced NSCLC patients

treated with immune checkpoint inhibitor therapy at Beijing

Friendship Hospital Cancer Center, Capital Medical University.

All patients met the following criteria: 1. Pathologically confirmed

diagnosis of non-small cell lung cancer; 2. Staged as III-IV

according to the 8th edition TNM staging by the International

Association for the Study of Lung Cancer, including untreated

patients and those with recurrent disease after previous surgery; 3.

Completed four or more cycles of monotherapy or combination

therapy with anti-PD-1 or anti-PD-L1 monoclonal antibodies

(mAb) and had clear efficacy assessment results; 4. Did not

require additional lipid-lowering medications for diagnosed

conditions during immunotherapy; 5. Eastern Cooperative

Oncology Group (ECOG) score of 0-1; 6. No EGFR mutation,

ALK translocation, or ROS1 fusion; 7. No immunosuppressive drug

treatment required for other diseases. The study obtained approval

from the Institutional Review Board, and due to the retrospective

nature of the study, the need for informed consent was waived.

Clinical characteristics of all patients were collected, including

age, gender, histology, prior lines of therapy, treatment type, tumor

cell proportion score (TPS), Ki-67 protein level, liver metastasis, bone

metastasis, brain metastasis, smoking history, diabetes history, statin

drug usage history, body mass index (BMI), as well as fasting serum

total cholesterol, serum triglycerides, high-density lipoprotein, and

low-density lipoprotein within the first three natural days before the

initial treatment. Patients were assessed for objective response rate

(ORR), disease control rate (DCR), and progression-free survival

(PFS). Tumor response was evaluated using Response Evaluation

Criteria in Solid Tumors (RECIST) version 1.1. All patients

underwent follow-up until death or data lock on August 1, 2023.
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2.2 Statistical analysis

All data analysis and graphic plotting were conducted using R

software version 4.1.2. ORR is defined as the ratio of the number of

patients achieving complete response (CR) or partial response (PR)

after four treatment cycles to the total number of patients. DCR is

defined as the ratio of the number of patients achieving CR, PR, or

stable disease (SD) after four treatment cycles to the total number of

patients. PFS is defined as the time from the initiation of immune

therapy to disease progression or death for any reason. Patients

without events were censored at the last follow-up. Survival curves

were estimated using the Kaplan-Meier method, and comparisons

were made using the log-rank test. The chi-square test was

employed to analyze differences in ORR and DCR between

groups. Feature selection was performed using the random forest

algorithm, followed by the construction of predictive models using

k-nearest neighbors (KNN), backpropagation (BP) algorithm,

support vector machine (SVM) algorithm, decision tree

algorithm, random forest algorithm, and Xgboosting algorithm.

The Cox regression model was utilized to investigate the correlation

between various variables and the survival endpoint, incorporating

factors with univariate p-values < 0.05 into multivariate analysis.

Statistical tests were two-sided, and p-values < 0.05 were considered

statistically significant.
2.3 Gene data resource and analysis

The datasets GSE136961 were downloaded from https://

www.ncbi.nlm.nih.gov/geo/. GSEA were carried out to explore the

biological functions in NSCLC patients receiving immunotherapy.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) gene sets were obtained from the official GSEA

website (https://www.gsea-msigdb.org/gsea/downloads.jsp).
3 Results

3.1 Demographic characteristics

This study included a total of 201 patients (Table 1), with 136

males and 65 females. The age ranged from 38 to 82 years, with an

average age of 65 years and a median age of 65 years. Among the

201 patients, adenocarcinoma accounted for the majority with 130

cases, followed by squamous cell carcinoma with 62 cases. Other

histological types included 6 cases of non-small cell lung cancer

with unclear histology, 2 cases of adenosquamous carcinoma, and 1

case of large cell carcinoma. Tumor PD-L1 expression was negative

(TPS < 50%) in 155 patients and positive (TPS ≥ 50%) in 46

patients. Among the patients who received immune therapy, 57 had

a regular history of statin drug usage before immunotherapy. Due to

differences in blood lipid levels between tumor patients and the

normal population, normal indicators were not selected as grouping
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TABLE 1 Baseline demographics.

