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The liver plays a crucrial role in detoxification, metabolism, and nutrient storage.

Because liver cancer ranks among the top three leading causes of death globally,

there is an urgent need for developing treatment strategies for liver cancer.

Although traditional approaches such as radiation, chemotherapy, surgical

removal, and transplantation are widely practiced, the number of patients with

liver cancer continues to increase rapidly each year. Some novel therapeutics for

liver cancer have been studied for many years. In the past decade, oncolytic

therapy has emerged, in which viruses selectively infect and destroy cancer cells

while sparing normal cells. However, oncolytic virotherapy for liver cancer

remains relatively obscure due to the aggressive nature of the disease and the

limited effectiveness of treatment. To keep pace with the latest developments in

oncolytic tumor therapy for liver cancer, this review summarizes basic science

studies and clinical trials conducted within 5 years, focusing on the efficacy and

safety profiles of the five most commonly used oncolytic viruses: herpes simplex

virus, adenovirus, influenza virus, vaccinia virus, and coxsackievirus.
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1 Introduction

As of 2020, liver cancer stands as the third leading cause of mortality worldwide, claiming

the lives of 830,200 individuals annually (1). The number of liver cancer diagnoses and deaths

is projected to increase by 55% from 2020 to 2040 (2). In the United States alone, liver cancer

incurs an annual cost of $454.9 million, averaging $32,907 per patient. This includes the cost

of healthcare and loss of productivity due to liver disease. Hepatocellular carcinoma (HCC) is

one of the most common types of liver cancer, accounting for 90% of primary liver cancers

(3). Without adequate treatment, patients infected with viruses that cause hepatitis can
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progress into chronic liver disease, predisposing them to HCC. Other

risk factors include alcohol abuse, obesity, fatty liver, and diabetes (4).

Diagnosis of HCC follows the Barcelona Clinic Liver Center (BCLC)

strategy, which guides treatment decisions at different disease stages

(5). In the early stages (BCLC 0-A), treatment primarily includes

surgical resection and ablation (6). For intermediate cases (BCLC B),

conventional transarterial chemoembolization improved survival rate

(7). As the disease progresses to advanced stages (BCLC C), patients

manifest cancer-related symptoms, prompting the utilization of

sorafenib, a tyrosine kinase inhibitor, approved by the Food and

Drug Administration (8). However, in the terminal stage (BCLC D),

therapeutic options become severely limited. Liver transplantation

emerges as a potentially viable intervention, but its scientific efficacy

remains unproven (9). Traditional liver cancer treatments, such as

immunotherapies, and transarterial chemoembolization, have not

shown great effectiveness due to the immune tolerance of the liver,

and not all patients are eligible for these treatments (6). Thus, new

therapeutic methods are urgently needed.

Cancer is the leading cause of death in every country in the

world (10). Since 1921, when cancer cells first appeared, humans

have sought treatments to improve survival rates. Since entering the

21st century, genetic engineering technology has made continuous

progress and its application in medicine has been greatly developed,

among which oncolytic virus therapy stands out among many

cancer treatment methods (11). Oncolytic viruses (OVs) are

genetically engineered viruses that specifically fight cancer cells. It

can recognize and infect different cells in the tumor environment,

replicate in tumor cells through different regulatory mechanisms,

lyse tumor cells, and be released from tumor cells to further infect

surrounding tumor cells; while in normal cells, oncolytic The virus

is cleared by the body’s immune system without affecting its normal

growth (12). Since the discovery of using OVs to treat cancer cells,

preclinical studies and clinical trials have employed OVs in HCC

and have demonstrated some progress (13).

The effectiveness of OVT against HCC can vary due to several

factors, such as changes in receptor expression, host immune

response, TME, and genetic alterations (14). Commonly used

virus vectors for HCC OVT include HSV, ADV type 5, IV,

oncolytic VV, and COX-A, etc. This review summarizes

preclinical studies from 2022 to 2024 and clinical trials from 2015

to 2024 to investigate the OVs in HCC treatment. Common

administration routes include intravenous, intrasplenic,

intratumoral, intraarterial, intrabiliary, etc (15).
2 Oncolytic viruses

2.1 Mechanisms for genetically engineered
oncolytic viruses

Oncolytic viruses (OVs) have emerged as a promising approach

in cancer therapy, leveraging the natural ability of viruses to

selectively target and destroy tumor cells while leaving healthy

ones unaffected. There are three primary mechanisms to genetically

engineer OVs:
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2.1.1 Type I interferon signaling
pathway regulation

To achieve antitumor activity, one of the most common ways

that OVs use is to downregulate the IFN signaling pathway, making

tumor cells more susceptible to the OVs that will then replicate and

kill the tumor cell through direct lysis (16, 17). This process is

primarily driven by the susceptibility of oncolytic viruses (OVs) to

interferon (IFN) and the decreased responsiveness of tumor cells to

IFN. Preclinical studies using vesicular stomatitis virus for HCC

showed that by IFN signal acts like a cytokine to direct the priming

of virus and tumor-reactive T cells, which induces oncolysis and

host immune response (18).

