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Deep learning radiomics based
on contrast enhanced MRI for
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recurrence in hepatocellular
carcinoma after
curative resection
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4College of Medical Imaging, Dalian Medical University, Dalian, China, 5Dalian Engineering Research
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Purpose: To explore the role of deep learning (DL) and radiomics-based

integrated approach based on contrast enhanced magnetic resonance imaging

(CEMRI) for predicting early recurrence (ER) in hepatocellular carcinoma (HCC)

patients after curative resection.

Methods: Total 165 HCC patients (ER, n = 96 vs. non-early recurrence (NER), n =

69) were retrospectively collected and divided into a training cohort (n = 132) and

a validation cohort (n = 33). From pretreatment CEMR images, a total of 3111

radiomics features were extracted, and radiomics models were constructed

using five machine learning classifiers (logistic regression, support vector

machine, k-nearest neighbor, extreme gradient Boosting, and multilayer

perceptron). DL models were established via three variations of ResNet

architecture. The clinical-radiological (CR), radiomics combined with clinical-

radiological (RCR), and deep learning combined with RCR (DLRCR) models were

constructed. Model discrimination, calibration, and clinical utilities were

evaluated by receiver operating characteristic curve, calibration curve,

and decision curve analysis, respectively. The best-performing model

was compared with the widely used staging systems and preoperative

prognostic indexes.

Results: The RCR model (area under the curve (AUC): 0.841 and 0.811) and the

optimal radiomics model (AUC: 0.839 and 0.804) achieved better performance

than the CR model (AUC: 0.662 and 0.752) in the training and validation cohorts,

respectively. The optimal DL model (AUC: 0.870 and 0.826) outperformed the

radiomics model in the both cohorts. The DL, radiomics, and CR predictors

(aspartate aminotransferase (AST) and tumor diameter) were combined to

construct the DLRCR model. The DLRCR model presented the best

performance over any model, yielding an AUC, an accuracy, a sensitivity, a
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specificity of 0.917, 0.886, 0.889, and 0.882 in the training cohort and of 0.844,

0.818, 0.800, and 0.846 in the validation cohort, respectively. The DLRCR model

achieved better clinical utility compared to the clinical staging systems and

prognostic indexes.

Conclusion: Both radiomics and DL models derived from CEMRI can predict

HCC recurrence, and DL and radiomics-based integrated approach can provide a

more effective tool for the precise prediction of ER for HCC patients

undergoing resection.
KEYWORDS

hepatocellular carcinoma, early recurrence, magnetic resonance imaging, deep
learning, radiomics
Introduction

Hepatocellular carcinoma (HCC) is the most common primary

hepatic malignancy and the third leading cause of cancer-related

deaths worldwide (1). Although surgical resection has been

considered as the first-line curative treatment for early-stage HCC

patients with well-preserved liver function, the high recurrence

rates after resection still remain a major hurdle, and 70% of the

patients occur recurrence within 5 years (2). Patients with early

recurrence (ER) within 2 years after operation are at high risk for

poor prognosis (3), whose are potential candidates for clinical trials

of adjuvant systemic therapies (4). Thus, the identification of

patients with high recurrent risk at early stage is critical for

prognostication survei l lance and thus faci l i tating the

implementation of individualized treatment.

Several identified predictors for HCC recurrence include

various pathological markers related to tumor aggressiveness,

such as tumor size, microvascular invasion, surgical margin, and

Edmondson-Steiner grade, as reported in published studies (3, 5, 6).

However, preoperative prediction of HCC recurrence risk remains

difficult, and thus a noninvasive tool with adequate information

about tumor characterization that enables to accurately estimate

prognosis is needed. Magnetic resonance imaging (MRI) is the ideal

technique for non-invasive diagnosis and surveillance of HCC due

to its high soft tissue contrast and multiparametric imaging.

Previous studies have reported that conventional radiological

features including non-smooth tumor margin, incomplete/without

tumor capsule, peritumoral enhancement, and hypointensity

on hepatobiliary phase can predict clinical outcomes (7–9);

however, these features interpreted by radiologists indicate high

subjectivity, difficulty in quantification, and lack of metrics about

tumor heterogeneity.

In recent years, radiomics has emerged as a promising tool to

facilitate precision diagnosis and prognosis of HCC with increases

in the scale of medical imaging data and development of artificial

intelligence (AI) techniques. Radiomics can convert medical images
02
into high-throughput and quantitative handcrafted features using

computer algorithms to capture intratumoral pathophysiology and

heterogeneity. Key radiomics features are selected and harnessed to

construct robust and reproducible imaging markers for clinicians,

from diagnosis assistance to therapeutic guidance (10, 11). Recent

studies have utilized MRI-based radiomics containing intratumoral

and/or peritumoral regions to predict HCC recurrence with

promising predictive results (12, 13).

Furthermore, deep learning (DL), as the state-of-the-art

machine learning (ML) technique in the field of AI, has been

successfully applied in many pattern recognition tasks, which can

bring revolutionary changes in health care (14). DL is a type of

representation learning method allowing computational models

that are composed of multiple processing layers to automatically

learn representations of data by transforming the input information

into multiple levels of abstractions (14, 15). It has been proven to be

very good at discovering intricate structures in high-dimensional

data and is therefore applicable to reveal complex relationships

between multimodal images and challenging clinical questions with

very little engineering by hand (15, 16). Previous studies of deep

learning applied to pathological indicator classification and

prognosis prediction in HCC have reported superior performance

compared to those by conventional imaging modality or even better

than radiomics (17, 18). Notely, a ML framework integrating

handcrafted radiomics features with DL features has an emerging

trend for achieving satisfying predictive performance in some

specific clinical tasks (18, 19). Nevertheless, only a few studies

(18, 20) have applied DL and radiomics-based integrated approach

for HCC recurrence prediction, in which the traditional ML

method was used for dimensionality reduction and fusion

model construction.

The aim of the present study was to develop and validate

radiomics and DL models based on preoperative multi-phase

contrast enhanced magnetic resonance imaging (CEMRI) for

predicting ER of HCC patients after curative resection.