characteristics
Overall

characteristics
Overall

(N=201) (N=201)

gender smoke history

male 136 (67.7%) yes 116 (57.7%)

female 65 (32.3%) no 85 (42.3%)

age(years)
history
of diabetes

Mean (SD) 65.24 (7.32) yes 77 (38.3%)

Median [Min, Max] 65 [38.0, 82.0] no 124 (61.7%)

treatment line
osseous
metastasis

firstline 152 (75.6%) yes 67 (33.3%)

secondline 31 (15.4%) no 134 (66.7%)

≥thirdline 18 (9.0%) brain metastasis

stage yes 23 (11.4%)

III 73 (36.3%) no 178 (88.6%)

IV
128 (63.7%)

hepatic
metastasis

treatment type yes 30 (14.9%)

monotherapy 21 (10.4%) no 171 (85.1%)

combination therapy 180 (89.6%) cholesterol

TPS low 58 (28.9%)

<50% 155 (77.1%) high 143 (71.1%)

≥50% 46 (22.9%) triglyceride

ki67 low 88 (43.8%)

<25% 42 (20.9%) high 113 (56.2%)

≥25% 159 (79.1%)
high-
density
lipoprotein

histology low 79 (39.3%)

adenocarcinoma 130 (64.7%) high 122 (60.7%)

squamous
cell carcinoma

62 (30.8%)
low-
density
lipoprotein

other 9 (4.5%) low 113 (56.2%)

PFS(mouths) high 88 (43.8%)

Mean (SD) 10.3 (7.08) BMI

Median [Min, Max]
9.00

[3.00, 37.0]
≤23.8

109
(54.23%)

therapeutic effect evaluation >23.8 92 (45.77%)

PR 88 (43.8%) statins history

SD 48 (23.9%) yes 57 (28.4%)

PD 65 (32.3%) no 144 (71.6%)
fr
PR, partial response; SD, stable disease; PD, progressive disease.
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criteria. In this study, we employed an iterative algorithm to

establish a survival function related to progression-free survival

(PFS). We determined the optimal cutoff points for cholesterol

(CH), triglycerides (TG), high-density lipoprotein (HDL), and low-

density lipoprotein (LDL) based on the maximum statistical

differences (Figures 1A–D), dividing the patients into high-level

and low-level groups. The optimal cutoff values were 3.43 mmol/L

for CH, 1.41 mmol/L for TG, 0.94 mmol/L for HDL, and 1.04

mmol/L for LDL.

Correlation analyses of baseline data were conducted (Figure 1E),

revealing a positive correlation of HDL levels with objective response

rate (ORR) (0.37), disease control rate (DCR) (0.37), and PFS (0.33).

Cholesterol levels also showed a positive correlation with ORR (0.28).
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Similarly, the history of statin drug usage was a positive factor for

ORR (0.14), DCR (0.17), and PFS (0.22). LDL levels were a negative

factor for ORR (-0.14). Additionally, a strong positive correlation

(0.88) was observed between CH levels and LDL levels. Smoking

history showed a strong correlation with male patients (0.51), while

female patients were more prone to brain (0.25) and bone metastasis

(0.3), potentially associated with longer PFS (0.17).
3.2 Short-term treatment response

After the fourth treatment cycle, we evaluated target lesions in

patients according to RECIST1.1 criteria and calculated ORR and
FIGURE 1

Demographic characteristics. (A) Calculating the optimal cutoff points using the iterative algorithm, for are 3.43 mmol/L, (B) for TG are 1.41 mmol/L,
(C) for HDL are 0.94 mmol/L, (D) and for LDL are 1.04 mmol/L. (E) Calculate the correlation between demographic features and plot them as a
bubble chart, bule indicates positive correlation, while red indicates negative correlation. PFS, progression-free survival; ORR, objective response
rate; DCR, disease control rate *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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DCR for each group separately (Table 2). We used Chi-square tests to

analyze differences between groups, applying Fisher’s test when n<5.

