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The clinical application of small molecule tyrosine kinase inhibitors (TKIs) has

significantly improved the quality of life and prognosis of patients with non-small

cell lung cancer (NSCLC) carrying driver genes. However, resistance to TKI

treatment is inevitable. Bypass signal activation is one of the important reasons

for TKI resistance. Although TKI drugs inhibit downstream signaling pathways of

driver genes, key signaling pathways within tumor cells can still be persistently

activated through bypass routes such as MET gene amplification, EGFR gene

amplification, and AXL activation. This continuous activation maintains tumor cell

growth and proliferation, leading to TKI resistance. The fundamental strategy to

treat TKI resistance mediated by bypass activation involves simultaneously

inhibiting the activated bypass signals and the original driver gene signaling

pathways. Some clinical trials based on this combined treatment approach have

yielded promising preliminary results, offering more treatment options for

NSCLC patients with TKI resistance. Additionally, early identification of

resistance mechanisms through liquid biopsy, personalized targeted therapy

against these mechanisms, and preemptive targeting of drug-tolerant

persistent cells may provide NSCLC patients with more sustained and

effective treatment.
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1 Introduction

Lung cancer is one of the leading causes of cancer-related deaths

worldwide. According to the 2022 Global Cancer Research Report,

nearly 20 million people were newly diagnosed with cancer globally

in 2022, with approximately 8 million deaths. Primary lung cancer is

the most common among all newly diagnosed cancer cases, with

about 2.5 million new cases, accounting for 12.4% of global cancer

cases (1). In the United States, thanks to advancements in cancer

screening, diagnosis, and treatment technologies, the cancer mortality

rate decreased annually by approximately 1.2% from 2016 to 2020,

with a particularly noticeable decline in lung cancer mortality (2). The

quality of life and prognostic outcomes of lung cancer patients have

been greatly improved by the use of TKIs drugs.

Based on histological types, lung cancer can be classified into non-

small cell lung cancer (NSCLC) and small cell lung cancer (SCLC),

with NSCLC accounting for 80%-85% of all lung cancers (3–5).

Current research indicates that more than two-thirds of NSCLC cases

carry tumor driver genes (6, 7), including epidermal growth factor

receptor (EGFR) gene (10%-15% in Western populations and 30%-

50% in East Asian populations) (8, 9), Kirsten rat sarcoma viral

oncogene (KRAS) (15%-20%) (10), anaplastic lymphoma kinase

(EML4-ALK) (3%-7%) (10, 11), and c-ros oncogene 1 (ROS1) (1%-

2%) (12) etc. The U.S. Food and Drug Administration (FDA) has

approved various tyrosine kinase inhibitors (TKIs) for clinical

treatment of NSCLC with these driver genes, such as first-

generation EGFR TKIs [Gefitinib (13, 14) and Erlotinib (15)],

second-generation EGFR TKIs [Afatinib (16) and Dacomitinib

(17)], third-generation EGFR TKIs [Osimertinib (18–20)], first-

generation ALK TKIs [Crizotinib (21–23)], second-generation ALK

TKIs [Ceritinib (24–26), Alectinib (27), and Brigatinib (28)], and

third-generation ALK TKIs [Lorlatinib (29, 30)] (see Table 1). The

application of TKI drugs has significantly improved the prognosis of

NSCLC patients with driver genes. Unfortunately, most patients

develop resistance to TKI drugs after 1 to 2 years of treatment,

causing tumor progression and making it difficult for patients to

achieve long-term benefits from TKI therapy (31–33).

The mechanisms of TKI resistance in NSCLC mainly include

primary resistance and acquired resistance (31, 34, 35). Studies have

shown that 4%-10% of NSCLC patients exhibit primary resistance to

TKIs, which may be due to the presence of other non-sensitive

mutations in the target gene, although the exact molecular

mechanisms are not fully understood (31). Over 90% of

TKI resistance is acquired resistance, which includes mechanisms

such as secondary mutations in the target gene, bypass activation,

and histological transformation (31, 34). In patients with EGFR

mutations, approximately 60% of TKI resistance is caused by

secondary mutations in the EGFR gene, while about 20% is due to

bypass activation (31, 34, 35). For patients with ALK gene fusions, 28%-

50% of TKI resistance is due to gene mutations in the ALK kinase

domain, and 40%-50% of patients develop resistance to ALK TKIs

through bypass activation (31, 34, 35). Secondary mutations in the target

gene can impede the binding of TKI drugs to the kinase by altering the

conformation of the tyrosine kinase and/or changing the affinity

between the kinase and ATP, resulting in the loss of the drug’s

cytotoxic effect on tumor cells (36, 37). New generations of TKI drugs
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are typically designed to target secondary mutation sites that confer

resistance to previous generations, allowing patients with secondary

mutations to continue benefiting from treatment. For example, in

EGFR-mutant NSCLC patients, the EGFR T790M mutation is a

significant cause of resistance to first- and second-generation EGFR

TKIs (38, 39). Third-generation EGFR TKIs, such as Osimertinib, are

designed to target the EGFR T790M mutation, significantly improving

the prognosis of NSCLC patients with this mutation (19). In bypass

activation-mediated TKI resistance, tumor cells evade the cytotoxic
TABLE 1 FDA-approved kinase inhibitors for advanced NSCLC treatment.

Name
Approval

Year
Target Indication

Gefitinib 2003 EGFR
EGFR-

mutant NSCLC

Erlotinib 2004 EGFR
EGFR-

mutant NSCLC

Crizotinib 2011 ALK and ROS1
ALK and ROS1

fusion-
positive NSCLC

Afatinib 2013
EGFR, HER2,
and HER4

EGFR-
mutant NSCLC

Trametinib 2013 MEK1/2
BRAF-

mutant NSCLC

Dabrafenib 2013 BRAF
BRAF-

mutant NSCLC

Ceritinib 2014
ALK, IGF-1R,
and ROS1

ALK fusion-
positive NSCLC

Osimertinib 2015 EGFR
EGFR-

mutant NSCLC

Alectinib 2015 ALK, RET
ALK fusion-

positive NSCLC

Brigatinib 2017
ALK, ROS1, IGF-1R,
FLT3, and EGFR

ALK fusion-
positive NSCLC

Dacomitinib 2018
EGFR, HER2,
and HER4

EGFR-
mutant NSCLC

Lorlatinib 2018 ALK and ROS1
ALK fusion-

positive NSCLC

Entrectinib 2019
TRKA/B/C, ROS1,

and ALK
NTRK fusion-
positive NSCLC

Capmatinib 2020 MET
MET exon 14

skipping
mutant NSCLC

Selpercatinib 2020 RET
RET fusion-

positive NSCLC

Pralsetinib 2020 RET
RET fusion-

positive NSCLC

Tepotinib 2021 MET
MET exon 14

skipping
mutant NSCLC

Mobocertinib 2023 EGFR
EGFR-

mutant NSCLC

Amivantamab 2023 EGFR
EGFR-

mutant NSCLC
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effects of TKI drugs through continuous activation of bypass signaling

pathways. The mechanisms of bypass activation-mediated resistance are

complex, currently there is no standard clinical treatment for bypass

activation resistance. Therefore, this review will summarize the research

progress on bypass activation mechanisms in NSCLC TKI resistance,

aiming to provide new insights and clues for future research on NSCLC

TKI resistance mechanisms and the development of combination

treatment strategies that can overcome or reverse resistance.
2 Overview of bypass
activation resistance

Tumor cells maintain proliferation and differentiation through a

coordinated network of intracellular signaling pathways. When the

primary signaling pathways in tumor cells are inhibited by TKI drugs,

the tumor cells can reactivate key downstream effectors required for

cell survival and proliferation through parallel signaling pathways of

other receptor tyrosine kinases (RTKs). This allows the tumor to

bypass the inhibition of the driver gene by the TKI drug and continue

to survive and grow (34, 40). This mechanism is known as bypass

activation. In 2007, Engelman et al. (41) first described this resistance

mechanism. They found Mesenchymal to Epithelial Transition

Factor(MET) gene amplification in about 20% of patients with

EGFR TKI resistance. MET gene amplification bypasses the EGFR

signaling pathway by mediating HER3 phosphorylation, thereby

reactivating the PI3K/AKT signaling pathway (41).