Furthermore, we evaluated the predictive capacity of the
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combined model incorporating DL, radiomics, and clinical-

radiological features. We assumed that the proposed DL and

radiomics-based integrated approach can improve recurrence

prediction accuracy, thus creating a better risk stratification and

enhancing the overall prognosis of HCC patients after

surgical resection.
Materials and methods

Patients

This retrospective study was approved and the requirement for

the informed consent was waived by the Institutional Review Board

of our hospital (approval number: PJ-KS-KY-2022-180), and was

carried out in accordance with the Declaration of Helsinki. Between

August 2007 and May 2021, we retrospectively recruited 290

consecutive patients with pathologically confirmed HCC who

performed preoperative abdominal MRI examination at our

institution. The inclusion criteria were as follows: (1) patients

received curative (R0) resection without any prior antitumoral

treatments; (2) patients with pathological confirmation of HCC;

(3) patients performed CEMRI examination within two weeks

before resection. The exclusion criteria were as follows: (1)

unavailable or incomplete clinical or imaging data (n = 5); (2)
Frontiers in Oncology 03
small HCC lesions less than 10 mm in diameter (n = 3); (3) poor

image quality or severe motion artifacts (n = 4); (4) loss to follow-up

within 2 years after resection (n = 113). The flow chart of this study

population is shown in Figure 1. Ultimately, a total of 165 HCC

patients were recruited in the study. The patients were randomly

divided at a ratio of 8:2 into the training and validation cohorts.

Baseline clinical characteristics, including age, gender, history of

hepatitis B or C, alpha-fetoprotein (AFP), alanine aminotransferase

(ALT), aspartate aminotransferase (AST), g-glutamyltranspeptadase

(GGT), total bilirubin (TBIL), albumin (ALB), and Child-Pugh class,

were retrospectively collected.
MRI acquisition

MRI was performed using a 1.5 T or 3.0 T MR scanner (Signa,

HDXT, GE Healthcare, USA) with an eight-channel phased array

body coil. MRI protocols included in- and opposed-phase fast-

spoiled gradient-recalled echo T1-weighted imaging (T1WI), fat-

suppressed fast spin-echo T2-weighted imaging (T2WI), and

contrast enhanced imaging with fat-suppressed T1-weighted fast-

spoiled gradient-recalled echo sequence. The contrast enhanced

images consisted of arterial phase (AP), portal venous phase (PVP),

and delayed phase (DP) images, which were obtained at 40 s, 70 s,

and 90 s, respectively. Gd-diethylenetriamine pentaacetic acid (Gd-
FIGURE 1

The flow chart of this study population.
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DTPA) (Bayer Schering Pharma AG, Germany) was injected at a

patient weight-dependent dose of 0.1 mmol/kg and an injection rate

of 2.5 mL/s through a median cubital vein. Of the 165 HCC patients

described above, 74 patients were examined with a 1.5 T MR

system, and the other 91 patients with a 3.0 T MR system.

Detailed parameters of imaging acquisition protocols are listed in

Supplementary Material S1.
Evaluation of MRI features

All MR images were retrospectively assessed by two radiologists

with 10 (radiologist 1, Y.Z.) and 5 (radiologist 2, Y.W.) years of

experience in abdominal MRI interpretation, who were blinded to

clinical, pathological, and follow-up information. If there was any

disagreement between radiologists during the imaging analysis, the

images were evaluated by another senior radiologist of 20

(radiologist 3, J.H.L.) years of experience in abdominal MRI.

MRI features included the following: (1) tumor diameter (the

maximum axial diameter including the capsule measured on PVP

images) (21); (2) tumor number (unifocal or multifocal); (3) tumor

margin (smooth or non-smooth); (4) intratumor necrosis

(hypointensity on T1WI, hyperintensity on T2WI, and no

enhancement of part of the tumor on all enhanced phases); (5)

intratumor hemorrhage (heterogeneous hyperintensity on T1WI

and hypointensity on T2WI); (6) tumor encapsulation (a peripheral

rim of uniform and smooth hyperenhancement on PVP or DP

images) (22); (7) arterial peritumoral enhancement (a zone of

irregular and patchy hyperenhancement surrounding the tumor

on AP images, becoming isointensity compared with normal liver

parenchyma on DP images) (23); (8) radiological cirrhosis (surface

irregularity and nodularity, shrunken of liver, widening of fissures,

accompanied by ascites or signs of portal hypertension).
Follow up

All patients were regularly followed up once every 3 months for

2 years after curative resection. Serum AFP level, liver function tests,

and imaging examinations (included contrast enhanced computed

tomography (CECT) or CEMRI) were conducted to monitor

recurrence of HCC. The censored follow-up date was May 2023.

Early recurrence was defined as new intrahepatic lesions and/or

extrahepatic metastasis within 2 years after resection confirmed by

typical imaging features or histopathology.
Image segmentation and preprocessing

Preoperative MR images of AP, PVP, and DP were exported as

digital imaging data and communications in medicine (DICOM)

format. The images in DICOM format were converted to NIFTI

format. All images were resampled to the same voxel size of 1 × 1 ×

1 mm via linear interpolation algorithm to standardize the voxel

spacing. Intensity normalization of images was performed to correct
Frontiers in Oncology 04
the scanner effect. Three dimensional segmentation of the whole

tumor was performed on each phase using open source software

ITK-SNAP (version 3.6.0, http://www.itksnap.org/). The volume of

interests (VOIs) of all patients were manually delineated slice-by-

slice along the visible borders of the tumor by radiologist 1 (Y.Z.). In

terms of multifocal HCCs, the largest nodule was selected as the

delineated lesion. Thirty tumors were randomly selected and then

repeatedly segmented by two abdominal radiologists (radiologists 1

and 2, Y.Z. and Y.W.) independently to evaluate the intra- and

inter-observer reproducibility of the radiomics features.
Radiomics feature extraction

A total of 1037 radiomics features were extracted from each

enhanced phase using Pyradiomics package implemented in Python

(version 3.7.11, https://www.python.org/). Radiomics features were

comprised of the following five categories: (1) histogram features (n

= 18); (2) shape features (n = 14); (3) texture features (n = 75,

including gray level co-occurrence matrix (GLCM), gray level run

length matrix (GLRLM), neighborhood gray tone difference matrix

(NGTDM), gray level dependence matrix (GLDM), and gray level

size zone matrix (GLSZM)); (4) wavelet features (n = 186); (5)