The results show that the high-cholesterol group achieved a superior

ORR (51.05% vs. 25.86%). The low triglyceride group exhibited

higher DCR (78.41% vs. 59.29%) and ORR (53.41% vs. 36.28%)

compared to the high-level group. Similarly, the high HDL group

significantly improved both DCR (81.97% vs. 45.57%) and ORR

(61.48% vs. 16.46%), while LDL showed no significant impact on

DCR and ORR. The group with a history of statin drug usage had a

higher DCR (80.77% vs. 63.09%) compared to the group without a

history, but it had no significant impact on ORR. Consistent with
Frontiers in Oncology 05
other studies, higher TPS indicated a higher treatment response rate,

and younger individuals had better DCR and ORR. Additionally,

patients without liver metastasis had a higher DCR (71.35% vs.

46.67%) than the group with liver metastasis.

DCR and ORR, as short-term indicators for immune therapy

assessment, demonstrated correlation with blood lipid levels.

Therefore, we constructed corresponding predictive models using

machine learning algorithms. Initially, the Boruta algorithm was

employed for feature selection, identifying significant factors for

ORR (Figure 2A): HDL, CH, LDL, age, TG, Ki-67, statins history,

BMI, TPS, smoking history, gender, stage, osseous metastasis,
TABLE 2 Impact of clinical characteristics on DCR and ORR.

Characteristics DCR P-value ORR P-value Characteristics DCR P-value ORR P-value

gender CH

male 65.44% 0.417 41.18% 0.355 low 67.24% 1 25.86% 0.00191

female 72.31% 49.23% high 67.83% 51.05%

age TG

≤65 76.83% 0.0313 54.88% 0.0129 low 78.41% 0.0065 53.41% 0.0223

>65 61.34% 36.13% high 59.29% 36.28%

treatment line HDL

fistline 68.42% 0.496 46.71% 0.137 low 45.57% <0.001 16.46% <0.001

secondline 70.97% 41.94% high 81.97% 61.48%

≥thirdline 55.56% 22.22% LDL

treatment type low 57.89% 0.99 40.71% 0.394

monotherapy 71.43% 0.886 42.86% 1 high 67.05% 47.73%

combination 67.22% 43.89% smoking history

stage yes 61.18% 0.126 49.14% 0.1

III 75.34% 0.109 46.58% 0.649 no 72.41% 36.47%

IV 63.28% 42.19% diabetes history

TPS yes 67.74% 1 41.13% 0.415

<50% 60.65% <0.001 38.06% 0.0047 no 67.53% 48.05%

≥50% 91.30% 63.04% statins history

ki67 yes 80.77% 0.0296 55.77% 0.0627

≤25% 64.29% 0.734 42.86% 1 no 63.09% 39.60%

≥25% 67.92% 44.03% osseous metastasis

histology yes 62.69% 0.365 40.30% 0.580

LUAD 70.50% 0.402 46.04% 0.35 no 70.15% 45.52%

LUSC 62.26% 41.51% brain metastasis

other 55.56% 22.22% yes 52.17% 0.147 34.78% 0.483

BMI no 69.66% 44.94%

≤23.5 68.87% 0.642 45.03% 0.647 hepatic metastasis

>23.5 64.00% 40.00% yes 46.67% 0.0141 36.67% 0.514

no 71.35% 45.03%
fr
Combination, combination therapy; LUAD, adenocarcinoma of the lung; LUSC, squamous cell carcinoma of the lung.
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histology. Similarly, significant factors for DCR (Figure 2B)

included HDL, CH, TPS, LDL, TG, BMI, age, Ki-67, stage,

hepatic metastasis, brain metastasis. After feature selection,

patients were divided into training and validation sets in a 7:3

ratio, and predictive models were constructed using random forest,

BP algorithm, SVM algorithm, decision tree algorithm, Xgboosting

algorithm, and KNN algorithm, and the performance of each model

was evaluated (Figures 2C, D). The random forest model

demonstrated the best performance in predicting ORR
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(Figure 2E), with an AUC of 0.858, Kappa of 0.726, and F1 of

0.833 (Table 3). In the prediction model for DCR, the random forest

model also performed optimally (Figure 2F), achieving an AUC of

0.802, Kappa of 0.630, and F1 of 0.878 (Table 3).