2.1.2 Tumor-specific promoters
Tumor or tissue-specific gene promoters are engineered into the

OVs to selectively transcribe targeted gene sequences. This allows for

rapid replication within tumor cells while limiting replication in

normal cells (19). Conventionally, homologous recombination

technique has been used. However, this method has been limited

by its low efficacy and the complication of multiple steps involved

(20). To solve this problem, several approaches have been used to

insert tumor-specific promoters to OVs. The CRISPR-Cas9 system

was introduced. By using a guide RNA to direct the Cas9 enzyme to a

specific DNA site, it allows a donor DNA template containing the

new promoter to be integrated via homology-directed repair. Yuan

et al. showed that CRISPER-Cas9 system induces higher efficiency of

homologous recombination by 3% when introducing DsRed into

oADV (21). Additionally, Terada et al. used a bacterial artificial

chromosome (BAC) -based model, in which the backbone of BAC

can effectively exchange with the promoter of interest through

sequential, site-specific recombination, to express luciferase protein

by inserting various viral promoters on oHSV (22). Gateway

recombination cloning was effectively used insert-expression vector,

M134, GOI, and M136 with eGFP as fluorescent marker, into

myxoma oncolytic virus (23). Moreover, to identify the site of

insertion, transposon insertion strategy has been largely used to

scan the genome nonprejuidicely. Kretschemer et al. used Tn7

transposon to find several sites for promoter-based expression

insertions in the oADV genome, and those approaches have been

proved to perform easily and effectively (24).

2.1.3 Gene silencing
Certain viral genes necessary for replication in normal cells, but

not required by tumor cells, are deleted. This allows viruses to

replicate rapidly within tumor cells with attenuated replicability in

normal cells (25). Double-stranded interfering RNAs (RNAi) can

guide Argonaute proteins to target tumor cell RNAs via Watson-

Crick base-pairing to achieve gene silencing within the tumor.

Importantly, OVs contain genetic sequences not only for

mediating replication but also for modifying the tumor immune

microenvironment (TME) (16). Alterations in the TME can

provoke innate and adaptive immune responses and inhibit

tumor angiogenesis, leading to tumor death (26). Although this

may initially limit the spread of OVs in tumor cells, the cell lysis

induced by viruses and the danger-associated molecular patterns
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triggered by OVs can overcome immunosuppression and promote

antitumor immunity (27). To prevent the spread of OVs into

healthy cells, neutralizing antibodies and cytokines produced in

response to viruses initiate immune reactions. However, the clinical

application of OVs in cancer therapy is challenging, particularly

regarding their toxicity and pathogenicity to humans. Addressing

these challenges is crucial for the broader adoption and effectiveness

of OV-based cancer therapies (19).
2.2 Antitumor mechanisms of OVs

The mechanisms by which OVs effectively kill tumor cells are

diverse and multifaceted (Figure 1):
2.2.1 Direct lysis
OVs overwhelm tumor cells with the production of viruses,

causing direct lysis when the viral load exceeds the capacity of

tumor cells to contain them (28).

2.2.2 Transgene expression
Genetically engineered OVs can express transgenes that induce

cytotoxic effects, leading to tumor cell apoptosis and

autophagy (29).
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2.2.3 Sensitization to chemotherapy and
radiation therapy

OVs sensitize tumor cells to chemotherapy and radiation

therapy, enhancing their effectiveness in killing tumor cells (30).

2.2.4 Antitumoral activity
OVs stimulate an antitumoral immune response by triggering

cytokine release upon detection by the host immune system. This

immune response targets virus-infected tumor cells through the

innate pathway, causing release of tumor-associated antigens,

further enhancing immune recognition and tumor cell death (16).

2.2.5 Vasculature targeting
Some OVs are engineered to target the vasculature of tumor

cells, reducing their blood supply and causing tumor

regression (31).

2.2.6 Alteration of TME
OVs can modify the immunosuppressive TME created by tumor

cells, increasing the infiltration of antigen-presenting cells and immune

cells into the tumor. This alteration helps restore the immune balance

and enhances the immune response against the tumor (32).

These mechanisms collectively contribute to the potent

antitumor effects of OVs.
FIGURE 1

Mechanisms of cell lysis used by oncolytic viruses (16, 30, 32). The mechanism of OV cell lysis can be categorized into major categories. 1) Direct
lysis due to a large volume of virus by replication. 2) Cytotoxicity by proteins encoded by the virus, which leads to tumor cell apoptosis and
autophagy death. 3) Anti-tumoral immunity that leads to induction of host immune response, escape of the virus from the host response, and
release of TAAs to act on adjacent sites. 4) Sensitization of chemotherapy and radiation. 5) Transgene expression through genetic engineering. 6)
Change in host cell environment, including reversal of host TME and destruction of tumor blood vessels.
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Furthermore, the adaptability of OVs enables their potential

incorporation into multimodal approaches to cancer treatment,

presenting promising opportunities for enhancing patient outcomes.