Laplacian of Gaussian features (n = 744). The extracted radiomics

features were in accordance with feature definitions described by

the image biomarker standardization initiative (IBSI) reporting

guidelines (24). Detailed descriptions of these radiomics features

are provided in Supplementary Material S2. Next, values of

radiomics features were standardized using the z-score

normalization based on the mean and standard deviation values

from the training cohort to eliminate the differences in the value

scales of the radiomics features (19).
Feature selection and radiomics
model construction

Figure 2 shows the workflow of radiomics and DL analysis. We

devised a three-step strategy for dimensionality reduction and

robust feature selection. First, the intraclass correlation

coefficients (ICCs) were used to assess the intra- and inter-

observer reproducibility of radiomics features, and features with

ICC > 0.90 (excellent stability) were selected. Second, the

independent sample t test or Mann-Whitney U test was

conducted to select the features that were statistically different

between ER and non-early recurrence (NER) groups. The P value

threshold for the significant features was set at 0.05. Finally, the

least absolute shrinkage and selection operator (LASSO)

algorithm, with penalty parameter tuning conducted by 5-fold

cross-validation, was then utilized to identify the most top-ranked

features for predicting HCC recurrence. Five commonly used ML

classifiers, including logistic regression (LR), support vector

machine (SVM), k-nearest neighbor (KNN), extreme gradient

Boosting (XG-Boost), and multilayer perceptron (MLP), were

used to build radiomics models.
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Deep learning model construction

For DL analysis, the PVP and DP images were registered to AP

images respectively using QuickRigid registration of the Antspy

(https://github.com/ANTsX/ANTsPy). Three consecutive slices

with the maximum cross-sectional tumor area were selected, and

the tumor regions were cropped and resized into 256 × 256 pixels.

Considering that a large amount of training data could improve the

performance of the model, we adopted data augmentation strategies

to increase the number of ROIs, including rotation, scaling, flipping,

and shifting. Since ResNet architecture has showed promising

performance in multiple computer vision tasks (25), we chose two

variations of ResNet architecture with different numbers of layers,

including ResNet-18 and ResNet-34, as our basic architecture for

model training. Because the parameters of the two variations are

excessive and an overfitting error easily occurs in the small-scale

liver tumor image datasets, we optimized the original ResNet-18

architecture by reducing the network’s depth to ResNet-10.

The detailed network architecture of the CNN is shown in

Figure 3. The first part of the CNN included a 64 7×7 convolution

layer, a normalization module, and a max pooling layer. After going

through all these layers, we obtained a feature map of the input ROI.

The following structures of the CNN contained four 64 3×3

convolution bottleneck modules and four 128 3×3 convolution

bottleneck modules, in which all the bottleneck modules were

employed from the ResNet. The raw feature map of the ROI was

sequentially processed by these bottleneck modules, enabling the

acquisition of ROI features at distinct scales. Shallow features learn

more detailed structure information, while deep features can

express high-level semantic features. After the last convolution
Frontiers in Oncology 05
operation, feature maps extracted by the backbone network were

converted into feature vectors through global average pooling.

These feature vectors were then concatenated and fed into the

fully connected layer for HCC recurrence prediction. Additionally,

to better explore the important features or patterns the DL model

identified, we employed Score-CAM method for visual

interpretation (26). Unlike gradient-based methods, Score-CAM

removes the reliance on gradients by determining the weight of each

activation map based on its forward-passing score for the target

class. The final results were obtained through a linear combination

of these weights and the corresponding activation maps.

The training and testing processes were conducted on the

platform of GeForce GTX3060 graphics processing unit

(NVIDIA, Santa Clara, Calif). The proposed framework was

implemented by the Python programming language (https://

www.python.org/) on the open source deep learning framework

MONAI in conjunction with PyTorch (version 1.9.0 https://

pytorch.org). The cross-entropy loss function of the DL model

was minimized by the gradient descent algorithm. The number of

training iteration was 200, and the batch size was 64. To reduce the

risk of overfitting, the technique of early stopping was adopted. The

learning rate was initialized by 1e-4 with the decay value of 1e−4

and momentum of 0.9.
Clinical-radiological and combined
models construction

To identify clinical and radiological predictors associated with

HCC recurrence, the univariate logistic regression was employed
FIGURE 2

The workflow of radiomics and deep learning (DL) analysis in the current study. The volume of interests (VOIs) from contrast enhanced MR images in
three phases [arterial phase (AP), portal venous phase (PVP), and delayed phase (DP)] were extracted for feature development in both radiomics and
DL models. The clinical and radiological data were collected for clinical-radiological (CR) model construction. Following feature selection, chosen
radiomics features were merged with CR risk factors to build an integrated radiomics combined with clinical-radiological (RCR) model. Furthermore,
DL features were combined with both CR and radiomics features to develop a comprehensive deep learning combined with RCR (DLRCR) model.
The discrimination, calibration, and clinical utilities were evaluated by receiver operating characteristic curve, calibration curve, and decision curve
analysis, respectively.
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and factors with P value of < 0.05 were further included in the

multivariate logistic regression analysis. A clinical-radiological (CR)

model was established based on the chosen CR independent risk

factors by using logistic regression.

The radiomics combined with clinical-radiological (RCR)

model, which incorporated the selected radiomics features derived

from the highest performance radiomics model with CR risk factors

for predicting tumor recurrence, was established using the proposed

best-performing ML classifier.

These radiomics features belong to the low-level features of the

manual design, while ResNet extracts the high-level semantic

features. The combination of high-level DL features with CR and

radiomics features can better describe the characteristics of the

tumor and improve the capability of HCC recurrence prediction.