Theoretically, the presence of each driver gene in NSCLC is

mutually exclusive, but under TKI drug treatment, driver genes

often operate in a complementary manner to sustain cell survival

and growth. MET gene amplification, which mediates resistance to

EGFR TKIs, is one such example. Additionally, in EML4-ALK

fusion NSCLC, approximately 40% of Crizotinib-resistant cases

exhibit activation of the EGFR signaling pathway (42–44). In

these cases, EGFR pathway activation is often due to EGFR gene

amplification rather than EGFR gene mutation.

Besides MET gene amplification and EGFR pathway activation,

other bypass activation pathways can mediate NSCLC TKI resistance.

These include AXL activation (45), insulin-like growth factor receptor

(IGF-1R) activation (46), and human epidermal growth factor

receptor 2 (HER2) amplification (47). Common bypass activation

pathways in NSCLC TKI resistance are summarized in Table 2.
3 Common bypass activation
pathways mediating NSCLC
TKI resistance

3.1 MET bypass activation pathway
mediating NSCLC TKI resistance

3.1.1 Overview of the MET gene
The MET proto-oncogene is located on human chromosome

7q21-q31, spanning approximately 125 kb and containing 21 exons

and 20 introns (48). The protein encoded by the MET gene, c-MET,
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is a transmembrane receptor tyrosine kinase composed of an

extracellular SEMA (Semaphorin) domain, PSI (Plexin

Semaphoring Integrin) domain, and IPT (Immunoglobulin

Plexins Transcription) domain, a transmembrane domain, and an

intracellular juxtamembrane (JM) domain, tyrosine kinase domain,

and a carboxy-terminal region. This heterodimer has self-
TABLE 2 Common bypass activation pathways in NSCLC TKI resistance.

TKI Type Bypass Activation Pathway Proportion

Resistance to First- and Second-Generation EGFR TKIs

MET gene amplification 5%-22%

HER2 gene amplification 10%-15%

AXL activation ~20%

PIK3CA mutation 2%-3%

BRAF mutation ~1%

KRAS mutation ~1%

Resistance to First-Line Treatment with Third-Generation
EGFR TKIs

MET gene amplification 7%-15%

HER2 gene amplification 1%-2%

PIK3CA mutation 7%

BRAF mutation 3%

KRAS mutation 3%-4%

Resistance to Second-Line Treatment with Third-Generation
EGFR TKIs

MET gene amplification 6%-26%

HER2 gene amplification 3%-5%

PIK3CA amplification 4%-11%

BRAF mutation 3%

KRAS mutation 2%-8%

Resistance to ALK TKIs

EGFR activation 30%-44%

MET gene amplification 15%

KIT gene amplification 11%

PIK3CA mutation 3%

BRAF mutation 3%

NRAS mutation 3%

FGFR2 mutation 3%

Resistance to MET TKIs

EGFR amplification 13%

KRAS mutation or amplification 3%

Resistance to RET TKIs

MET gene amplification 15%

KRAS gene amplification 5%
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phosphorylation capability (49). Hepatocyte Growth Factor

(HGF) is currently the only known high-affinity ligand for

c-MET. When the HGF ligand binds to the SEMA domain of

c-MET, the intracellular tyrosine residues of c-MET undergo

homodimerization and phosphorylation, thereby activating

c-MET. This activation subsequently triggers downstream

signaling pathways such as RAS/ERK/MAPK, PI3K/AKT, Wnt/b-
catenin, and STAT, promoting cell growth, proliferation, migration,

angiogenesis, and epithelial-to-mesenchymal transition (EMT) (50,

51). In NSCLC, the abnormal activation of the c-MET signaling

pathway mainly includes MET gene amplification (52), MET exon

14 skipping mutations (53), MET gene rearrangements (54, 55), and

c-MET protein overexpression (56, 57).

3.1.2 MET gene amplification and NSCLC
TKI resistance

MET gene amplification refers to an increase in the copy

number of the MET gene (52). This increase is often achieved

through gene breakage-fusion-bridge mechanisms that replicate the

gene region or local area (58). MET gene amplification leads to

overexpression of the c-MET protein, thereby activating

downstream signaling pathways. Studies (59) have shown that

MET gene amplification can often coexist with other tumor
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driver genes in NSCLC, such as EGFR and KRAS mutations and

ALK and ROS1 fusions, indicating that MET gene amplification

may not act as an intrinsic driver factor within tumors. In NSCLC,

MET gene amplification is considered the most common

mechanism of TKI resistance mediated by bypass activation

pathways (31, 32, 34). The frequency of MET gene amplification

in various gene mutation types of NSCLC TKI resistance is shown

in Table 3.

Research has reported that the occurrence rate of MET gene

amplification in first-generation EGFR TKI-resistant patients is

approximately 5% to 20% (41, 60–67). In the earliest related

reports, among 18 NSCLC patients resistant to the first-

generation EGFR TKIs erlotinib or gefitinib, MET gene

amplification was found in 4 cases (22%) (41). Similarly, in the

study by Bean et al. (60), among 43 NSCLC patients who developed

resistance to erlotinib or gefitinib treatment, 9 cases (21%) were

found to have MET gene amplification, while among 62 NSCLC

patients who did not receive any treatment, only 2 cases (3%)

carried MET gene amplification. In another study by Yu et al. (64),

involved 155 NSCLC patients resistant to gefitinib or erlotinib, only

5% of the patients had MET gene amplification. In the study by

Sequist et al. (63), only 5% of the patients resistant to gefitinib or

erlotinib showed MET gene amplification. Nevertheless, MET gene
TABLE 3 Frequency of MET gene amplification in NSCLC TKI resistance.

Study TKI Drug
Sample
Size

Detection
Method

MET Amplification Frequency

Engelman et al. (41) Gefitinib 18 Tissue 22%

Bean et al. (60) First-generation EGFR TKI 43 Tissue 21%

Turke et al. (61) First-generation EGFR TKI 27 Tissue 15%

Zhang et al. (45) First-generation EGFR TKI 31 Tissue 19%

Yano et al. (62) First-generation EGFR TKI 93 Tissue 9%

Sequist et al. (63) First-generation EGFR TKI 37 Tissue 5%

Yu et al. (64) First-generation EGFR TKI 75 Tissue 5%

Suda et al. (65) Gefitinib 13 Tissue 8%

Arcila et al. (66) First-generation EGFR TKI 37 Tissue 11%

Cardona et al. (67) Erlotinib 34 Tissue 9%

Zhang et al. (68) Abivertinib (second-line) 16 Plasma 6%

Chabon et al. (69) Rociletinib (second- or third-line) 43 Plasma 26%

Piotrowska et al. (70) Osimertinib (second- or third-line) 41 Tissue and/or plasma 24%

Mehlman et al. (71) Osimertinib (second- or third-line) 226 Tissue and/or plasma 11%

Oxnard et al. (72) Osimertinib (second-line) 41 Tissue and/or plasma 10%

Le et al. (73) Osimertinib (first- or second-line) 42 Tissue and/or plasma 14%

Papadimitrakopoulou et al. (74) Osimertinib (second-line) 73 Plasma 19%

Ramalingam et al. (75) Osimertinib (first-line) 91 Plasma 15%

Dagogo-Jack et al. (76) ALK TKI 136 Tissue and/or plasma
12% (second-generation); 22%

(third-generation)

Lin et al. (77) RET TKI 18 Tissue and/or plasma 15%
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amplification has been considered an important marker for bypass

activation mediating resistance to first-generation EGFR TKIs.

Meanwhile, the c-MET ligand HGF can also mediate resistance of

NSCLC to gefitinib through the activation of the PI3K/AKT

signaling pathway via GAB1 (Grb2 associated binder 1) (61). In

the study by Yano et al. (62), 61% of NSCLC patients exhibited high

expression of HGF after acquiring resistance to EGFR TKIs, with

high HGF expression occurring in 29% of patients with primary

resistance to EGFR TKIs. Additionally, in the study by Zhong et al.

(78), approximately 20% of patients with primary resistance to

erlotinib or gefitinib had MET gene amplification, indicating that

MET gene amplification may also be one of the causes of primary

resistance of NSCLC to first-generation EGFR TKIs.