Both clinical trials and preclinical studies have demonstrated

the relative safety of oncolytic virotherapy (OVT), with minimal

reported adverse effects. This safety profile underscores the

potential of OVT as a groundbreaking treatment for cancer.

Continued research and development in this field hold promise

for further enhancing the efficacy and safety of OVs as a therapeutic

approach against cancer (33).
2.3 Categories of OVs

The diversity of viruses being explored for OVT highlights the

breadth of research in this field. Both natural and engineered viruses

show promise as potential candidates for cancer treatment. Some

viruses that are used for OVT include herpes simplex virus (HSV),

adenovirus (ADV) type 5, influenza virus (IV), oncolytic vaccinia

virus (VV), and coxsackievirus A (COX-A), measles virus,

poliovirus, retrovirus, reovirus, parvovirus H1, vesicular stomatitis

virus, Newcastle Disease virus, etc. (27). In recent years, nearly all of

these viruses have been investigated in both preclinical basic science

studies (Table 1) and clinical trials (Table 2) for liver tumor OVT.
Frontiers in Oncology 04
This underscores the extensive research being conducted to evaluate

the efficacy and safety of viruses in targeting and destroying tumor

cells, particularly in the context of liver cancer.

Exploring the potential of multiple viruses allows researchers to

identify the most effective candidates for OVT while considering

safety, delivery methods, immune responses, etc. This

comprehensive approach enhances our understanding of the

diverse mechanisms that viruses use to exert oncolytic effects and

paves the way for the development of novel and improved therapies

for liver cancer and other malignancies.

In 2015, Talimogene laherparepvec (T-VEC), an HSV-1 derived

JS1 OV strain, became the first and only OVT approved for clinical

use by the Food and Drug Administration (34). T-VEC has been a

significant development in OVT. Its approval marked a milestone in

cancer treatment, particularly for melanomas. By leveraging the

natural ability of HSV-1 to infect and kill cancer cells, T-VEC

demonstrated promising efficacy in shrinking tumors and

prompting immune responses against cancer cells.

Pexastimogene devacirepvec (Pexa-Vec), a VV with deletion of

thymidine kinase, an enzyme in the DNA precursor pathway, was

designed to restrict viruses to only attack tumor cells, particularly

HCC cells (35, 36). Pexa-Vec expresses granulocyte-macrophage

colony-stimulating factor to recruit dendritic cells through

interferon cytokine expression, enhancing tumor infiltration (37).
TABLE 1 Viruses used for liver tumor or liver metastasis treatment in basic science studies.

Virus Types Product Names Year Modification Model Ref.

HSV humanized scFv against
human PD-1 (hPD-1scFv)

2022 Insertion of humanized hPD-1 blocker gene Mouse (42)

Morreton Virus MORV, University of Texas 2023 Unmodified wildtype Mouse (108)

ADV Ad-GD55–a-Tim-3 2023 Inhibition of T-cell TIM-3) Mouse,
in vitro

(54)

Newcastle Disease
Virus (NDV)

Oncolytic virus M1 2022 Unmodified wildtype Mouse,
in vitro

(109)

Poxvirus CF33 2023 Deletion of J2R (TK) gene and addition of human sodium iodide
symporter (hNIS)

Mouse,
in vitro

(110)

VV oncoVV-AVL 2022 Expression of gene encoding Aphrocallistes vastus lectin Mouse,
in vitro

(111)

VvDD-IL15Ra 2022 Expression of superagonist IL-15 and erastin plus the deletion of 2 viral
genes that encode thymidine kinase and vaccinia growth factor

Mouse,
in vitro

(71)

OncoVV-AVL 2024 Expression of gene encoding Aphrocallistes vastus lectin in vitro
Mouse

(70)

IV rFlu-huPD1 2022 PB1 fragment encodes the heavy chain of PD-1 antibody and polymerase
acid protein fragment encodes PD-1 antibody light chain.