We identified the DL model with the best performance for

recurrence prediction based on the AUC and confirmed the

preferably ResNet architecture variation. The high-level DL

features and CR and radiomics features were combined with the

fully connected layer to conduct joint training via the best-

performing ResNet architecture variation, and were further

applied to construct deep learning combined with RCR (DLRCR)

model. Detailed diagram depicting the proposed fusion network

architecture is listed in Supplementary Material S3. The DLRCR

model performance was compared with the widely used Barcelona

Clinic Liver Cancer (BCLC) staging system (27) and Chinese

National Liver Cancer (CNLC) staging system (28), preoperative

Early Recurrence After Surgery for Liver Tumor (ERASL) model
Frontiers in Oncology 06
(29), and some inflammation-based prognostic indexes

(neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte

ratio (PLR), and lymphocyte-to-monocyte ratio (LMR)) (30).
Statistical analysis

R software (version 3.4.1, https://www.r-project.org/) and

Python software (version 3.7.11, https://www.python.org/) were

used for statistical analyses. Continuous variables among clinical-

radiological characteristics were compared using the independent

sample t test or Mann-Whitney U test, and categorical variables

were analyzed using the chi-squared test or Fisher’s exact test. The

inter-observer consistency of radiological features was assessed

using Kappa test (kappa value determination: k > 0.80, excellent;

0.60 < k ≤ 0.80, substantial; 0.40 < k ≤ 0.60, moderate; k ≤ 0.40,

poor). To evaluate the performance of different models, predictive

accuracy, sensitivity, and specificity were measured using receiver

operating characteristic (ROC) curve and the area under the curve

(AUC) was calculated. Comparisons between the AUCs of different

predictive models were performed using the Delong’s test. We also

performed stratified analysis on the subgroups of MRI scanner of

the optimal radiomics model. We used ROC curve and AUC to

evaluate model performance on the subpopulations. Model fit was

assessed via calibration curves. The clinical utility of the models was

evaluated using decision curve analysis (DCA). All statistical tests

were two-sided, and P < 0.05 was considered statistically significant.
FIGURE 3

The network architecture of the deep learning (DL) model. The architecture involved concatenating three phase contrast enhanced MR images
[arterial phase (AP), portal venous phase (PVP), and delayed phase (DP)], which were then fed into the ResNet-10. Subsequent to convolutional layers
feature extraction, early recurrence (ER) prediction was performed through the fully connected layer. This architecture utilized the combination of
multi-phase information and ResNet-10’s convolutional capabilities to achieve accurate ER prediction.
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Results

Baseline characteristics

The final study cohort consisted of 165 patients (male: 138;

median age, 59 years; range, 31-83 years) and was divided into the

training cohort (n = 132) and the validation cohort (n = 33). Among

the 165 patients, 96 (58.18%) patients were diagnosed with ER

within 2 years, and 69 (41.82%) patients did not have ER. There was

not significantly different in the ER rate between the training and

validation cohorts (59.09% vs. 54.55%, P = 0.782). The median time

to recurrence for all patients with ER was 7 months (range, 1-24

months). No significant differences of clinical-radiological

characteristics were found between the training and validation

cohorts (P = 0.081-1.000). Clinical-radiological data are

summarized in Table 1.
Radiomics and DL models development
and evaluation

A total of 3111 radiomics features for three phase CEMR images

were extracted. After intra- and inter-observer reproducibility

analysis, 2739 features had ICC ≥ 0.9 and were performed for

further analysis. 961 features with significant differences that aided

in predicting recurrence were then identified. LASSO algorithm

ultimately allowed the selection of 34 features, which were input

into five ML classifiers for radiomics models building. The selected

radiomics features and the corresponding coefficients are presented

in Supplementary Material S4.

The performance comparisons among five classifiers are shown

in Table 2, and ROC curves are presented in Supplementary

Material S5. The radiomics models showed moderate to good

discrimination in the both cohorts (AUC: training cohort, 0.839 -

1.000; validation cohort, 0.626 - 0.804). It demonstrated that the LR

classifier performed the best with the AUCs of 0.839 (95%

confidence interval (CI), 0.772 - 0.906) and 0.804 (95%CI, 0.650 -

0.957) in the training and validation cohorts, respectively. There

was no significant difference in the AUCs of LR classifier between

the training and validation cohorts (P = 0.436), which indicated that

the model showed non overfitting and high robust; while significant

differences in the AUCs of SVM, KNN, XG-Boost, and MLP

classifiers between the training and validation cohorts were found

(P < 0.05). The accuracy, sensitivity, and specificity of the best-

performing radiomics model (LR classifier) were 0.780, 0.885, and

0.630 in the training cohort, and 0.727, 0.833, and 0.600 in the

validation cohort, respectively. The stratified analysis showed that

the optimal radiomics model (LR classifier) was not influenced by

MRI scanners with different magnetic field strength in the training

cohort (1.5 T: AUC, 0.882 (95%CI, 0.796 - 0.968); 3.0 T: AUC, 0.834

(95%CI, 0.743 - 0.925), P = 0.457) and the validation cohort (1.5 T:

AUC, 0.880 (95%CI, 0.696 - 1.000); 3.0 T: AUC, 0.762 (95%CI,

0.538 - 0.986), P = 0.430).

Predictive performances and ROC curves of DL models are

shown in Supplementary Material S6. The AUCs of ResNet-18 and

ResNet-34 models were 0.700 (95%CI, 0.608 - 0.792) and 0.611
Frontiers in Oncology 07
(95%CI, 0.511 - 0.712) in the training cohort, and 0.704 (95%CI,

0.517 - 0.890) and 0.619 (95%CI, 0.414 - 0.823) in the validation

cohort, respectively. Compared with ResNet-18 and ResNet-34

models, the ResNet-10 model achieved the best performance with

an AUC, an accuracy, a sensitivity, and a specificity of 0.870 (95%

CI, 0.806 - 0.934), 0.803, 0.861, 0.733 in the training cohort,

respectively, and an AUC, an accuracy, a sensitivity, and a

specificity of 0.826 (95%CI, 0.682 - 0.970), 0.788, 0.824, and 0.750

in the validation cohort, respectively. The DL (ResNet-10) model

obtained better performance than radiomics (LR) model (AUC:

training, 0.870 vs. 0.839; validation, 0.826 vs. 0.804). In addition, we

computed activation maps and visualized the AP, PVP, and DP

images, where the darker the color in the activation map, the more

significant the region’s importance. The highlighted regions in the

map were primarily concentrated on the tumor margins. The

visualization results of the DL model are showed in Figure 4.
Clinical-radiological and combined models
construction and evaluation

Inter-observer agreements on the MR imaging features were

excellent (kappa-value range: 0.834 to 1.000). Univariate and

multivariate analyses of clinical-radiological characteristics for

predicting tumor recurrence in the training cohort are shown in

Table 3. The univariate analysis demonstrated that AFP, AST, and

tumor diameter were significant CR factors for discriminating the

ER and NER groups in the training cohort (all P < 0.05). The

multivariate analysis showed that AST (OR = 2.490; 95% CI: 1.140 -

5.440; P = 0.020) and tumor diameter (OR = 2.510; 95% CI: 1.080 -

5.820; P = 0.030) were independent risk factors for predicting ER in

HCC patients. The CR model was built based on the two risk

factors, which achieved an AUC of 0.662 (95%CI, 0.574 - 0.749) in

the training cohort and 0.752 (95%CI, 0.593 - 0.911) in the

validation cohort, respectively (Table 4; Figures 5A, B).