In third-generation EGFR TKI resistance, when osimertinib is

used in cases of prior failure of EGFR TKIs in second-line

treatment, regardless of whether T790M mutation existed

previously in patients, resistance may occur through MET gene

amplification-mediated bypass activation pathways. After resistance

to osimertinib, the incidence of MET gene amplification can reach

19% (74). When osimertinib is used as first-line treatment, the

incidence of MET gene amplification in osimertinib-resistant

samples can reach 15% (75). In the study by Oxnard et al. (72),

approximately 10% of NSCLC patients with EGFR mutations

resistant to osimertinib had MET gene amplification. Similarly, in

the study by Le et al. (73), 14% of NSCLC patients developed MET

gene amplification after resistance to osimertinib. In this study,

MET gene amplification was the most common molecular

mechanism leading to osimertinib resistance besides EGFR

secondary mutations. In another study, Chabon et al. (69)

explored the mechanism of resistance to another third-generation

EGFR TKI, rociletinib, in 43 NSCLC patients by detecting

circulating tumor DNA (ctDNA), and found that 26% of patients

developed resistance to rociletinib through MET gene amplification,

which was the most common molecular mechanism of rociletinib

resistance in the study. Moreover, in this study, when EGFR T790M

and MET gene amplification coexisted, it could mediate primary

resistance of NSCLC patients to rociletinib (69). Additionally, MET

gene amplification can also mediate primary resistance of EGFR

mutated NSCLC to osimertinib (79). It is worth noting that MET

gene amplification can coexist with secondary mutations of driver

genes in the same resistant sample. Papadimitrakopoulou et al. (74)

showed in their study that in osimertinib-resistant cases mediated

by MET amplification, approximately 7% of patients

simultaneously had EGFR C797S mutation.

Similar to mediating EGFR TKI resistance, MET gene

amplification can mediate resistance of NSCLC patients to ALK

TKIs by activating the c-MET signaling pathway. Berger et al. (80)

reported a case of MET gene amplification occurring in an ALK

fusion NSCLC patient after resistance to the first-generation ALK

TKI crizotinib. Additionally, Ueda et al. (81) reported a case of MET

gene amplification occurring in an ALK fusion NSCLC patient after

resistance to the third-generation ALK TKI lorlatinib. In the study

by Dagogo-Jack et al. (76), which included 136 NSCLC patients who

had received at least one ALK TKI drug and developed resistance,

approximately 15% of patients showed MET gene amplification

after resistance. Furthermore, studies have reported that
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overexpression of the c-MET ligand HGF can also mediate

resistance of NSCLC cells to ALK TKIs through the activation of

the MET bypass signaling pathway (82, 83).

Additionally, in a study, after resistance to RET inhibitors, 15%

of RET fusion NSCLC patients developed MET gene amplification,

while only 10% of patients developed resistance through secondary

mutations in the RET gene, demonstrating that MET gene

amplification is also one of the most common causes of resistance

to RET inhibitors (77).

Interestingly, whether in EGFR TKI resistance or ALK TKI

resistance, the incidence of MET gene amplification in the latest

generation TKI resistance is higher than in the previous generation

TKI resistance. For example, in NSCLC patients resistant to first-

generation EGFR TKIs, the incidence of MET gene amplification is

5%-22% (41, 60–67), while in patients resistant to third-generation

EGFR TKIs, the incidence of MET gene amplification can be as high

as 10%-26% (69, 72–75); in NSCLC patients resistant to second-

generation ALK TKIs, the incidence of MET gene amplification is

approximately 12%, whereas in patients resistant to third-

generation ALK TKIs, MET gene amplification can reach 22%

(76). New generations of TKI drugs often have higher target

selectivity and treatment efficacy, which may be an important

reason for the change in TKI resistance patterns, but there is

currently no relevant research confirming this hypothesis, future

studies can further explore this phenomenon.

In summary, MET gene amplification plays an important role in

mediating resistance to EGFR and ALK TKIs, especially as the most

important bypass activation resistance pathway in the latest

generation TKI resistance. In clinical practice, combination

therapy using MET inhibitors and EGFR/ALK TKIs may

overcome resistance caused by MET gene amplification.

3.1.3 MET gene exon 14 skipping mutation and
NSCLC TKI resistance

Under normal circumstances, exon 14 of the MET gene is spliced

from both sides of the introns to form mRNA precursor, which

mainly encodes the JM domain of MET, containing the Y1003 c-Cbl

E3 ubiquitin ligase binding site. Ubiquitination of this site leads to

degradation of the c-MET receptor (84). When exon 14 of the MET

gene undergoes skipping mutation, the translated c-MET receptor

lacks the Y1003 c-Cbl binding site, leading to reduced ubiquitination

and slower degradation of the c-MET receptor, thereby sustaining

activation of the c-MET signaling pathway (85). The MET gene exon

14 skipping mutation is considered a primary oncogenic driver in

NSCLC and does not coexist with other NSCLC driver genes such as

EGFR, KRAS, ALK, and ROS1 (86). In a study of 933 non-squamous

NSCLC cases, no patients with MET gene exon 14 skipping mutation

had mutations in KRAS, EGFR, and ERBB2, or rearrangements in

ALK, ROS1, and RET (87). As a primary oncogenic driver, the

incidence of MET gene exon 14 skipping mutation in NSCLC is 3%-

4% (10, 84, 86, 87).

However, in a recent study, researchers from Memorial Sloan

Kettering Cancer Center reported a case of lung adenocarcinoma

with EGFR L858R mutation, where MET gene exon 14 skipping

mutation (c.2899G>A) occurred after resistance to erlotinib

treatment. Subsequent treatment with osimertinib and crizotinib
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combination therapy led to clinical remission (88). Further research

showed that the presence of MET gene exon 14 skipping mutation

caused the AKT and ERK downstream signaling pathways of

EGFR-mutated lung cancer cells to no longer be inhibited by

osimertinib, reducing cell sensitivity to osimertinib by

approximately 20% (88). Additionally, Dagogo-Jack et al. (76)

also reported a case of lung adenocarcinoma with EML4-ALK

fusion after sequential treatment with alectinib and brigatinib,

where MET gene exon 14 skipping mutation was detected only in

the patient’s plasma cell-free DNA.

3.1.4 MET gene rearrangement and c-MET
protein overexpression in NSCLC TKI resistance

MET gene rearrangement refers to fusion rearrangement of the

MET gene with other genes, activating the MET signaling pathway.

c-MET protein overexpression refers to an increase in c-MET

protein expression without MET gene amplification, exon 14

skipping mutation, or rearrangement, resulting in c-MET protein

overexpression and activation of the MET signaling pathway.

Reports of MET gene rearrangement and c-MET protein

overexpression in NSCLC TKI resistance are limited. Dagogo-Jack

et al. (76) reported cases of patients resistant to second-generation

ALK TKI alectinib and sequential treatment with ceritinib,

alectinib, and lorlatinib, all showing ST7-MET gene fusion. In

vitro experiments confirmed that this fusion gene mediated

resistance of H3122 cells to ALK TKIs, and resistance mediated

by rearrangement of ST7-MET gene could be reversed by

combination therapy with MET inhibitors and ALK TKIs. Xu

et al. (56) reported a case of NSCLC with EGFR L858R mutation,

where increased c-MET protein expression was detected after

resistance to gefitinib treatment without MET gene amplification

or mutation, indicating resistance to gefitinib due to c-MET protein

overexpression. The patient responded to gefitinib combined with

crizotinib therapy. In summary, although the frequency of MET

gene rearrangement and c-MET protein overexpression in NSCLC

TKI resistance is low, they are also one of the reasons for mediating

resistance through bypass activation pathways.
3.2 EGFR bypass activation pathways in
NSCLC TKI resistance

3.2.1 Overview of the EGFR gene
The EGFR gene is located on the short arm of chromosome 7

(7p12) in humans, spanning approximately 118 kb and comprising

28 exons, with mutations in the tyrosine kinase domain of EGFR

primarily occurring in exons 18-21 (89). EGFR is a common

receptor tyrosine kinase (RTK) and the first member of the ErbB

family. Structurally, EGFR consists of extracellular ligand-binding

domains, transmembrane domains, and intracellular tyrosine

kinase domains (89). Under normal conditions, EGFR exists as an

inactive monomer. Upon binding with ligands such as epidermal

growth factor (EGF) or transforming growth factor a (TGFa), the
receptor undergoes conformational changes, forming homodimers

or heterodimers, thereby activating autophosphorylation of key
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tyrosine residues in the tyrosine kinase domain. Gene mutations

in the EGFR tyrosine kinase domain can also lead to

autophosphorylation of tyrosine residues, initiating downstream

signaling pathways such as RAS/RAF/MEK/ERK, PI3K/AKT/

mTOR, and promoting cell proliferation and growth through

cascade reactions (89–91).