Mouse,
in vitro

(112)

Measles Virus MV 2023 Unmodified wildtype in vitro (113)

Reovirus Reo 2018 Unmodified wildtype clinical grade oncolytic orthoreovirus Mouse,
in vitro

(36)

Alphavirus M1-VCPI 2017 Expression of valosin-containing protein inhibitors (VCPIs) Mouse,
in vitro

(114)

SINV-GM-CSF 2024 GM-CSF carrying Sindbis virus. Mutation (G to S) at amino acid 285 in the
nsp1 protein

in vitro
Mouse

(115)

COX-A21 V937 2024 Genetically unmodified Kuykendall strain of COX-A21 Mouse,
in vitro

(87)
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Although this phase III trial requires further optimization in HCC

treatment, evidence from studies and clinical trials supports both

the safety and efficacy of Pexa-Vec (36).
3 Novel finding in OVT against
liver cancer

3.1 HSV

HSV is a double-stranded DNA virus (38). Its virion has four

components: a DNA core, an icosapentahedral capsid, an

amorphous protein coat tegument crucial for HSV infection, and

a glycoprotein-bearing lipid bilayer envelope, from the inner to the

outer surface (39, 40). It exists as HSV-1 and HSV-2, with HSV-2

commonly associated with sexually transmitted diseases and HSV-1

linked to infections of the oral cavity and skin. HSV-1 has been

extensively used in OVT for HCC because it exhibits rapid host cell

entry, efficient replication, binding to receptors broadly expressed in

different types of human cells and tissues, and ability to stimulate a

strong cellular and humoral immune response (41).

However, despite its potential, challenges must be addressed

before HSV is widely used in clinical settings for OVT, including

complexity of vector engineering, short-term stability issues, and

risk of affecting normal tissue (41). Although a considerable

number of preclinical studies have used HSV as the predominant

OV in liver tumor treatment, in recent years, no clinical trial was

successfully completed for HSV OVT targeting liver tumors.

Clinical trials utilizing HSV for treating other cancers, including

melanoma, lung cancer, solid tumors, breast cancers, and glioma,

have been extensively investigated and have shown promising

outcomes (Table 3). This indicates the potential for HSV in

cancer therapy, but further research and development are needed

to overcome the current challenges associated with its use in

treating liver cancer.

Recent research has focused on genetically engineering a tumor-

selective oncolytic HSV (oHSV) to express a human single-chain
Frontiers in Oncology 05
variable fragment targeting human programmed cell death 1 (PD-1)

in mouse and nonhuman primate models with human liver cells

implanted subcutaneously (42). PD-1, an inhibitory receptor on

lymphocytes, impedes T-cell recognition and attacks upon binding

to programmed death ligand 1 (PD-L1) (43). By designing a single-

chain variable fragment against humanized PD-1, researchers

assessed the antitumor efficacy of oHSV. The ideal PD-1 blockade

candidate was selected and verified in mouse and nonhuman

primate models. Results showed that mice treated with anti-PD-

1-modified OV developed long-term memory of T-cell responses

and reduced immunotherapy resistance.

In nonhuman primates, a humanized antibody against PD-1,

called hu17D5, was constructed after library screening. hu17D5 is a

single-chain antibody with better affinity to PD-1. After

administering hu17D5 to nonhuman primates, a significant T-cell

immune response was observed (p < 0.01) (42). Subsequently, an

OV was engineered to express the hu17D5 gene, naming it YST-

oHSV. The results demonstrated that 72 h after YST-oHSV

injection, the viability of HCC cells decreased by 90%, whereas

normal cells remained unaffected (42). Additionally, the antitumor

activity increased after YST-oHSV injection. When YST-oHSV was

injected into mice with HCC, tumor growth was significantly

inhibited, leading to increased survival rates and tumor

regression. YST-oHSV treatment increased CD8+ cytotoxic T-cell

rejuvenation and the number of CD8+ memory T cells. YST-oHSV

demonstrated great safety in nonhuman primate models, with no

serious adverse effects (AEs).

Inappropriate delivery routes often limit the efficacy of oHSV in

OVT. To solve this problem, surface-engineering-technique-

masked oHSV with a galactose-polyethylene-glycol (PEG)

polymer chain (glycosylated-PEG-oHSV) was generated to direct

viruses to tumor sites and limit off-target effects, especially to the

brain (44). Although glycosylated-PEG-oHSV did not affect oHSV

repl icat ion, i t exhib i ted increased spec ific i ty to the

asialoglycoprotein receptor, which is selectively expressed on the

surface of HCC cells, in a mouse model. This leads to enhanced

tumor penetration into the center of HCC cells and reduced
TABLE 2 Viruses used for liver tumor or liver metastasis treatment in clinical trials.

Virus OVT Product Year Modification of Virus Phase Path Ref.

HSV NV1020, BioReliance 2010 Deletion of UL56 internal repeat gene and UL24
gene expression.

I/II Herpetic
artery infusion

(45)

ADV OBP-301, Oncolys
Biopharma Inc.

2023 Attenuated type 5 ADV with an hTERT promoter I Intertumoral
Injection (IT)

(56)

VV Pexa-Vec, JX-594,
Biotherapeutics Inc. and
Transgene S.A.