The RCR model was constructed integrating the remained

radiomics features, AST, and tumor diameter using logistic

regression classifier. Furthermore, the DL features, the chosen

radiomics features, AST, and tumor diameter were input into the

fully connected layer via ResNet-10 architecture to build the

DLRCR model. The AUCs of RCR model were 0.841 (95%CI,

0.774 - 0.908) and 0.811 (95%CI, 0.661 - 0.962), which performed

better than CR model (Delong’s test: training, P < 0.001; validation,

P = 0.440). The DLRCR model outperformed the CR, radiomics,

DL, and RCR models, yielding an AUC, an accuracy, a sensitivity, a

specificity of 0.917 (95%CI, 0.963 - 0.972), 0.886, 0.889, and 0.882 in

the training cohort and of 0.844 (95%CI, 0.702 - 0.987), 0.818,

0.800, and 0.846 in the validation cohort, respectively (Table 4;

Figures 5A, B). The Delong’s test showed a significant difference of

the AUCs between the DLRCR model and the CR model in the

training cohort (P < 0.001), while there was no significant difference

in the validation cohort (P = 0.232). Delong’s test of different

predictive models in the both cohorts is shown in Supplementary

Material S7. Calibration curves for the probability of ER

demonstrated good model agreements between prediction and

observation in the both cohorts (Figures 6A, B). DCA curves
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TABLE 1 Patient clinical-radiological characteristics.

Characteristics

Training cohort (n = 132) Validation cohort (n = 33)

P valueER group
(n = 78)

NER group
(n = 54)

P value
ER group
(n = 18)

NER group
(n = 15)

P value

Gender (n, [%]) 0.355 1.000 0.958

Male 68 (87.2) 43 (79.6) 15 (83.3) 12 (80.0)

Female 10 (12.8) 11 (20.4) 3 (16.7) 3 (20.0)

Age (years, mean ± SD) 58.35 ± 10.59 58.38 ± 10.60 0.604 57.81 ± 10.84 56.81 ± 10.26 0.758 0.642

History of hepatitis B or C (n, [%]) 0.733 1.000 0.199

Positive 61 (78.2) 40 (74.1) 11 (61.1) 10 (66.7)

Negative 17 (21.8) 14 (25.9) 7 (38.9) 5 (33.3)

AFP (IU/ml) (n, [%]) 0.046 0.607 0.397

≤ 400 57 (73.1) 48 (88.9) 15 (83.3) 14 (93.3)

> 400 21 (26.9) 6 (11.1) 3 (16.7) 1 (6.67)

ALT (U/L) (n, [%]) 0.234 1.000 1.000

≤ 50 52 (66.7) 42 (77.8) 13 (72.2) 11 (73.3)

> 50 26 (33.3) 12 (22.2) 5 (27.8) 4 (26.7)

AST (U/L) (n, [%]) 0.016 1.000 0.128

≤ 40 42 (53.8) 41 (75.9) 14 (77.8) 12 (80.0)

> 40 36 (46.2) 13 (24.1) 4 (22.2) 3 (20.0)

GGT (U/L) (n, [%]) 0.084 0.923 0.785

≤ 60 36 (46.2) 34 (63.0) 11 (61.1) 8 (53.3)

> 60 42 (53.8) 20 (37.0) 7 (38.9) 7 (46.7)

TBIL (umol/L) (n, [%]) 0.424 0.108 0.081

≤ 19 53 (67.9) 41 (75.9) 14 (77.8) 15 (100)

> 19 25 (32.1) 13 (24.1) 4 (22.2) 0 (0.00)

ALB (g/L) (n, [%]) 0.624 0.266 1.000

< 40 29 (37.2) 17 (31.5) 4 (22.2) 7 (46.7)

≥ 40 49 (62.8) 37 (68.5) 14 (77.8) 8 (53.3)

Child-Pugh class (n, [%]) 1.000 — 0.127

A 71 (91.0) 49 (90.7) 18 (100) 15 (100)

B 7 (9.0) 5 (9.3) 0 (0.00) 0 (0.00)

Tumor diameter (n, [%]) 0.024 0.009 0.899

≤ 5 cm 48 (61.5) 44 (81.5) 8 (44.4) 14 (93.3)

> 5 cm 30 (38.5) 10 (18.5) 10 (55.6) 1 (6.7)

Tumor number (n, [%]) 0.442 0.346 0.776

Unifocal 66 (84.6) 49 (90.7) 14 (77.8) 14 (93.3)

Multifocal 12 (15.4) 5 (9.3) 4 (22.2) 1 (6.7)

Tumor margin (n, [%]) 0.567 0.266 0.550

Smooth 44 (56.4) 34 (63.0) 10 (55.6) 12 (80.0)

Non-smooth 34 (43.6) 20 (37.0) 8 (44.4) 3 (20.0)

(Continued)
F
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showed that the DLRCR model achieved more net benefit

compared with other models for most of the threshold

probabilities (Figures 7A, B).