We can conclude that the blood lipid levels of patients have a

certain impact on the efficacy of immune therapy, especially HDL,

which provides indications for short-term disease relief and

stability. Using blood lipid level data can also construct excellent

efficacy prediction models.
FIGURE 2

Short-term efficacy prediction model. (A) We employed the Boruta algorithm to calculate the importance of each feature in influencing disease
remission, ranking them from low to high. Red indicates that the feature significantly affects remission, blue suggests some impact but lacks
statistical significance, and yellow denotes no influence. HDL was identified as the most influential factor on disease response, (B) while both HDL
and CH had the greatest impact on preventing disease progression. (C) We plotted ROC curves for six machine learning models, and the random
forest algorithm exhibited the best performance in predicting disease response, with an AUC of 0.858. (D) In the model predicting disease
progression, the random forest algorithm demonstrated the best performance, achieving an AUC of 0.802. (E) Flowchart for predicting whether
patients can achieve disease response after four cycles of treatment. (F) Flowchart for predicting whether patients can prevent disease progression
after four cycles of treatment.
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3.3 Long-term treatment response

To elucidate the long-term impact of blood lipid levels on the

efficacy of immune therapy, we first analyzed the differences in

median PFS under clinical feature grouping using Kruskal-Wallis

test. The results showed (Table 4) that the high-HDL group (11

months vs. 6 months), high-TPS group (15 months vs. 8 months),

low-TG group (11 months vs. 8 months), low-LDL group (10

months vs. 9 months), and statin drug usage history group (12

months vs. 8 months) had longer PFS.

Subsequently, we conducted univariate COX analysis based on

PFS for clinical features (Table 5). Factors with statistically

significant (P<0.05) and clinically meaningful results, such as

HDL, LDL, TG, TPS, and statin drug usage history, were included

in the multivariate Cox proportional hazards regression model

analysis (Table 5). The results indicated that TPS, HDL levels,

and LDL levels were independent prognostic factors for PFS in

patients with locally advanced and advanced NSCLC undergoing

immune therapy (Figures 3A, B).

Based on the multivariate Cox regression model, probability

prediction line charts for PFS at 4 months, 12 months, and 20

months were plotted (Figure 3C). The total score was obtained by

adding the scores corresponding to each influencing factor,

allowing estimation of PFS probabilities for patients at 4, 8, 12,

and 20 months. The C-index of model is 0.71, and calibration

curves for PFS probability prediction models at 8 months and 16

months were plotted (Figures 3E, F). According to the model

formula, patients’ prognostic index (PI) was calculated, and the

population was divided into high-risk and low-risk groups based on

the optimal cutoff value (0.2004558) for PI for survival analysis

(Figure 3D). The results showed a statistically significant difference

(P=0.026), confirming that this model can significantly differentiate

the survival benefits of NSCLC patients clinically receiving

immune therapy.
3.4 Exploration of gene mechanisms

We observed that reduced HDL levels in NSCLC patients might

be associated with poor response to immunotherapy. To elucidate

the mechanisms underlying this clinical phenomenon, we
Frontiers in Oncology 07
conducted further research. Initially, we obtained data from the

GSE136961 dataset in the GEO database, which includes data from

10 patients regularly undergoing immunotherapy. Based on their

response to immunotherapy, patients were divided into the Durable

Clinical Benefit (DCB) group and the Non-Durable Benefit (NDB)

group. Gene Set Enrichment Analysis (GSEA) comparing gene

functions between these two groups (Figure 4A) revealed that

genes in the NDB group were significantly enriched in the

LIPASE INHIBITOR ACTIVITY and TRIGLYCERIDE RICH

PLASMA LIPOPROTEIN PARTICLE, whereas genes in the DCB

group were enriched in the NEGATIVE REGULATION OF LIPID

CATABOLIC PROCESS. This suggests that the poor response to

immunotherapy in NSCLC patients may be associated with

upregulation of genes such as LPL and the ANX family, leading

to dysregulation of lipid metabolism and consequently reduced

HDL levels.