2019 Inactivated thymidine kinase to express human
granulocyte-macrophage colony-stimulating factor (GM-
CSF) and b-galactosidase

IIb Intravenous (IV)
infusion followed
by IT

(73)

VvDD (JX-929),
Jennerex Biotherapeutics

2016 Deletion of vaccinia growth factor and TK I IV, IT (116)

Vesicular
Stomatitis Virus

VSV-IFNb -TYRP1,
Mayo Clinic

2023 Express IFN-b and Tyrosine Related Protein 1 (TYRP1) I IV, IT (117)

COX-A21 V937, Viralytics 2023 Unmodified bioselected strain of CVA21 Ib IV (86)

Protoparvovirus
H-1

ParvOryx 2021 Unmodified II IV, IT (118)
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accumulation in non-liver organs, such as the brain and lung.

Additionally, glycosylated-PEG-oHSV decreased the level of

HSV-neutralizing antibodies and T cells after infection.

Furthermore, it increased the release of antitumor cytokines,

leading to significant infiltration into the tumor, and thereby,

limiting tumor growth (44). Propidium iodide staining validated

the cytotoxic effect of oHSV to induce HCC apoptosis and necrosis.

The efficacy of glycosylated-PEG-oHSV is dose-dependent, with

optimal efficiency at 0.2 mM.

There has been a lack of HSV OVT clinical trials in the past

years; however, a phase I/II study in 2010 published in Hum Gene

Ther showed the antimetastasis ability of HSV in liver metastasis

from colorectal cancer (45). In the study, scientists engineered

NV1020, wild-type HSV-1 modified with the deletion of UL24

and internal repeat UL56 genes, which confers the ability to

replicate in a less harmful manner. Then, the thymidine kinase

gene was introduced to allow controlled infection. NV1020 was

administered to 13 patients in phase I and 19 patients in phase II via

hepatic artery injection weekly over four weeks. The results showed

promising outcomes, with 50% exhibiting stable disease and one

patient showing partial response following chemotherapy. Median

time to progression was 6.4 months, and median overall survival

(OS) was 11.8 months, with a 12-month survival rate of 47.2% (45).

These findings underscored the efficacy of NV1020 in stabilizing

liver metastasis. Regarding safety, AEs were primarily observed

within 24 h post-infusion, with no grade 3 reactions reported. Most

AEs were grade 1 and 2 reactions, such as nausea and myalgia, and

were effectively managed with analgesics and other supportive
Frontiers in Oncology 06
measures. No virus was detected in serum or saliva samples, but

HSV-1 was detected on the skin of two patients during monitoring.

Despite these promising results, no subsequent publications

regarding further phase II/III trials have emerged. This suggests

that although the initial findings were encouraging, further research

may be necessary to progress to later-stage clinical trials, and

ultimately, determine the broader efficacy and safety profile of

NV1020 in treating liver metastases or HCC.
3.2 ADV

ADV is a nonenveloped double-stranded DNA virus

characterized by an icosahedral nucleocapsid. It belongs to the

Adenoviridae family and is typically isolated from human adenoids

(46). ADV primarily affects children because they have lower

humoral immunity than adults (47). Based on its genome

structure, ADV is categorized into 52 serotypes and 7 species (A–

G) (48). ADV infection manifests in various forms, such as

respiratory tract infection, keratoconjunctivitis, gastrointestinal

manifestations, and urinary tract infection (47). Human ADV

species C type 5 has been extensively studied in OVT because it

evades pre-existing immunity (49). ADV demonstrates a

remarkable capacity to target tumor cells through various

receptors, such as Coxsackie and ADV receptor, integrins, CD46,

desmoglein-2, and sialic acid (50). Besides its high safety profile,

tumor selectivity, and immunogenicity, ADV stands out as an OVT

candidate for its efficient gene delivery and transient expression
TABLE 3 Clinical trials using HSV oncolytic therapy for all cancer types.

Cancer Type Virus Product Modifications Year Phase Pathway
of Delivery

Ref.

Non-Small Cell
Lung Cancer

ADV/HSV-tk, Merck Adenovirus-mediated expression of HSV thymidine kinase 2024 II IT (119)

Solid Tumors HSV1716 (Seprehvir),
Nationwide
Children’s hospital

Deletion of ICP34.5 gene and maintenance of TK expression 2019 I IV (120)

Primary Central
Nervous System Tumors

HSV G207, Aettis, Inc.,
University of Alabama

Deletion of g134.5 gene and disability of lacZ insertion
in UL39

2017 I IT (121)

Malignant Glioma M032, Aettis, Inc.,
University of Alabama

Expression of IL-12 2016 I/II IT (122)

Recurrent Glioblastoma CAN-
3110 (rQNestin34.5v.2)

Expression of ICP34.5 by nestin promoter 2023 I IT (123)

Melanoma OrienX010 Expression of GM-CSF, deletion of ICP34.5 and ICP47, and
inactivation of ICP6.