In the training cohort, the DLRCR model demonstrated

superior performance than BCLC system (0.565; 95%CI, 0.507 -

0.623), CNLC system (0.610; 95%CI, 0.529 - 0.692), preoperative

ERASL model (0.550; 95%CI, 0.485 - 0.616), NLR (0.561; 95%CI,
Frontiers in Oncology 09
0.476 - 0.646), PLR (0.544; 95%CI, 0.462- 0.626), and LMR (0.507;

95%CI, 0.422 - 0.592) (P < 0.05). In the validation cohort, the AUC

of the DLRCR model was significantly higher than that of BCLC

system (0.615; 95%CI, 0.513 - 0.717), preoperative ERASL model

(0.572; 95%CI, 0.433 - 0.711), NLR (0.483; 95%CI, 0.307 - 0.660),

PLR (0.467; 95%CI, 0.296 - 0.637), and LMR (0.489; 95%CI, 0.313 -

0.665) (P < 0.05), except for CNLC system (0.774; 95%CI, 0.635 -
TABLE 1 Continued

Characteristics

Training cohort (n = 132) Validation cohort (n = 33)

P valueER group
(n = 78)

NER group
(n = 54)

P value
ER group
(n = 18)

NER group
(n = 15)

P value

Intratumoral necrosis (n, [%]) 0.523 1.000 0.399

Present 30 (38.5) 17 (31.5) 8 (44.4) 7 (46.7)

Absent 48 (61.5) 37 (68.5) 10 (55.6) 8 (53.3)

Intratumoral hemorrhage (n, [%]) 0.258 0.064 0.573

Present 24 (30.8) 11 (20.4) 9 (50.0) 2 (13.3)

Absent 54 (69.2) 43 (79.6) 9 (50.0) 13 (86.7)

Tumor encapsulation (n, [%]) 0.284 0.674 0.891

Present 56 (71.8) 44 (81.5) 15 (83.3) 11 (73.3)

Absent 22 (28.2) 10 (18.5) 3 (16.7) 4 (26.7)

Arterial peritumoral enhancement
(n, [%])

0.424 0.447 0.525

Present 25 (32.1) 13 (24.1) 5 (27.8) 7 (46.7)

Absent 53 (67.9) 41 (75.9) 13 (72.2) 8 (53.3)

Radiological cirrhosis (n, [%]) 0.731 1.000 0.133

Present 54 (69.2) 35 (64.8) 9 (50.0) 8 (53.3)

Absent 24 (30.8) 19 (35.2) 9 (50.0) 7 (46.7)
Data are shown as number of patients, with the percentage in parentheses. ER, early recurrence; NER, non-early recurrence; SD: standard deviation; AFP, alpha-fetoprotein; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; GGT,g-glutamyltranspeptadase; TBIL, total bilirubin; ALB; albumin.
TABLE 2 Discrimination performance of different classifiers in the training and validation cohorts.

Model AUC (95% CI) Accuracy Sensitivity Specificity P value

LR model
TC 0.839 (0.772 - 0.906) 0.780 0.885 0.630

0.436
VC 0.804 (0.650 - 0.957) 0.727 0.833 0.600

SVM model
TC 0.971 (0.935 - 1.000) 0.932 0.987 0.852

0.003
VC 0.641 (0.439 - 0.842) 0.636 0.889 0.333

KNN model
TC 0.874 (0.816 - 0.931) 0.803 0.821 0.778

0.031
VC 0.637 (0.439 - 0.835) 0.515 0.500 0.533

XG-
Boost model

TC 0.934 (0.888 - 0.980) 0.871 0.846 0.907
0.028

VC 0.722 (0.547 - 0.897) 0.667 0.556 0.800

MLP model
TC 1.000 (1.000 - 1.000) 1.000 1.000 1.000

<0.001
VC 0.626 (0.429 - 0.823) 0.606 0.667 0.533
LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbor; XG-Boost, extreme gradient Boosting; MLP, multilayer perceptron; TC, training cohort; VC, validation cohort;
AUC, area under the curve; CI, confidence interval.
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FIGURE 4

Visualization results for the early recurrence case (A) and non-early recurrence case (B). Input images represent the cropped tumor regions fed into
the model. Heatmaps are standard jet colormaps overlaid on the original input images, where red indicates areas of the highest relevance to the
classification, followed by yellow, while green and blue regions indicate weaker predictive relevance. AP, PVP, and DP denote arterial phase, portal
venous phase, and delayed phase, respectively.
TABLE 3 Univariate and multivariate analyses of clinical-radiological characteristics for predicting early recurrence in the training cohort.

Variables
Univariate analysis Multivariate analysis

Odd ratio (95% CI) P value Odd ratio (95% CI) P value

Gender 1.74 (0.68 - 4.44) 0.25 — —

Age 1.01 (0.98 - 1.04) 0.65 — —

History of hepatitis B or C 1.26 (0.56 - 2.83) 0.58 — —

AFP 2.95 (1.10 - 7.89) 0.03 — —

ALT 1.75 (0.79 - 3.88) 0.17 — —

AST 2.70 (1.26 - 5.82) 0.01 2.49 (1.14 - 5.44) 0.02

GGT 1.98 (0.98 - 4.03) 0.06 — —

T-BIL 1.49 (0.68 - 3.26) 0.32 — —

ALB 0.78 (0.37 - 1.62) 0.50 — —

Child-Pugh class 0.97 (0.29 - 3.22) 0.96 — —

Tumor diameter 2.75 (1.21 - 6.27) 0.02 2.51 (1.08 - 5.82) 0.03

Tumor number 1.78 (0.59 - 5.39) 0.31 — —

Tumour margin 1.31 (0.65 - 2.67) 0.45 — —

Intratumoral necrosis 0.74 (0.35 - 1.53) 0.41 — —

Intratumoral hemorrhage 0.58 (0.25 - 1.30) 0.19 — —

Tumor encapsulation 1.73 (0.74 - 4.03) 0.20 — —

Arterial
peritumoral enhancement

0.67 (0.31 - 1.47) 0.32 — —

Radiological cirrhosis 0.82 (0.39 - 1.71) 0.60 — —
F
rontiers in Oncology
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Variables with P < 0.05 in the univariate analysis were included in the multivariate logistic regression analysis. AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT,g-glutamyltranspeptadase; TBIL, total bilirubin; ALB; albumin.
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0.914) (P = 0.492). Predictive performances and ROC curves of

clinical prediction methods are provided in Supplementary

Material S8.
Discussion

In this study, we developed and validated radiomics and DL

models based on multi-phase CEMR images using different ML

classifiers and CNN architectures for preoperatively predicting early

recurrence of HCC patients after curative resection. Furthermore,

we proposed a novel DL and radiomics-based integrated approach

for HCC recurrence prediction that combined DL, radiomics, and

clinical-radiological data. Our study found that the optimal DL

model improved the performance over the radiomics model. The

DLRCR model exhibited superior predictive efficiency over any
Frontiers in Oncology 11
model in predicting HCC recurrence and better clinical utility

compared to clinical prediction methods (BCLC system, CNLC

system, preoperative ERASL model, and some inflammation-based

prognostic indexes). This DL and radiomics-based integrated

strategy can provide a promising tool for accurate prediction of

recurrence, which may potentially guide individualized treatment

and survival monitoring of HCC patients.