Furthermore, we observed silencing of the CASPASE

CASCADE in the NDB group (Figure 4A), indicating potential

resistance to apoptosis in these tumor cells, which may contribute to

impaired immunotherapy efficacy. To investigate further, we

analyzed the GSE136961 dataset, which includes expression

information of 395 immune-related genes from 20 patients,

obtained through the Oncomine Immune Response Research

Assay. Using the R package DESeq2, we assessed gene expression

differences between the two groups (Figures 4B, C) and identified 46

differentially expressed genes (Table 6), with 12 genes

downregulated and 34 genes upregulated.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (Kegg) enrichment analyses of these 46 genes

(Figures 4D, E) showed that S100A9, S100A8, BCL2L11, BRCA1,

PTGS2, RB1, AKT1, and LMNA were enriched in the regulation of

apoptotic signaling pathway function, while BCL2L11, AKT1, and

LMNA were significantly enriched in the Apoptosis pathway. These

results indicate that upregulation of BCL2L11, AKT1, and LMNA in

the NDB group may collectively point to a function of inhibiting

apoptosis, which could be a key factor in the poor response of these

patients to immunotherapy.

To further investigate the relationship between tumor cell

apoptosis resistance and HDL levels, we divided the patients in

the GSE136961 dataset into high-expression and low-expression

groups based on LMNA expression levels. GSEA analysis revealed
TABLE 3 Model Evaluation.

Predictive model for disease response Predictive model for disease progression-free

Accuracy
(95% CI) Sensitivity Specificity Kappa F1

Accuracy
(95% CI) Sensitivity Specificity Kappa F1

KNN 0.803(0.682, 0.894) 0.804 0.800 0.533 0.886 0.689(0.557, 0.801) 0.476 0.800 0.403 0.771

C5.0 0.820(0.701, 0.906) 0.917 0.680 0.616 0.756 0.738(0.609, 0.842) 0.769 0.682 0.442 0.789

BP 0.754(0.627, 0.855) 0.806 0.680 0.489 0.694 0.787(0.663, 0.881) 0.900 0.571 0.501 0.842

SVM 0.639(0.506, 0.758) 0.694 0.560 0.254 0.56 0.656(0.523, 0.773) 0.000 1.000 0 –

RF 0.869(0.756, 0.942) 0.917 0.800 0.726 0.833 0.836(0.719, 0.919) 0.923 0.682 0.630 0.878

Xgboosting 0.853(0.738, 0.930) 0.889 0.800 0.693 0.816 0.803(0.682, 0.894) 0.846 0.727 0.573 0.833
frontier
CI, confidence interval; F1, F1 Score.
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that the high LMNA expression group showed significant resistance

to the BIOACTIVE LIPID RECEPTOR ACTIVITY (Figure 4F).

Therefore, when tumor cells resist apoptosis signals by

upregulating BCL2L11, AKT1, and LMNA genes, they

simultaneously exhibit reduced responsiveness to lipid receptor

activity. This change subsequently affects the concentration of

HDL in the plasma. We believe that this mechanism may explain

the observed reduction in HDL levels in patients with high LMNA

expression, or in other words, NSCLC patients with poor immune

therapy outcomes.
Frontiers in Oncology 08
4 Discussion

In this study, we collected blood lipid data from patients with

non-small cell lung cancer (NSCLC) before undergoing

immunotherapy and analyzed its relationship with treatment

efficacy. High-density lipoprotein (HDL) stood out, demonstrating

remarkable effectiveness in promoting disease remission and long-

term stability. We constructed predictive models for short-term

disease relief and disease stability, with blood lipid data playing a

crucial role. This confirms the potential of HDL as a novel biomarker
TABLE 4 Impact of Clinical Characteristics on PFS.

Characteristics median PFS(mos) P-value Characteristics median PFS(mos) P-value

gender CH

male 9 0.125 low 8 0.623

female 10 high 10

age(years) TG

≤65 9 0.445 low 11 0.004

>65 10 high 8

treatment line HDL

fistline 10 0.515 low 6 <0.001

secondline 8 high 11

≥thirdline 8 LDL

treatment type low 10 0.049

monotherapy 10 0.540 high 9

combination 9 smoking history

stage yes 10 0.959

III 10 0.968 no 8

IV 8 diabetes history

TPS yes 10 0.935

<50% 8 <0.001 no 9

≥50% 15 statins history

ki67 yes 12 0.003

≤25% 10 0.664 no 8

≥25% 9 osseous metastasis

histology yes 7 0.370

LUAD 10 0.675 no 10

LUSC 8 brain metastasis

other 5 yes 6 0.884

BMI no 9.5

≤23.5 9 0.877 hepatic metastasis

>23.5 9.5 yes 5 0.516

no 10
PFS, progression-free survival; Combination, combination therapy; LUAD, adenocarcinoma of the lung; LUSC, squamous cell carcinoma of the lung,mos, months.
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TABLE 5 Univariate and multivariate Cox-regression analysis of the PFS.