2022 Ib IT (124)

Soft Tissue Sarcoma of
Trunk and Extremities

Talimogene laherparepvec
(T-VEC)

Expression of GM-CSF and deletion of ICP47 and ICP
34.5 gene.

2021 Ib/II IT (125)

Breast Cancer Talimogene laherparepvec
(T-VEC), Amgen

Expression of GM-CSF and deletion of ICP47 and ICP
34.5 gene.

2021 I IT (126)

Malignant
Pleural Mesothelioma

HSV1716, Virttu
Biologics Limited

Deletion of ICP 34.5 using strain 17+ 2020 I/IIa Intrapleural
Injection (IP)

(127)

Pancreatic Cancer HF10 Deletion of UL43, UL49.5, UL55, UL56, and latency-
associated transcripts, and overexpression of UL53
and UL54.

2018 I IT (128)
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(51). Specifically, ADV can infect both dividing and non-dividing

cells, expanding its applicability to different tumor types, including

HCC (52). ADV does not integrate its DNA into the host genome

during replication, reducing the risk of insertional mutagenesis,

which is a common concern with many other viruses (53).

Recent preclinical research demonstrated the modification of

ADV as Ad-GD55–a-Tim-3. This engineered ADV expresses E1A,

a protein for viral replication controlled by the GP73 promoter, and

encodes an antibody gene of immunosuppressive T-cell

immunoglobulin domain and mucin-domain molecule-3 (TIM-3)

(54). TIM-3, an immune checkpoint expressed on the surface of

Th1 cells to regulate macrophage activation, exhibited higher

expression in HCC cells than in healthy cells. This was confirmed

through immunohistochemistry and western blot analysis with a

significance level of p < 0.05 (55). Ad-GD55–a-Tim-3 infection in

HCC cells led to a decrease in pro-inflammatory cytokines, such as

IL-1b and IL-6, and an increase in anti-inflammatory cytokines,

such as IL-10, which fosters a less inflamed environment for viral

replication. HCC cells with Ad-GD55–a-Tim-3 also showed less

immunosuppressive factors, such as TGF-b and IDO, which

increased the immune response of the host to target HCC cells

(54). Although Ad-GD55–a-Tim-3 inhibited HCC cell growth, it

did not significantly induce apoptosis compared with wild-type

ADV. In a tumor xenograft HCC mouse model, treatment with Ad-

GD55–a-Tim-3 resulted in higher Ki-67 antigen expression and

increased CD4/CD8 cell number. Thus, Ad-GD55–a-Tim-3

inhibits tumor growth with no observed cytopathic changes in

mouse organs.

In 2023, a phase I clinical trial tested an attenuated Ad5 with a

human telomerase reverse transcriptase (hTERT) promoter. This

virus, named OBP-31, maintains telomere length with expression

occurring exclusively in liver cancer cells but not in healthy or

differentiated cells, thereby increasing its tumor selectivity (56).

This is achieved when the hTERT promoter interacts with an

internal ribosome entry site, enhancing the replicability of OBP-

301, specifically in cancer cells. OBP-301 then causes tumor cell

destruction through direct lysis via viral replication and induces

immune responses facilitated by the cytokines, tumor necrosis

factor and IL-1 (57).

Eighteen patients with HCC were recruited, with a median time

since HCC diagnosis of 3.24 years. Thirteen patients had stage C

cancer according to the BCLC system, and all patients were

classified as Child-Pugh class A. qPCR analysis revealed no

detectable OBP-301 DNA in most patients after 24 h, and none

showed positive OBP-301 DNA in blood or urine tests 14 d post

administration, indicating the safety of OBP-301 in patients with

HCC (56). However, no patient achieved a complete response or

partial response. Fourteen patients were in the stable disease stage,

whereas four were in the progressive disease stage. The mean

duration of stable disease to disease control was 5.55 weeks, with

a median time to progression of 8.10 weeks. The median OS was

26.00 weeks, and the average time for disease control was 4.21

weeks. CD8+ cell number increased by an average of 56.3% 4 weeks

after OBP-301 injection. Overall, whereas OBP-301 demonstrated

safety and elicited an immune response in patients with HCC, its

efficacy in terms of disease control and survival outcomes was
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combination therapies to enhance its therapeutic potential in

patients with HCC.

In a recent phase I trial, ADV-5 was combined with

hTERTRibozyme-expressing HSV thymidine kinase to target liver

metastasis in patients with GI cancer (58). hTERTRibozyme

specifically targeted hTERT, which is prominently expressed in

HCC cells (59). Coupled with HSV thymidine kinase,

hTERTRibozyme enhanced its cytotoxicity to HCC cells. The

clinical trial involved 18 patients, with only 2 patients exhibiting

stable disease after an 8-week regimen. Median progression-free

survival (PFS) was 1.1 months, indicating limited clinical efficacy

(58). Median OS was 6.2 months, and the maximum tolerated dose

was 2 × 1012 viral proteins with higher doses failing to yield better

clinical results, and no pharmacodynamic assessment was

conducted. Virus DNA remained undetectable at significant levels

after 72 h, with a median circulating virus half-life of 10.1 min. Due

to the lack of efficacy, Ad5CRT is not ready to proceed to the next

stage of clinical trials.