Early-stage HCC still has a high recurrence rate after resection.

In our study, 58.18% of HCC patients occurred postoperative ER.

Accurate preoperative prediction of ER is critical for risk

stratification and appropriate therapeutic strategies adjustment,

contributing to improve patients overall survival (OS). Currently,

a number of studies have developed clinical model based on the

independent risk factors to predict ER, which obtained the AUCs

from 0.606 to 0.715 (13, 16, 21, 22). However, the estimated clinical

metrics are limited and the predictive performance is still required
TABLE 4 Discrimination performance of different models in the training and validation cohorts.

Model AUC (95% CI) Accuracy Sensitivity Specificity P value

CR model
TC 0.662 (0.574 - 0.749) 0.652 0.654 0.648

0.334
VC 0.752 (0.593 - 0.911) 0.727 0.667 0.800

Radiomics
model

TC 0.839 (0.772 - 0.906) 0.780 0.885 0.630
0.681

VC 0.804 (0.650 - 0.957) 0.727 0.833 0.600

DL model
TC 0.870 (0.806 - 0.934) 0.803 0.861 0.733

0.584
VC 0.826 (0.682 - 0.970) 0.788 0.824 0.750

RCR model
TC 0.841 (0.774 - 0.908) 0.773 0.872 0.630

0.722
VC 0.811 (0.661 - 0.962) 0.727 0.833 0.600

DLRCR model
TC 0.917 (0.963 - 0.972) 0.886 0.889 0.882

0.355
VC 0.844 (0.702 - 0.987) 0.818 0.800 0.846
CR, clinical-radiological; DL, deep learning; RCR, radiomics combined with clinical-radiological; DLRCR, deep learning combined with RCR; TC, training cohort; VC, validation cohort; AUC,
area under the curve; CI, confidence interval.
FIGURE 5

ROC curves for the clinical-radiological (CR) model, radiomics model, deep learning (DL) model, radiomics combined with clinical-radiological (RCR)
model, and deep learning combined with RCR (DLRCR) model in the training cohort (A) and the validation cohort (B).
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to be improved. With the development of ML technology, a large

amount of quantitative radiomics data have been used to construct

more predictive models than those developed by clinical

characteristics. In the present study, the multivariate analysis

demonstrated that AST and tumor diameter were significant risk

factors for ER prediction in patients with HCC, consistent with the

results of other studies (3, 7, 12, 13). A recent study proved that the

AST level > 40 U/L was independent predictor for poor recurrence-

free survival (RFS) and OS (7). A multicenter study of 628 HCC

patients demonstrated that the larger tumor diameter was closely

associated with ER after liver resection for solitary HCC (3). We

developed CEMRI-based radiomics models using five commonly

used ML classifiers (LR, SVM, KNN, XG-Boost, and MLP) and
Frontiers in Oncology 12
evaluated its role in predicting ER. Our study showed that the LR

classifier obtained better performance and robustness than the

other four classifiers, which were consistent with previous studies

(31–33). Logistic regression has advantages that it does not require a

value with a normal distribution and can resist noisy interference

and prevent overfitting using regularization (31). The radiomics

model with LR classifier had a higher ability to predict ER than the

clinical-radiological model (DAUC: training, 0.177; validation,
0.052). Furthermore, the combined model integrating clinical-

radiological characteristics with radiomics features based on

CEMRI was constructed and achieved improved performance

compared with the clinical-radiological model (DAUC: training,
0.179; validation, 0.059). Nonetheless, the radiomics method relies
FIGURE 6

Calibration curves of various models in the training cohort (A) and the validation cohort (B). The curves assess the models’ goodness-of-fit. The x-
axis represents the predicted probability, and the y-axis represents the actual probability. The dashed line represents the ideal prediction by a perfect
model. The solid line represents the predictive performance of the model. If the solid line is closer to the dashed line, it means a better goodness-
of-fit.
FIGURE 7

Decision curve analysis for different models in the training cohort (A) and the validation cohort (B). The x-axis represents the threshold probability for
high risk, and the y-axis denotes the net benefit. The DLRCR model obtained more net benefit compared with other models, treat-all strategy (gray
line), and treat-none strategy (horizontal black line) across the majority range of threshold probabilities.
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on predefined feature engineering that the extraction and selection

of “hand-engineered” features are still complicated, subjective,

time-consuming, and lack of stable reproducibility, thus limiting

their clinical applicability (34, 35).

The emerging DL approach has advantages in automatically

learning and hierarchically organizing task-adaptive high-level

image features with less manpower and time (36). It can achieve

higher accuracy, reproducibility, and predictive performance

compared to conventional radiomics method (37). Two recent

studies utilizing DL algorithms based on preoperative CECT

images showed moderate performances for HCC recurrence

prediction with the AUCs of 0.723 and 0.730 in the validation

cohort, respectively (38, 39). In contrast, the development of DL

model using MR images maybe more promising due to the higher

soft tissue contrast of MR imaging compared to CT. Kucukkaya

et al. (40) conducted a MRI-based DL research on 120 HCC patients

undergoing surgical resection, thermal ablation, or orthotopic liver

transplantation for postoperative recurrence prediction within six

different time frames (range 1 - 6 years), showing two-year

recurrence and average AUCs of 0.750 and 0.760 in the test

cohort, respectively. However, that study had limited sample size,

lower predictive performance, and lacked of model comparisons of

different CNN architectures. Gao et al. (18) reported that DL

method based on multi-sequence MR images for predicting early

recurrence of HCC, achieving the AUC and accuracy of 0.813 and

0.755 in the validation cohort, which were slightly lower than our

DL model (AUC: 0.826; accuracy: 0.788). Compared to the above

two studies (18, 40), our DL model are trained in an end-to-end

fashion, which simplifies the process by eliminating intermediate

steps and reducing potential sources of error thus improving

predictive capacity. A recent study reported by Wang et al. (41)

constructed a DL model based on Gd-EOB-DTPA-enhanced MRI

using VGG-19 network for prediction of HCC early recurrence

post-hepatectomy. Compared to the VGG-19 prediction model

(41), our DL (ResNet-10) model has the following advantages:

firstly, our model lies in its incorporation of residual connections,

which allows it to achieve excellent performance with fewer

parameters and effectively addresses the vanishing gradient

problem during the training of deeper networks; secondly, we

implemented a weighted approach for each class in the cross-

entropy loss to address class imbalance in the network; finally,

our model achieved better performance metrics in the validation

cohort (AUC: 0.826 vs. 0.759; accuracy: 0.788 vs. 0.775).