Univariate Multivariate

Characteristics HR 95% CI P-value HR 95% CI P-value

TPS

≥50% vs. <50% 0.46 0.46-2.18 <0.001 0.48 0.18-4.10 <0.001

statins history

yes vs. no 0.65 0.65-1.55 0.007 0.9 0.19-0.53 0.59

TG

high vs. low 1.47 0.68-1.47 0.008 0.15 0.16-1.17 0.34

HDL

high vs. low 0.45 0.45-2.22 <0.001 0.53 0.16-4.12 <0.001

LDL

high vs. low 1.52 0.66-1.52 0.005 1.56 0.16-2.82 0.005

gender

male vs. female 0.74 0.74-1.35 0.053 – – –

age(years)

>65 vs. ≤65 0.92 0.92-1.08 0.588 – – –

histology

adenocarcinoma
vs.other 0.85 0.85-1.17 0.3 – – –

treatment line

firstline
vs.non-firstline 0.88 0.88-1.14 0.517 – – –

treatment type

monotherapy vs.other 0.88 0.88-1.14 0.517 – – –

stage

III vs.IV 0.82 0.82-1.22 0.187 – – –

ki67

<25% vs. ≥25% 1.22 0.82-1.22 0.266 – – –

osseou metastasis

yes vs. no 1.02 0.98-1.02 0.897 – – –

brain metastasis

yes vs. no 1.29 0.77-1.29 0.258 – – –

hepatic metastasis

yes vs. no 1.12 0.89-1.12 0.57 – – –

diabetes history

yes vs. no 1.19 0.84-1.19 0.231 – – –

smoking history

yes vs. no 1.1 0.91-1.1 0.514 – – –

BMI

>23.8 vs. ≤23.8 0.98 0.98-1.02 0.897 – – –

CH

high vs. low 0.75 0.75-1.32 0.079 – – –
F
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CI, confidence interval; HR, hazard ratio; PFS, progression-free survival.
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for predicting the efficacy of immunotherapy in patients with

advanced NSCLC. Additionally, we explored the potential

mechanisms behind these two phenomena. The LMNA gene

appears to link the two, assisting tumor cells in resisting apoptosis

while simultaneously impeding the process of lipid transfer from the

tumor cells to the outside.

After four cycles of treatment, patients with low HDL levels

lacked responsiveness to immunotherapy, with lower DCR, ORR,
Frontiers in Oncology 10
and PFS compared to patients with normal HDL levels. Although

HDL may not directly participate in the tumor cells’ response to the

immune system, our study suggests that it can act as an indicator,

with the LMNA gene being the culprit behind this phenomenon.

Our research found that patients with poor immunotherapy

outcomes generally exhibited upregulation of the BCL2L11,

AKT1, and LMNA genes. BCL2L11 and AKT1 have been

confirmed in multiple studies to resist apoptotic signals, serving
FIGURE 3

Long-term efficacy prediction model. (A) After Univariate and multivariate Cox regression analysis, HDL was identified as an independent risk factor
for predicting progression-free survival (PFS). Grouped by cutoff points (0.94 mmol/L), Kaplan-Meier curves were plotted, revealing a longer survival
period in the high-level group compared to the low-level group (p < 0.0001). (B) After Univariate and multivariate Cox regression analysis, LDL was
identified as an independent risk factor for predicting progression-free survival (PFS). Grouped by cutoff points(1.04 mmol/L), Kaplan-Meier curves
were plotted, revealing a longer survival period in the high-level group compared to the low-level group (p < 0.0064). (C) Based on the multivariate
Cox regression analysis, a Nomogram plot was generated. (D) Grouped by cutoff points (0.2004558) of PI, Kaplan-Meier curves were plotted,
revealing a longer survival period in the low PI compared to the high PI group (p=0.026). (E) The calibration curve of the model predicting at the 8th
month. (F) The calibration curve of the model predicting at the 16th month.
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as key players in tumor cells’ defense against the immune system