3.2.2 EGFR bypass activation in NSCLC
TKI resistance

In one study, NSCLC patients with ALK fusion showed EGFR

gene activation in 44% of tumor samples after developing resistance

to ALK TKI crizotinib (43). It has been reported that EGFR bypass

activation pathway-mediated resistance to ALK TKIs remains

resistant to newer generations of ALK TKIs, but co-administration

of EGFR TKIs effectively enhances the cytotoxic effects of ALK TKIs

on resistant cells (92). Additionally, overexpression of EGFR ligands

EGF and TGFa has been implicated in the mechanism of EGFR

bypass activation-mediated resistance (42, 93). EGFR gene mutations

and ALK gene fusion are both important driver genes in NSCLC,

typically not co-occurring in the same tumor. However, studies have

reported that EGFR gene mutations can appear as a means of

activating the EGFR bypass signaling pathway in NSCLC patients

resistant to ALK TKIs (44, 94). Similarly, the EGFR bypass activation

pathway can mediate resistance of ROS1 fusion NSCLC to ROS1

TKIs (95), which can be reversed by co-administration of ROS1 and

EGFR inhibitors (96, 97). Study by Lee C et al. (98) revealed that the

mutation in EGFR-KDD conferred resistance to 1st and 2nd

generation EGFR TKIs, but is sensitive to 3rd generation EGFR

TKIs. Furthermore, research by Guo et al. (99) found that

approximately 13% of NSCLC patients resistant to MET inhibitors

had EGFR gene amplification, suggesting that EGFR bypass signaling

pathway activation may be involved in resistance to MET inhibitors.

In summary, EGFR gene activation serves as an important

bypass signaling transduction pathway mediating resistance to

ALK, ROS1, and MET TKIs. Combination therapy with EGFR

TKIs and ALK/ROS1 TKIs may provide an alternative treatment

option for patients with resistance mediated by activation of the

EGFR signaling pathway.
3.3 AXL bypass activation pathway in
TKI resistance

3.3.1 Overview of the AXL gene
The AXL gene is located on chromosome 19 (19q13.2) in

humans and consists of 20 exons, encoding a protein of 894

amino acids. The AXL protein encoded by the AXL gene is a

member of the Tumor-Associated Macrophage (TAM) RTK family,

composed of two extracellular immunoglobulin-like repeat

sequences, two type III fibronectin repeat sequences, a

transmembrane domain, and an intracellular tyrosine kinase

domain (100–102). Activation of the AXL receptor can be

achieved through ligand binding, AXL overexpression leading to

homodimerization, or heterodimerization with other RTKs, with

ligand binding being the primary mode of AXL receptor activation
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(101–103). Growth arrest-specific protein 6 (GAS6) is considered

the sole ligand that binds to the extracellular domain of the AXL

receptor (101, 102, 104). Upon binding to GAS6, AXL activates

downstream signaling pathways such as PI3K/AKT/mTOR,

MAPK/ERK, JAK/STAT, and NF-kB through homodimerization

and autophosphorylation, thereby promoting activities including

cell proliferation, migration, angiogenesis, and mediating cell

resistance (101, 102). It is worth noting that unlike other driver

genes such as EGFR, ALK, and MET, the expression regulation of

AXL is not mediated by gene mutations, fusions, or amplifications

(105) but through mechanisms such as transcription factor

activation (106–110), microRNA regulation (111–113), or post-

transcriptional translation (114–116).

3.3.2 AXL bypass activation pathway-mediated
NSCLC TKI resistance

According to a study, approximately 20% of NSCLC patients who

developed resistance to first-generation EGFR TKIs erlotinib or

gefitinib showed upregulated AXL expression, and about 25%

showed upregulated GAS6 expression (45) In preclinical models,

AXL has been shown to mediate resistance of NSCLC cells to first-,

second-, and even third-generation EGFR TKIs through activation of

bypass signaling pathways such as PI3K/AKT, MAPK/ERK, and NF-

kB. Restoring sensitivity of NSCLC cells to EGFR TKIs can be

achieved by inhibiting AXL gene expression or using AXL

inhibitors (116–120). Studies have also reported that AXL can

mediate resistance of NSCLC cells to EGFR TKIs by regulating the

expression of microRNAs (121). Epithelial-mesenchymal transition

(EMT), a biological process involving the transformation of polarized

epithelial cells into mesenchymal cells, is also implicated in EGFR

TKI resistance (122–124). Activation of AXL often accompanies the

occurrence of tumor cell EMT, promoting resistance of NSCLC cells

to EGFR TKIs. Inhibiting AXL in resistant cells can reverse the EMT

process, overcoming resistance (125). Furthermore, studies have

reported that the AXL bypass activation pathway is also involved in

mediating resistance of NSCLC cells to first- and second-generation

ALK TKIs (126–128). However, currently, there are no studies

reporting the role of AXL bypass signaling pathway activation in

resistance to third-generation ALK TKIs and ROS1 TKIs.

In conclusion, AXL bypass signaling activation is one of the

important reasons for resistance to NSCLC EGFR TKIs and ALK

TKIs. Combining AXL inhibitors with EGFR/ALK TKIs may

provide a new treatment strategy for patients with TKI resistance

mediated by AXL bypass activation.
3.4 IGF-1R activation-mediated
TKI resistance

3.4.1 Overview of the IGF-1R gene
The IGF-1R gene is located on chromosome 15 (15q26) in

humans and spans approximately 315 kb, containing 21 exons

(129). The protein encoded by the IGF-1R gene, IGF-1R, is a

transmembrane RTK belonging to the insulin receptor (INSR)
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family, composed of extracellular ligand-binding domains, a

transmembrane domain, and intracellular domains near the

membrane and tyrosine kinase domains (129, 130). When IGF-1R

binds to its ligand, insulin-like growth factor (IGF), receptor

structural rearrangements promote transphosphorylation, activating

downstream MAPK/ERK, PI3K/AKT, and other cascading signaling

pathways, thereby regulating cellular activities such as proliferation,

growth, differentiation, and apoptosis (129–131). Recent studies have

reported that IGF-1R also mediates resistance to NSCLC TKIs

through bypass activation pathways (132–134).

3.4.2 NSCLC TKI Resistance Mediated by the
IGF-1R Bypass Activation Pathway

In preclinical models, abnormal activation of the IGF-1R

signaling pathway is considered one of the mechanisms by which

NSCLC cells develop resistance to first- and second-generation

EGFR TKIs via bypass pathways. Co-administration of EGFR TKIs

and IGF-1R inhibitors effectively suppresses NSCLC cells resistant

through this bypass activation pathway (133–137). For instance, in

gefitinib-resistant NSCLC cells A431, the loss of expression of

insulin-like growth factor binding proteins (IGFBP) 3 and 4 leads

to activation of the IGF-1R/PI3K/AKT pathway. When the EGFR

signaling pathway is inhibited, the PI3K/AKT signaling pathway

remains activated, allowing NSCLC cells to continue growing and

proliferating (132). Additionally, studies have confirmed that

abnormal activation of the IGF-1R signaling pathway also

contributes to resistance of NSCLC cells to the third-generation

EGFR TKI osimertinib (132).

In a study by Lovly et al. (46), immunohistochemical staining of

five samples from crizotinib-resistant ALK fusion NSCLC patients

revealed activation of IGF-1R in four cases. Preclinical models

demonstrated that IGF-1R can mediate crizotinib resistance in

ALK fusion NSCLC cells by sustaining activation of the PI3K/

AKT signaling pathway. Inhibiting IGF-1R can restore sensitivity of

NSCLC cells to crizotinib. Similar conclusions were drawn in the

study by Wilson et al. (138) Furthermore, studies have reported

IGF-1R-mediated resistance of ALK fusion NSCLC cells to the

second-generation ALK TKI ceritinib. Co-administration of

ceritinib and IGF-1R inhibitors can reverse resistance in these

cells (82). These findings indicate that IGF-1R bypass signaling

activation is one of the reasons for resistance of ALK fusion NSCLC

to first- and second-generation ALK TKIs. Co-administration of

IGF-1R inhibitors with first-generation ALK TKIs may offer further

treatment possibilities for patients acquiring resistance through this

bypass pathway. However, whether this bypass signaling activation

mediates resistance to third-generation ALK TKIs and ROS1 TKIs

has not been reported in relevant studies.
3.5 NSCLC TKI resistance mediated by
HER2/HER3 bypass signaling pathway

The HER2 gene, also known as ERBB2, is located on

chromosome 17 (17q21) in humans (139). The HER2 protein
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encoded by the HER2 gene is a transmembrane glycoprotein of

approximately 185 kDa and is the second member of the ErbB

family of RTKs (139). The HER3 gene, or ERBB3 gene, is located

on the long arm of chromosome 12 (12q13) in humans (140). The

HER3 protein encoded by the HER3 gene is the third member of

the ErbB family of RTKs (140). Structurally, both HER2 and HER3

consist of extracellular ligand-binding domains, transmembrane

domains, and intracellular tyrosine kinase domains (141, 142).