In the current study, we established three DL models using

different neural network layers of ResNet architecture (ResNet-10,

ResNet-18, and ResNet-34), and the shallower ResNet-10 model

obtained better ER predictive performance compared to the other

two DL models (DAUC: training, 0.170 - 0.259; validation, 0.122 -

0.207). Overfitting is a problem in DL field that becomes more

serious with the more superimposed neural network layers there are

(42). Specifically, as the number of layers in a model increases, it can

learn progressively more complex features and patterns. However, if

the data is insufficient or lacks diversity, the model may finally learn

irrelevant information (noise) that is specific to the training set,

leading to a decline in performance in the validation or test set. In

our study, we primarily focused on model simplification technique
Frontiers in Oncology 13
to tackle overfitting, which allowed us to achieve superior predictive

performance by using a smaller number of neural network layers.

And this improvement can be attributed to two key aspects: firstly,

having fewer neural network layers results in a lower model

complexity, which can help reduce the risk of overfitting,

especially when training data is limited; secondly, shallow neural

networks can effectively capture global patterns and key features

within the data, particularly for tasks with relatively simple

structures or lower dimensions, where deeper models often do

not provide significant performance improvements. Some studies

have reached similar results that shallow neural networks can

achieve comparable or even superior performance to deeper

networks for specific tasks (43, 44). Additionally, the visualization

analysis of the DL model demonstrated that the highlighted regions

in the heatmap were primarily concentrated on the tumor margins,

indicating that the features in these areas are crucial in supporting

the model’s decisions. This may be interpreted that the non-smooth

tumor margin and incomplete/without tumor capsule are closely

related to prognosis of HCC patients (7, 8).

Recently, the DL and radiomics-based integrated strategy

incorporating interpretable radiomics features with high-level

temporal and spatial DL features has been demonstrated as a

state-of-the-art quantitative tool and can be used to predict tumor

behavior and prognosis due to its higher predictive accuracy (18–

20, 45). However, studies of using DL and radiomics-based model

for predicting early recurrence in HCC patients after curative

resection are scarce, and to the best of our knowledge, only two

studies have been conducted recently (18, 20). In a recent study

(20), the clinical & deep learning-based radiomics model and deep

learning-based radiomics model based on AP and PVP images of

preoperative CECT showed better distinguished performance than

the radiological model for prediction of 3-year recurrence rate of

HCC after resection (AUC: 0.831 vs. 0.796 vs. 0.732). Gao et al (18)

have further constructed a DL and radiomics-based combined

model based on multi-sequence MR images, which demonstrated

superior discriminative ability than the DL or radiomics model

alone for ER prediction (AUC: 0.840 vs. 0.813 vs. 0.780). However,

that study ignored routine clinical and radiological information that

were useful and interpretable for predicting recurrence. Our study

found that the DLRCR model achieved improvements in the AUC,

accuracy, sensitivity, and specificity for predicting ER compared to

the DL model or the RCR model alone, indicating that the

combination of high-level DL features along with radiomics and

clinical-radiological data maximized the predictive performance of

ER. Compared with the only MRI-related study reported by Gao

et al. (18), our study may have the following advantages: firstly, our

study contained routine clinical information and conventional

radiological features, which could provide more information

about tumor characteristics; secondly, our DLRCR model

possessed higher accuracy (0.818 vs. 0.777), sensitivity (0.800 vs.

0.769), and specificity (0.846 vs. 0.779) than the combined model in

the validation cohort in that study, although the AUC (0.844 vs.

0.840) was comparable; finally, as opposed to the traditional

approach of employing machine learning for dimensionality

reduction and model building, our primary objective is to

construct a neural network through the integration of DL,
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radiomics, and clinical-radiological data, which may automatically

learn complementary information from multimodal data and

thereby enhancing model performance.

Our study has several limitations. Firstly, the potential selection

bias may exist due to the retrospective nature of the study. Secondly,

this was a single-center study with relatively small samples. Our study

have employed various strategies such as data augmentation,

regularization, early stopping, and model simplification techniques

to avoid overfitting and improve predictive performance. A large-

scale and multi-center dataset is required to validate reliability and

robustness of prediction models and to provide a better

generalization of our results in the future. Thirdly, the VOIs were

outlinedmanually by radiologists, thus is time- and labor-consuming,

and limiting the model usefulness of our study. Further research is

considered to design a DL framework integrating HCC automatic

segmentation and recurrence prediction. Fourthly, the DL method is

regarded as “black box” and lacks interpretability that is a challenge to

explain the correlation between relevant features and results. To

interpret important features or patterns identified by the DL model,

we performed visual interpretation using Score-CAMmethod. In the

future, we will try to continuously optimize our DL network to

improve its predictive performance and interpretability. Finally, the

value of our method for improving long-term survival in patients

with HCC remains unclear, we will further explore the capacity of

MRI DL and radiomics-based integrated approach for predicting OS

of HCC patients after surgical resection.

In conclusion, CEMRI-based radiomics and DL models

performed well in predicting HCC early recurrence after curative

resection. Importantly, a novel DL and radiomics-based combined

model incorporating clinical-radiological, radiomics, and high level

DL features was proposed as a more effective method for the

prediction of early recurrence for HCC patients. The integrated

approach has potential to refine the prognosis and guide

individualized treatment strategies for patients with HCC.
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