(12, 13). The role of the lamin A/C protein encoded by the LMNA

gene in the apoptosis process remains under investigation. Previous

research suggests that as a major component of the nuclear lamina,

lamin A/C is targeted during apoptosis. However, some studies

propose that tumor cells may resist the transmission and activation

of apoptotic signals within the nucleus by increasing the content of

nuclear lamina proteins (14).
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Although previous studies have indicated a significant role of

cholesterol (CH) in the development of lung cancer, our research

found its correlation with the efficacy of immunotherapy to be less

significant. This may be attributed to its dual role. For instance,

increasing intracellular free cholesterol can enhance the effector

functions and proliferation of CD8+ T cells (15), but, conversely, the

elevated cholesterol concentration in the tumor microenvironment

can lead to the exhaustion of CD8+ T cells (16). Accumulation of
FIGURE 4

Genesets analysis. (A) DCB group enriched in the NEGATIVE REGULATION OF LIPID CATABOLIC PROCESS and CASPASE CASCADE. NDB group
enriched in the LIPASE INHIBITOR ACTIVITY and TRIGLYCERIDE RICH PLASMA LIPOPROTEIN PARTICLE. (B) Part of the differentially expressed
genes were visualized in a volcano plot. (C) Differentially expressed genes were visualized in a heatmap. (D) GO enrichment analysis of differentially
expressed genes. (E) Kegg enrichment analysis of differentially expressed genes. (F) GSEA analysis: the high LMNA expression group enriched in the
BIOACTIVE LIPID RECEPTOR ACTIVITY.
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TABLE 6 Differential Genes: DCB vs NDB.