HER2 is considered an “orphan receptor” as it lacks known ligands

to activate downstream signaling pathways directly, though it

consists of tyrosine kinase domain. Instead, HER2 forms

heterodimers with other ErbB family members to activate

downstream signaling pathways (142, 143). HER3 is considered a

“dead kinase.” Although it can bind to multiple ligands, its intrinsic

tyrosine kinase activity is impaired. It must form heterodimers

with other members of the ErbB family to activate downstream

signaling pathways (142). Heterodimers of HER2/HER3 are

considered the most potent dimers within the ErbB family due to

HER2 being the preferred dimerization partner for all ErbB family

members, with HER3 being the preferred partner for HER2 (144,

145). Upon ligand binding, HER3 undergoes conformational

changes allowing dimerization, thereby activating downstream

PI3K/AKT, MAPK/ERK, and other cascading signaling

pathways, regulating cell growth, proliferation, and resistance

(142, 145, 146).

In a study, about 12% of NSCLC patients resistant to EGFR

TKIs were found to have HER2 amplification, whereas the

incidence of HER2 amplification in untreated NSCLC patients

was only 1%, suggesting that HER2 amplification may be involved

in the resistance process to EGFR TKIs. Further in vitro

experiments confirmed that HER2 amplification activated

downstream AKT and ERK signaling pathways and continued

to activate them even when the EGFR signaling pathway was

inhibited, leading to NSCLC cell resistance to EGFR TKIs (47).

Additionally, Yu et al. (63) found that approximately 13% of

NSCLC patients developed HER2 gene amplification after

resistance to gefitinib or erlotinib. Besides mediating resistance

to first- and second-generation EGFR TKIs, HER2 gene

amplification has also been shown to mediate resistance to

third-generation EGFR TKIs through bypass activation

pathways (147, 148). When osimertinib was used as second-line

treatment, the incidence of HER2 gene amplification in

osimertinib-resistant samples was about 3% (74), while it was

approximately 2% when osimertinib was used as first-line

treatment (75). Studies have also reported that HER2 gene

amplification can mediate primary resistance of NSCLC patients

to osimertinib. Furthermore, in a study by Zhang et al. (68), it was

found that approximately 3% of NSCLC patients developed HER2

gene amplification after resistance to abivertinib, another third-

generation EGFR TKI. It is worth noting that the frequency of

HER2 gene amplification in resistance to first-generation EGFR

TKIs is significantly higher than in resistance to third-generation

EGFR TKIs, which is contrary to the frequency of resistance to

EGFR TKIs mediated by MET gene amplification. There is

currently no relevant research to explain this phenomenon.
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In addition to its role in EGFR TKI resistance, activation of the

HER2/HER3 signaling pathway can also mediate resistance of

NSCLC cells to ALK TKIs (149). Wilson et al. (127) found that

treatment of ALK fusion NSCLC cell lines (H3122, H2228, and

MGH006) with recombinant NRG1 protein (ligand of HER3)

resulted in resistance to the ALK TKI TAE684, which was

eliminated by co-administration of TAE684 and the HER2

inhibitor lapatinib, demonstrating that the ligand of HER3,

NRG1, can mediate resistance of ALK fusion NSCLC to ALK

TKIs through the activation of the HER3/HER2 signaling

pathway. Another study also confirmed that the HER2 and

HER3 signaling pathways were activated in TAE684-resistant

ALK fusion NSCLC cells (150), mediating resistance to TAE684.

Additionally, in NSCLC cells resistant to ceritinib, another

second-generation ALK TKI, increased expression of HER3 and

its ligand neuregulin-1 (NRG1) was observed. The upregulated

HER3 protein continued to activate downstream AKT and ERK

signaling pathways even when the ALK signaling pathway was

inhibited, enabling cells to evade the cytotoxic effects of ceritinib

(82). In clinical studies, Minari et al. (149) reported a case of ALK

fusion NSCLC patient who developed HER2 gene amplification

after treatment with first- and second-generation ALK TKIs.

Furthermore, research has found that activation of the HER2

signaling pathway mediates resistance of NSCLC cells with ROS1

fusion to ROS1 TKIs (151).
3.6 NSCLC TKI resistance mediated by key
gene mutations in cascade
signaling pathways

The RAS/RAF/MAPK/ERK and PI3K/AKT pathways are

considered the two most common cascade signaling pathways

involved in bypass activation, and mutations or amplifications in

key genes in these two pathways can mediate NSCLC TKI resistance

(31, 32, 34, 152).

3.6.1 NSCLC TKI resistance mediated by key gene
mutations in the ras/raf/mapk/erk cascade
signaling pathway

Mutations in genes such as KRAS, NRAS, BRAF, and MAP2K1

have been reported to mediate resistance to EGFR TKIs within the

RAS/RAF/MAPK/ERK cascade signaling pathway. Eberlain et al.

(153) identified the NRAS E63K mutation involved in resistance to

osimertinib in NSCLC cell lines resistant to osimertinib. Both in

vitro and in vivo experiments demonstrated that co-administration

of osimertinib and the MEK inhibitor selumetinib could reverse the

resistance mediated by the NRAS E63K mutation. Ortiz-Cuaran

et al. (79) observed the KRAS G12S mutation in patients resistant to

osimertinib as second-line treatment. Other KRAS mutations, such

as G12D, G13D, Q61R, and Q61, have also been detected in patients

resistant to osimertinib (72, 73, 154). KRAS G12D mutation or

KARS gene amplification has also been reported in NSCLC patients

resistant to MET inhibitors and RET inhibitors (77, 98).

Furthermore, approximately 3% of patients resistant to
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osimertinib carry the BRAF V600E mutation (74, 75). In vitro

experiments have confirmed that the BRAF V600E mutation

mediates resistance of NSCLC cells to osimertinib, and co-

administration of the BRAF inhibitor encorafenib can restore

sensitivity of resistant cells to osimertinib (155). Additionally,

research has found that the BRAF G469A mutation can mediate

acquired resistance of NSCLC cells to osimertinib (156). Moreover,

mutations such as MAP2K1 K57N, BRAF G15V, and NRAS A155T

have been discovered in NSCLC resistant to second-generation

ALK TKIs (157, 158). Thus, key gene mutations in the RAS/RAF/

MAPK/ERK cascade signaling pathway play a significant role in

NSCLC TKI resistance.

3.6.2 NSCLC TKI resistance mediated by key gene
mutations in the pi3k/akt cascade
signaling pathway

Within the PI3K/AKT cascade signaling pathway, mutations in

the PIK3CA gene are the most frequently reported genetic

alterations mediating NSCLC TKI resistance. PIK3CA gene

mutations have been reported in NSCLC resistant to first-,

second-, and third-generation EGFR TKIs (64, 159). In clinical

samples of NSCLC resistant to osimertinib as first- or second-line

treatment, the incidence of PIK3CA gene mutations can reach 4%-

11%, including mutations such as PIK3CA E545K, E542K, R88Q,

N345K, and E418K (72–75). The osimertinib resistance mediated

by the PIK3CA E545K mutation has been confirmed in vitro (73).

Similarly, mutations in the PIK3CA gene have also been found in

samples resistant to second-generation ALK TKIs (157). Thus,

PIK3CA gene mutations play an important role in mediating

NSCLC TKI resistance.
3.7 Others

Kim et al. (160) found FGFR1 gene amplification and increased

expression of Fibroblast Growth Factor 2 (FGF2) in NSCLC

patients resistant to osimertinib, suggesting a potential association

between the FGFR1 signaling pathway and acquired resistance to

osimertinib. Additionally, FGFR3 gene amplification was observed

in NSCLC samples resistant to the ROS TKI crizotinib (151). These

studies suggest that aberrant activation of the FGFR signaling

pathway may be one of the mechanisms by which NSCLC

develops acquired resistance to TKIs through bypass pathways

(161, 162).