In addition to liver tumors, ADV has been widely used in OVT

clinical trials for various other types of cancer. For instance, Ad5-

yCD/mutTKSR39rep-hIL12 was used for prostate tumors (60),

LOAd703 was used for pancreatic cancers (61) , and

Cretostimogene received the fast track and breakthrough

designations for bladder cancers (62).
3.3 Oncolytic VV

VV, also known as smallpox, is a poxvirus characterized by a

brick-shaped envelope and a 200-kb double-stranded DNA genome

(63). Unlike many other viruses, VV does not require specific

receptors for cell entry. Instead, it utilizes a protein-based entry-

fusion complex or cooperates with endosomes for membrane fusion

(64). Because VV does not enter the nucleus, it is easier to control its

replication. VV replicates entirely within the cytoplasm of infected

cells using its own DNA-encoded enzymes, avoiding competition

with host cell DNA and circumventing the endomembrane system

(65). Many antiviral agents can limit VV spread, including ST-246

and cidofovir (63). Cell lysis usually occurs <24 h after infection

(66). VV elicits a robust T cell and antibody immune response and

demonstrates a broad host cell tropism, making it a promising

candidate for OVT (67). Other advantages of using VV in OVT

include an efficient delivery system, stability upon intravenous

administration or storage in powder or solution, and ability to

encode transgenes (68).

The potent cytotoxic effect of VV was found to trigger the host

immune response during HCC treatment. Aphrocallistes vastus

lectin (AVL), a marine lectin commonly found in sponges and

algae, was combined with VV to improve the cytotoxicity of VV in

HCC cells through PI3K/Akt and MAPK/ERK pathways (69). Cells

infected with siVV-AVL had significantly reduced viability

compared with those infected with VV alone, and its

antiproliferative efficacy increased progressively. VV-AVL-

infected cells had 30-fold higher apoptosis than wild-type PBS

control cells. Measurement of virus concentration in HCC cells
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demonstrated that VV-AVL upregulated 2′-5′-oligoadenylate
synthetase-like protein, thereby enhancing VV DNA replication

and resulting in significantly higher virus titers. VV-AVL infection

significantly increased the expression of type I interferon, notably

IFN-a and IFN-b, particularly 36- and 48-h post-infection (69).

This increase was mediated through phosphorylated IFN regulatory

factor 3 (IRF3). VV-AVL also suppressed antiviral factors,

including 2′-5′-oligoadenylate synthetase, IL enhancer binding

factor 3, and phospholipid scramblase 1. Consequently, VV-AVL

could replicate within the host cell by activating mammalian sterile

20-like kinase without encountering host defenses. In a mouse

model, 30-d postinjection, VV-AVL significantly inhibited tumor

growth. Consistently, histological examination revealed a notable

presence of broken nuclei in VV-AVL-infected cells. Additionally,

Zhang et al. in 2024 confirmed the effectiveness of VV-AVL in liver

tumor treatment (70). They further discovered the mechanism of

oncoVV-AVL, which involves reprogramming hepatocellular

carcinoma (HCC) metabolism to promote reactive oxygen species

(ROS). ROS, in turn, enhance the replication of oncoVV-AVL and

induce tumor cell apoptosis.

In 2022, Liu et al. aimed to combine the vaccinia virus (VV)

with erastin to improve its oncolytic effectiveness in liver tumor

treatment (71). Erastin is a ferroptosis activator that can induce cell

death in liver, colon, and ovarian cancer cells. Since both VV and

erastin have been proven to inhibit tumor growth, this study

investigated whether combining vvDD (VV with the deletion of

thymidine kinase and vaccine growth factor) and erastin could lead

to superior antitumoral activity. The results showed that although

80% of the mice exhibited inhibition of tumor growth with erastin

treatment alone, the combination of erastin and vvDD (vvDD-

IL15-Ra) led to a 100% reduction in tumor volume and 60% tumor

cell regression (71). None of the five mice treated with the

combination developed new tumors 12 days after treatment,

whereas the untreated mice showed 83% new tumor growth. This

indicates the immune memory provided by vvDD-IL15-Ra.
Immune markers, IFN-g and TNF-a, and immune cells,

CD86+CD11c+ and dendritic cells, were also higher in the vvDD-

IL15-Ra group than vvDD or erastin alone group.

A randomized phase II clinical trial conducted in 2013

investigated the oncolytic effectiveness of JX-594 (Pexa-Vec) in

liver cancer treatment (72). Pexa-Vec, a vaccinia virus with inactive

thymidine kinase, expresses human granulocyte-macrophage

colony-stimulating factor and b-galactosidase. Low or high doses

of Pexa-Vec were injected into the liver tumor on days 1, 15, and 29.