genename baseMean log2FoldChange lfcSE stat pvalue padj

NOS2 53.367 23.998 2.153 11.148 <0.001 <0.001

MAGEA4 20.705 22.674 3.033 7.475 <0.001 <0.001

HLA-B 5788.687 -6.411 0.984 -6.517 <0.001 <0.001

S100A9 20928.990 3.853 0.855 4.509 <0.001 <0.001

S100A8 46760.396 4.217 0.966 4.366 <0.001 <0.001

LAMP1 3610.221 1.745 0.435 4.008 <0.001 0.004

BCL2L11 1986.983 1.758 0.473 3.717 <0.001 0.011

TNFRSF9 671.027 -1.441 0.438 -3.291 0.001 0.044

KREMEN1 3283.787 2.635 0.802 3.287 0.001 0.044

CXCL1 5996.311 2.316 0.727 3.186 0.001 0.051

KIAA0101 1512.716 2.348 0.737 3.186 0.001 0.051

KRT7 28461.632 2.486 0.809 3.075 0.002 0.068

CD3G 1920.498 -1.479 0.490 -3.016 0.003 0.070

CXCL8 10091.901 2.119 0.704 3.008 0.003 0.070

CDK1 3692.393 1.917 0.639 2.997 0.003 0.070

MS4A1 229.253 -2.772 0.940 -2.948 0.003 0.073

VTCN1 219.573 3.742 1.267 2.954 0.003 0.073

FCGR3B 799.756 2.368 0.810 2.923 0.003 0.075

BRCA1 899.447 1.701 0.587 2.897 0.004 0.077

LRG1 828.227 1.915 0.669 2.860 0.004 0.082

TFRC 35738.570 1.923 0.684 2.812 0.005 0.087

CD22 453.002 -1.902 0.674 -2.824 0.005 0.087

PTGS2 3476.746 2.445 0.878 2.784 0.005 0.088

CD37 2187.025 -1.115 0.401 -2.780 0.005 0.088

NOTCH3 30451.709 1.716 0.629 2.727 0.006 0.092

LCN2 43452.412 2.827 1.034 2.734 0.006 0.092

TUBB 18790.453 1.488 0.543 2.740 0.006 0.092

RB1 3733.450 1.534 0.595 2.577 0.010 0.137

MAD2L1 1888.693 1.692 0.659 2.567 0.010 0.137

G6PD 6505.701 1.377 0.559 2.463 0.014 0.142

AKT1 11206.685 1.153 0.474 2.432 0.015 0.142

CD53 174.898 -2.540 1.034 -2.455 0.014 0.142

NECTIN2 1367.132 1.287 0.529 2.433 0.015 0.142

GPR18 128.028 -1.746 0.716 -2.440 0.015 0.142

CXCR5 156.531 -2.274 0.930 -2.445 0.014 0.142

HLA-DOA 846.120 -1.071 0.435 -2.464 0.014 0.142

ITGAE 758.644 1.233 0.495 2.491 0.013 0.142

M6PR 16586.141 1.015 0.413 2.457 0.014 0.142

MRC1 6065.714 -1.235 0.497 -2.487 0.013 0.142

(Continued)
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cholesterol in macrophages can halt the apoptosis of tumor-

infiltrating macrophages, preventing the transformation from M2

to M1 macrophages. Knocking out the ABCG1 gene responsible for

this transport pathway in mice resulted in excellent anti-tumor

characteristics (17). Moreover, lipid rafts primarily composed of

cholesterol are obligatory for multiple signaling pathways involved

in cancer occurrence and development (18). The contradictory

nature of these effects hinders serum cholesterol from becoming a

robust predictive indicator for immunotherapy efficacy in non-

small cell lung cancer.

Although low-density lipoprotein (LDL) and triglycerides (TG)

did not exhibit as pronounced predictive capabilities as HDL, they

still held certain value. LDL has been found to regulate tumor

growth and migration through signaling pathways in various

cancers, and LDL receptor (LDLR) expression is upregulated in

many cancers, primarily directing toward the significant increase in

cholesterol demand due to metabolic reprogramming in tumor cells

(19–21). Some studies have indicated that TG can lead to the

dysfunction of the immune surveillance system composed of

natural killer (NK) cells (22). Additionally, in lung cancer

patients, a significant decrease in peripheral blood dendritic cell

(DC) count and intracellular lipid accumulation, mainly TG, leads

to reduced DC antigen presentation function (23). However, it is

essential to note that LDL and TG may not be as prominent in

prediction because LDL levels are often influenced by fluctuations

in other lipid levels, compromising their independence. Moreover,

the role of TG may be more accentuated in cardiovascular diseases,

interfering with the prediction of tumor treatment efficacy.

In recent years, statin drugs have gained recognition for their

ability to combat tumors, showing excellent anti-cancer

performance in both in vitro and clinical trials (24, 25). Statins

not only inhibit abnormal cholesterol uptake and synthesis by

tumor cells but also promote tumor cell apoptosis through the

mechanism mediated by geranylgeranyl pyrophosphate (GGPP)

(26). Furthermore, statins can inhibit tumor metastasis by

disrupting the geranylgeranylation and farnesylation of small

GTPases (27). However, in this study, we only observed a clear

positive impact of statin drugs on short-term efficacy, and their

status as independent prognostic factors for long-term survival was

not confirmed. This could be attributed to the limitations of our

study, including a retrospective nature and a relatively small sample

size. Some patients had follow-up periods exceeding one year,
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during which detailed collection of drug dosage adjustments or

discontinuations was not conducted.

Therefore, our findings align with the perspective that blood

lipid levels can serve as valuable indicators for predicting the

efficacy of immune checkpoint inhibitor therapy. HDL levels

reflect the expression of the LMNA gene in tumor tissues, which

in turn indicates the extent of apoptosis resistance in tumor cells.

Additionally, we developed predictive models using machine

learning algorithms, demonstrating the feasibility of incorporating

blood lipid levels into clinical prediction models. We explored the

impact of blood lipid levels on long-term treatment response,

revealing that groups with high HDL, low LDL, and a history of

statin use have a longer progression-free survival (PFS).

Multivariate Cox regression analysis identified tumor proportion

score (TPS), HDL levels, and LDL levels as independent prognostic

factors for PFS. The constructed predictive model showed

significant discriminative power in categorizing patients into

high-risk and low-risk groups.

However, due to the retrospective nature of this study and the

relatively small sample size, these conclusions lack generalizability.

Additionally, the absence of a validation cohort necessitates external

validation in larger cohorts to confirm the robustness of the

predictive models. The underlying mechanisms of the observed

correlations between blood lipid levels and treatment response

require further in vivo and in vitro investigation.
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