Furthermore, fusion of driver genes can also activate bypass

signaling pathways to mediate acquired resistance of NSCLC to

TKIs. Studies have reported that 3%-10% of patients resistant to the

third-generation EGFR TKI osimertinib develop resistance through

driver gene fusions. Reported fusion genes associated with

resistance include MET-UBE2H, FGFR3-TACC3, RET-ERC1,

CCDC6-RET, KIF5B-RET, NTRK1-TPM3, NCOA4-RET, GOPC-

ROS1, AGK-BRAF, ESYT2–BRAF, PLEKHA7-ALK, and EML4-

ALK, among others (70, 72–75, 163–167).

Additionally, KIT gene mutations (KIT D816G) and gene

amplifications have been separately reported to mediate resistance

to ROS1 TKIs and ALK TKIs (43, 151, 168).
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4 Current treatment strategies for
overcoming bypass pathway-
mediated resistance

In TKI resistance mediated by bypass pathways, the bypass

signaling pathway can remain activated even when the signaling

pathway driven by the original driver gene is inhibited. Therefore,

simultaneously inhibiting both the bypass signaling pathway and

the signaling pathway driven by the original driver gene may

overcome TKI resistance mediated by bypass pathways.

Currently, numerous phase 1 and phase 2 clinical trials are

investigating treatment strategies for NSCLC patients with TKI

resistance mediated by bypass pathway activation, and some studies

have already achieved promising results (see Table 4).
4.1 Targeting MET bypass activation in
NSCLC TKI resistance

Currently, over 50 MET-targeted drugs are under research or

have entered clinical use, mainly including anti-HGF antibodies,

anti-c-MET antibodies, and MET inhibitors, among which MET

inhibitors are the most extensively studied and applied c-MET

targeted drugs. Presently, there are four FDA-approved small

molecule inhibitors targeting c-MET, namely crizotinib (169),

cabozantinib (170), capmatinib (171), and tepotinib (172).

Among these, crizotinib and cabozantinib are multitargeted drugs

(including ALK and ROS1), initially not marketed with c-Met as a

therapeutic target, while capmatinib and tepotinib were approved

with c-MET as the therapeutic target and are highly selective c-Met

inhibitors. Brigatinib also belongs to the new generation of ALK

inhibitors and has been approved for use in patients with ALK-

positive metastatic NSCLC who have undergone disease

progression on crizotinib therapy or who cannot tolerate

crizotinib (173). For ROS1 translocation malignancies that have

developed resistance to crizotinib, cabozantinib may be effective.

Ceritinib has also been shown to be efficacious, but may not be able

to overcome the problem of acquired resistance to crizotinib (174).

The MET inhibitors glesatinib, savolitinib and the EGFR/MET

bispecific antibody amivantamab are also in clinical trials. Worth

mentioning is the domestically produced highly selective c-MET

inhibitor volitinib (Savolitinib), which has entered the FDA New

Drug Application (NDA) stage, representing a promising c-

MET inhibitor.

Some preclinical studies have demonstrated that in NSCLC

resistant cells mediated by MET gene amplification, the

combination of MET inhibitors and EGFR TKIs can reverse the

resistance of resistant cells. Simultaneously, in clinical reports,

the combination of crizotinib and osimertinib has been proven to

be an effective treatment strategy for osimertinib-resistant patients

with MET gene amplification. In clinical research, in a phase 1b/2

trial, 47% of EGFR TKI-resistant NSCLC patients with MET gene

amplification and 32% of EGFR TKI-resistant patients with MET

overexpression showed objective responses to the combination

treatment of the MET inhibitor capmatinib and gefitinib (175).
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TABLE 4 Ongoing clinical trials targeting bypass activation pathways.

Drug
Clinical Trial

Phase
Patient Enrollment

Start
Date

Results
Clinical Trial
Registration
Number

Targeting MET Pathway-Mediated NSCLC TKI Resistance

Capmatinib + Erlotinib 1/2 NSCLC patients resistant to Erlotinib 2008 Response rate: 0% NCT00596648

Capmatinib + Erlotinib 2
NSCLC patients resistant to Gefitinib
or Erlotinib with activated c-MET
signaling pathway

2012
Objective response

rate: 27%
NCT01610336

Capmatinib + Gefitinib 1
NSCLC patients resistant to Erlotinib
with activated c-MET
signaling pathway

2013
Partial response
rate: 16.7%

NCT01911507

Tepotinib + Gefitinib 1/2
NSCLC patients resistant to
Osimertinib with c-MET
gene amplification

2013
Objective response

rate: 45%
NCT01982955

Savolitinib + Osimertinib 1
EGFR TKI-resistant NSCLC patients
with MET gene amplification

2014
Objective response

rate: 48%
NCT02143466

Telisotuzumab vedotin + Osimertinib 1
Osimertinib-resistant NSCLC patients
with c-MET positivity

2014 Ongoing NCT02099058

Amivantamab 1
EGFR TKI-resistant NSCLC patients
with MET gene amplification
or mutation

2015 Ongoing NCT02609776

Savolitinib + Gefitinib 1
First or second-generation EGFR TKI-
resistant NSCLC patients with MET
gene amplification

2015
Objective response

rate: 25%
NCT02374645

Selpercatinib + Crizotinib 1/2
Selpercatinib-resistant NSCLC patients
with MET gene amplification

2017
Response
rate: 100%

NCT03157129

Telisotuzumab Vedotin (ABBV-399) 2
NSCLC patients with c-MET positivity
after treatment resistance

2018 Ongoing NCT03539536

Savolitinib + Osimertinib 2
Osimertinib-resistant NSCLC patients
with c-MET positivity

2018 Ongoing NCT03778229

Tepotinib + Osimertinib 2
First or second-generation EGFR TKI-
resistant NSCLC patients with MET
gene amplification

2019 Ongoing NCT03940703

Savolitinib + Osimertinib 2
Osimertinib-resistant NSCLC patients
with c-MET positivity

2019 Ongoing NCT03944772

Amivantamab+Lazertinib 1 Osimertinib-resistant NSCLC patients 2020 Ongoing NCT04077463

Volitinib+Osimertinib 2
Osimertinib-resistant NSCLC patients
with MET gene amplification

2020 Ongoing NCT04606771

Glumetinib+Osimertinib 1/2
EGFR TKI-resistant NSCLC patients
with MET gene amplification

2020 Ongoing NCT04338243

Targeting HER2/HER3 Pathway Mediated NSCLC TKI Resistance

Pertuzumab+Trastuzumab 2
TKI-resistant patients mediated by
HER2 gene amplification

2017 Ongoing NCT03297606

Trastuzumab emtansine+Osimertinib 2
EGFR TKI-resistant NSCLC patients
with activated HER2 signaling pathway

2018 Ongoing NCT03784599

Patritumab Deruxtecan 1 NSCLC patients resistant to EGFR TKI 2017 Ongoing NCT03260491

Patritumab Deruxtecan 2 NSCLC patients resistant to EGFR TKI 2020 Ongoing NCT04619004

Patritumab Deruxtecan+Osimertinib 1 Osimertinib-resistant NSCLC patients 2020 Ongoing NCT04676477

Pertuzumab+Necitumumab+Osimertinib 1/2 Osimertinib-resistant NSCLC patients 2020 Ongoing NCT04285671

(Continued)
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In another phase 1b trial of the combination of the MET inhibitor

volitinib and gefitinib, 52% of EGFR TKI-resistant NSCLC patients

with MET gene amplification exhibited objective responses to the

combination therapy (176). In the subsequent INSIGHT study, 67%

of EGFR TKI-resistant NSCLC patients with MET gene

amplification showed objective therapeutic responses to the

combination of the MET inhibitor tepotinib and gefitinib (177).

In the phase 1b trial of the TATTON study, 64% of NSCLC patients

resistant to first- or second-generation EGFR TKIs and with MET

gene amplification demonstrated objective responses to the

combination of volitinib and osimertinib, while only 30% of

patients resistant to third-generation EGFR TKIs and with MET

gene amplification showed objective responses to this combination

therapy (178). Based on the results of the TATTON study, the

SAVANNAH study and the ORCHARD study are exploring the use

of volitinib in combination with osimertinib for the treatment of

osimertinib-resistant NSCLC patients with MET gene amplification

(NCT03778229 and NCT03944772). The savolitinib + osimertinib

combination represents a promising therapy in patients with MET-

amplified/overexpressed, EGFRm advanced NSCLC with disease
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progression on a prior EGFR-TKI (NCT02143466) (179). The

combination of osimertinib+chemotherapy in EGFR-Mutated

Advanced NSCLC not only helps patients with survival rates and

disease progression but also has a higher response rate and longer

response duration (180). Additionally, the INSIGHT 2 study is

investigating the combination of the MET inhibitor tepotinib with

osimertinib for the treatment of EGFR TKI-resistant NSCLC

patients with MET amplification (NCT03940703).

Currently, sporadic case reports exist regarding the combined

use of MET inhibitors with ALK TKIs or RET TKIs, but there are no

clinical studies specifically targeting MET inhibitors in combination

with ALK TKIs or RET TKIs. Gouji et al. (181) reported a case of an

ALK fusion NSCLC patient who developed MET gene amplification

after resistance to the second-generation ALK TKI alectinib,

achieving a response to treatment with crizotinib; however, the

patient died after 7 months of crizotinib treatment. Dagogo-Jack

et al (76). reported a case of an ALK fusion NSCLC patient who

showed significant MET gene amplification after resistance to

alectinib, achieving a response after treatment with crizotinib;

however, the tumor recurred after 10 weeks of treatment.
TABLE 4 Continued

Drug
Clinical Trial

Phase
Patient Enrollment

Start
Date

Results
Clinical Trial
Registration
Number

Targeting AXL Pathway Mediated NSCLC TKI Resistance

Bemcentinib+Erlotinib 1/2 Erlotinib-resistant NSCLC patients 2015 Ongoing NCT02424617

Dubermatinib 1 NSCLC patients resistant to EGFR TKI 2016 Ongoing NCT02729298

DS-1205c+Osimertinib 1 NSCLC patients resistant to EGFR TKI 2017 Ongoing NCT03255083

DS-1205c+Gefitinib 1 NSCLC patients resistant to EGFR TKI 2018 Ongoing NCT03599518

Targeting RAS/RAF/MEK/ERK and PI3K/AKT Pathways Mediated NSCLC TKI Resistance

BKM120+Gefitinib 1
EGFR TKI-resistant NSCLC patients
with activated PI3K signaling pathway

2012

Median
progression-free

survival:
2.8 months

NCT01570296

Simeprevir+Osimertinib 1 EGFR TKI-resistant NSCLC patients 2014 Ongoing NCT02143466

Cobimetinib+Ceritinib 1/2 ALK TKI-resistant NSCLC patients 2017 Ongoing NCT03087448

Cobimetinib+Alectinib 1/2 Alectinib-resistant NSCLC patients 2017 Ongoing NCT03202940

Cobimetinib+EGF816 1 EGFR TKI-resistant NSCLC patients 2018 Ongoing NCT03516214

Sotorasib 2 TKI-resistant NSCLC patients 2020 Ongoing NCT04625647

Targeting Other Pathways Mediating NSCLC TKI Resistance

Xentuzumab+Afatinib 1 EGFR TKI-resistant NSCLC patients 2014
Partial response

rate: 13%
NCT02191891

Amivantamab 1/2 EGFR TKI-resistant NSCLC patients 2018 Ongoing NCT03706287

Alectinib+Osimertinib 2
Osimertinib-resistant NSCLC patients
with ALK fusion

2019 Ongoing NCT03944772

Selpercatinib+Osimertinib 2
Osimertinib-resistant NSCLC patients
with RET fusion

2019 Ongoing NCT03944772

Amivantamab 2 EGFR TKI-resistant NSCLC patients 2020 Ongoing NCT04619563

Sunvozertinib 2 EGFR TKI-resistant NSCLC patients 2022 Ongoing NCT03974022
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Dagogo-Jack et al. (76) also reported another case of an ALK fusion

NSCLC patient who developed MET gene amplification after

resistance to lorlatinib, achieving tumor control after treatment

with lorlatinib in combination with crizotinib, but the tumor

progressed again after 3 months of treatment. In the study by

Rosen et al. (182), four NSCLC patients treated with the RET

inhibitor selpercatinib were found to have MET gene amplification

after resistance of selpercatinib treatment, all showing varying

degrees of therapeutic response to crizotinib combined with

selpercatinib; however, tumors recurred in all patients after 3.5 to

10 months. Larger clinical trials are needed to confirm the efficacy

of ALK or RET TKIs in combination with MET inhibitors in

NSCLC patients with MET gene amplification who are resistant

to ALK or RET TKIs.
4.2 Targeting HER2/HER3 bypass activation
in NSCLC TKI resistance

Several small molecule inhibitors targeting HER2 or therapeutic

antibodies have been FDA-approved, while there are currently no

marketed drugs targeting HER3. FDA-approved small molecule

inhibitors targeting HER2 include lapatinib (183), afatinib (184),

neratinib (185), and dacomitinib (17); therapeutic antibodies

targeting HER2 include Herceptin, trastuzumab (186), Phesgo,

pertuzumab (187), and Enhertu (trastuzumab deruxtecan) (188).

Currently, multiple trials are investigating the efficacy of HER2/

HER3 inhibitors or antibodies in patients with NSCLC TKI

resistance driven by HER2/HER3 signaling pathway activation,

but standard treatment regimens have not been established. In

NSCLC patients with HER2 gene amplification, trastuzumab-DM1

(trastuzumab emtansine) has shown promising efficacy in phase 2

clinical trials (189), and the ongoing TRAEMOS trial is

investigating the therapeutic effect of T-DM1 combined with

osimertinib in osimertinib-resistant patients with HER2

amplification (NCT03784599). In a study on patients with

advanced NSCLC harboring HER-2 mutations, the efficacy and

pharmacotoxicity of pyrotinib were analyzed, thereby expanding

treatment options for rare gene mutations (NCT03574402) (190).

The CAPTUR trial is also investigating the combination of

trastuzumab and pertuzumab to overcome resistance mediated by

HER2 gene amplification (NCT03297606). Additionally, a phase 1

trial is investigating the therapeutic effect of the HER3-targeting

antibody-drug conjugate U3-1402 (patritumab deruxtecan)

combined with osimertinib in osimertinib-resistant NSCLC

patients (NCT04676477).
4.3 Targeting AXL bypass activation in
NSCLC TKI resistance

Preclinical studies have confirmed that combination therapy

targeting AXL can effectively reverse NSCLC TKI resistance

mediated by AXL bypass activation. In ongoing clinical trials,

three AXL inhibitors (bemcentinib, dubermatinib, and DS-1205c)

are being used alone or in combination with EGFR TKIs
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to treat EGFR TKI-resistant NSCLC patients (NCT02424617,

NCT02729298, NCT03255083, NCT03599518). However,

unfortunately, these AXL inhibitors have not yet been FDA-

approved for clinical use, and there is currently no standard

treatment regimen for NSCLC AKI resistance mediated by AXL

bypass activation.
4.4 Targeting cascade signaling pathways
in NSCLC TKI resistance

Multiple drugs targeting cascade signaling pathways involved in

NSCLC TKI resistance are currently being investigated in clinical

trials. In studies targeting the PI3K/AKT cascade signaling pathway

mediated NSCLC TKI resistance treatment, the PI3K inhibitor

BKM120 combined with gefitinib was used to treat EGFR TKI-

resistant NSCLC patients with PI3K signaling pathway activation,

but unfortunately, the median progression-free survival was only

2.8 months (191). The novel PI3K inhibitor alpelisib was FDA-

approved in 2019 for the treatment of PIK3CA-mutated breast

cancer, and considering the high incidence of PIK3CA mutations in

NSCLC TKI resistance (2%-11%), future clinical trials may use

next-generation PI3K inhibitors to explore their efficacy in NSCLC

TKI-resistant patients with PIK3CA mutations. Adagrasib is a

related molecule that the FDA has also approved for patients with

locally advanced or metastatic NSCLC with the KRAS G12C

mutation who have received at least one prior systemic

therapy (192).

In the treatment of NSCLC TKI resistance mediated by the

RAF/RAS/MEK/ERK cascade signaling pathway, the MEK

inhibitors selumetinib (190, 192), trametinib (193), and

cobimetinib (194) have been FDA-approved. The KRAS inhibitor

sotorasib (AMG 510) (195) has also received FDA breakthrough

therapy designation and real-time oncology review qualification for

the treatment of NSCLC patients with KRAS G12C mutations. A

phase I study enrolling 137 patients with advanced KRAS-mutant

cancers showed that treatment with the covalent KRAS G12C

inhibitor divarasib (GDC-6036) had an ORR of 53% and a

median PFS of 13.1 months in 60 patients with NSCLC (196).

There are few promising treatments for non-G12C KRAS-mutant

NSCLC. A phase III trial combining the oral MEK inhibitor

selumetinib with docetaxel did not find a beneficial MEK

inhibitor treatment strategy (197). Ongoing clinical trials include

trametinib in combination with ceritinib for the treatment of ALK

TKI-resistant NSCLC patients (NCT03087448), cobimetinib in

combination with alectinib for the treatment of alectinib-resistant

NSCLC patients (NCT03202940), selumetinib in combination with

osimertinib for the treatment of EGFR TKI-resistant NSCLC

patients (NCT02143466), and sotorasib for the treatment of TKI-

resistant NSCLC patients (NCT04625647).
4.5 Other

RET gene fusion is one mechanism of NSCLC TKI bypass

activation resistance, and currently, the FDA has approved two RET
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inhibitors, pralsetinib (BLU-667) (198) and selpercatinib (LOXO-

292) (199), for the treatment of RET fusion-positive NSCLC

patients. In clinical reports, two NSCLC patients resistant to

osimertinib due to RET gene fusion achieved clinical remission

after receiving pralsetinib in combination with osimertinib (70).

Additionally, a clinical trial is investigating selpercatinib in

combination with osimertinib for the treatment of osimertinib-

resistant patients with RET gene fusion (NCT03944772).

Combination chemotherapy presented good results in patients

with advanced NSCLC in which EGFRmutations were found. A non-

blind randomized trial enrolling 557 patients with advanced NSCLC

carrying EGFR mutations found that the addition of platinum and

pemetrexed chemotherapy to ositinib improved PFS (180). For

primary patients with locally advanced or metastatic NSCLC

harboring an EGFR mutation (exon 19 deletion or L858R

mutation), treatment with amivantamab + lazertinib resulted in a

better PFS improvement than ositinib alone (200).

Furthermore, clinical trials are underway for the combination of

alectinib with osimertinib for the treatment of osimertinib-resistant

NSCLC patients with ALK fusion (NCT03944772), IGF-1R

therapeutic antibody in combination with afatinib for the treatment

of EGFR TKI-resistant NSCLC patients (NCT02191891), and FGFR

inhibitors for the treatment of EGFR TKI-resistant NSCLC patients

(NCT03706287, NCT04619563). Oral inhibitors have been shown to

be particularly effective and less toxic for the initial treatment of

patients with advanced NSCLC who have concomitant driver

mutations and who are older or in poorer health. This approach is

particularly useful in patients with EGFR mutations, BRAF

mutations, ALK fusion oncogenes, or ROS1 translocations, subject

to ongoing discovery of other targetable mutations.
5 Conclusion and outlook

5.1 Conclusion

The use of TKI drugs has significantly improved the prognosis

of NSCLC patients carrying driver genes. However, the emergence

of resistance poses new challenges to further extending patient

survival, and a deeper understanding and study of the molecular

mechanisms of TKI resistance will be the foundation for

overcoming TKI resistance. In NSCLC, the molecular

mechanisms of TKI resistance include secondary mutations of

driver genes, bypass signal activation, and histological

transformation. Secondary mutations of driver genes can be

overcome by developing new generations of TKI drugs, while

resistance mechanisms caused by bypass signal activation are

more complex. In TKI resistance caused by bypass signal

activation, although TKI drugs inhibit downstream signaling

pathways of driver genes, RTKs can continuously activate key

signaling pathways within tumor cells through alternative

pathways, thereby sustaining tumor cel l growth and

proliferation, leading to resistance to TKI drugs. Inhibiting

activated bypass signals and the original driver gene signaling
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pathway is the basic concept for treating bypass activation-

mediated TKI resistance. Based on this concept of combination

therapy, several clinical trials are currently underway to treat

patients resistant to bypass signal activation, although all trials

are in early stages, some have yielded promising preliminary

results, which will provide more treatment options for NSCLC

TKI-resistant patients.
5.2 Outlook

In recent years, based on next-generation sequencing of

circulating tumor DNA (ctDNA) detection, dynamic monitoring

of molecular genetic changes occurring during TKI treatment of

tumor patients through tumor rebiopsy can timely discover changes

in bypass signals leading to resistance, such as MET gene

amplification, HER2 gene amplification, KRAS gene mutation,

PIK3CA gene mutation, etc. (69, 180, 201–203). The FDA has

approved a number of ctDNA tests for identifying patients with

positive EGFR mutations (204, 205), and one of these tests uses

NGS to identify abnormalities in 55 additional genes (205).

Although tissue availability is limited, somatic gene alteration

testing prior to treatment of advanced NSCLC remains

recommended. In a trial of adult patients with advanced NSCLC

that used blood liquid biopsies to assess circulating tumor DNA to

determine whether patients with ROS1-positive NSCLC were

treated with the entrectinib, the assay resulted in an 81%

objective response rate to entrectinib, which is consistent with the

results of a previous study using a tissue-based assay to identify

ROS1 fusions (206). The use of liquid biopsies to assess other

molecular abnormalities may become more common as more data

become available.

Through this approach, on one hand, more precise

individualized tumor treatment plans can be formulated for

patients, and on the other hand, effective treatment can be given

to patients in a timely manner to prevent further occurrence and

development of resistance. The ongoing ELIOS trial is such a study,

in which NSCLC patients receiving osimertinib as first-line

treatment will obtain tumor biopsy samples and plasma samples

before treatment, during treatment, and after treatment resistance,

and compare and analyze the genetic variations of tissue samples

and plasma samples through next-generation sequencing

technology to reveal the role of liquid biopsy technology in

resistance monitoring (NCT03239340). Meanwhile, the

complementary ORCHARD clinical trial aims to study the

treatment plan for NSCLC patients receiving osimertinib as first-

line treatment after acquired resistance. In this innovative trial

platform, resistant patients will be allocated to corresponding

treatment cohorts based on their different tumor molecular

characteristics and different resistance mechanisms, including

cohorts of wolinib combined with osimertinib, gefitinib combined

with osimertinib, alectinib combined with osimertinib, and

selpercatinib combined with osimertinib, etc. (NCT03944772).

Integrating the results of these two trials will provide more
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precise, effective, and personalized treatment for NSCLC patients.

In addition, the concept of “Drug-Tolerant Persister (DTP) cells”

has been proposed, refreshing researchers’ understanding of the

mechanisms of tumor resistance (207). A small proportion of

tumor cells (0.3%-5%) can survive by adopting a reversible drug-

tolerant state when facing TKI treatment, and under the continuous

action of drugs, eventually acquire permanent resistance mechanisms

based on genetic changes (207). Turke et al.’s (61) study found that a

small number of cells (<1%) with MET gene amplification could be

detected in samples from NSCLC patients before using EGFR TKIs,

while a large number of cells with MET amplification were present

after EGFR TKI resistance, indicating that the small fraction of cells

with MET gene amplification before treatment ultimately led to

resistance. In Taniguchi et al.’s (208) study, DTP cells obtained

after treating PC-9 cells with osimertinib for 9 days showed

significantly increased expression of AXL, and resistance was

significantly higher than that of sensitive cells, while combined use

of osimertinib and AXL inhibitors could prevent the generation of

DTP cells. Wang et al.’s (209) study also found that although NSCLC

cells with low expression of AXL were more sensitive to osimertinib,

there still existed a small group of cells activated by IGF-1R signaling

that were resistant to osimertinib treatment, while the use of IGF-1R

inhibitors could prevent the generation of DTP cells. These studies

suggest that early targeting of DTP cells may delay the occurrence of

NSCLC TKI resistance, thereby increasing patient survival. In an

ongoing clinical trial, researchers are adding c-MET inhibitors (APL-

101) for combination therapy in NSCLC patients receiving first-line

osimertinib treatment between 8 and 12 weeks before the occurrence

of resistance, to observe whether this treatment regimen can delay the

onset of resistance in patients (NCT04743505).

In summary, by utilizing liquid biopsy techniques to identify

resistance mechanisms early, implementing individualized targeted

therapies against these mechanisms at an early stage, and

preemptively targeting drug-tolerant persister (DTP) cells,

NSCLC patients may achieve more durable and effective

treatments, leading to further extensions in survival time.
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