The Choi response rate and intrahepatic disease control rate

showed no significant differences between the injected and non-

injected liver tumors at either dose. However, the survival rate was

significantly higher in the injected group (14.1 months) compared

to the non-injected group (6.7 months) at either dose.

In 2019, a randomized multicenter phase IIB clinical trial

evaluated the effectiveness of Pexa-Vec combined with Best

Supportive Care (BSC) versus BSC treatment alone in patients with

HCC who had failed sorafenib therapy (73). This study highlighted

the efficacy and safety of Pexa-Vec in patients with HCC. The survival

rate of patients treated with Pexa-Vec + BSC (median OS: 4.2

months) did not significantly differ from those receiving BSC alone
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(median OS: 4.4 months). Both Pexa-Vec + BSC and BSC alone had a

high likelihood of inducing AEs. Anti-b-galactosidase antibodies

were detected in 56% of the patients receiving Pexa-Vec + BSC,

indicating significant viral replication in HCC cells (73). Virus

detection from urine or throat swabs ceased after day 8, whereas

21% of the patients had virus in rectal swab samples. ELISPOT

analysis demonstrated a significant increase in T cells after Pexa-Vec

injection, particularly evident after 6 weeks. The most expressed

tumor antigens were MAGE-A1 and MAGE-A3, suggesting that

Pexa-Vec can induce a tumor-specific T-cell immune response.

Overall, whereas Pexa-Vec showed promise in inducing a tumor-

specific immune response and good safety profile, it did not translate

into a significant improvement in overall survival or disease control

rate in this study population.

However, when comparing the effectiveness of Pexa-Vec with

Sorafenib, the most commonly prescribed medication for HCC

treatment, versus Pexa-Vec alone, a phase II trial showed a 62%

disease control rate with Pexa-Vec alone and 59% Pexa-Vec with

sorafenib (74). The Pexa-Vec was well-tolerated. The high dose of

Pexa-Vec showed greater OS (14.1 months) vs the lower dose (6.7

months). Due to the higher effectiveness and safety profile of Pexa-

Vec, the next stage clinical trial is warranted.

Later, a phase III clinical trial from 2015 to 2019, conducted at

142 sites in 16 countries with 459 patients, evaluated the efficacy of

Pexa-Vec plus sorafenib versus sorafenib alone in HCC patients

(75). The median OS was 12.7 months in Pexa-Vec plus sorafenib

compared to 14.0 months in the control group. Median TTP was 2.0

months versus 4.2 months; objective response rate was 19.2% versus

20.9%; and disease control rate was 50% vs 57.3%, respectively (75).

As a result, the addition of Pexa-Vec to the traditional sorafenib

approach failed to demonstrate clinical benefits in treating HCC,

leading to the early termination of the trial. Moreover, the safety

profile was less optimal in the Pexa-Vec plus sorafenib patients,

with 53.7% reporting serious AEs compared to only 35.5% in the

sorafenib-only group (75).

Several factors have been proposed to explain the failure (75).

First, TK1 gene was inactivated during the construction of Pexa-

Vec, preventing the synthesis of thymine nucleotides essential for

the replication of the OV. Additionally, sorafenib was not

administered until the complication of the entire Pexa-Vec

therapy, and its immunosuppressive effect, combined with the

delay, allowed time for tumor growth, leading to a shorter TTP.

For future trials, the time to combine Pexa-Vec with sorafenib and

the dose of the virus will be needed to optimize its therapeutic

potential in HCC treatment.

The potential effectiveness of VV in OVT clinical trials was also

evident in solid tumors (76), colorectal carcinoma (77), head and

neck cancers (78), etc.
3.4 COX-A

COX is a small, cytolytic virus belonging to the Enterovirus

group of Picornaviridae family. It possesses a positive single-

stranded RNA genome, lacks an envelope, and features an

icosahedral capsid with surface viral proteins (79). COX is
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classified into two groups: 1) coxsackievirus A (COX-A), with 23

serotypes commonly linked with hand, foot, and mouth disease and

2) coxsackievirus B (COX-B), with six serotypes often associated

with myocarditis, among other conditions (80).

COX viruses, including COX-A21 and COX-B3, have been

involved in OVT (81). COX-A21 stands out as a great candidate

for several reasons. First, it boasts a highly specific and efficient

ligand-receptor system for cellular entry. It binds decay-accelerating

factor on the cell surface and requires the concurrent presence of

intercellular adhesion molecule-1 for viral infection, facilitating the

entry of the OVs into tumor cells (82). The replication of COX-A

depends on nuclear factor kB (83). Subsequently, infected host cells

undergo apoptosis induced by COX-A or a T-cell immune

response. Clinical data show the safety of COX-A21, with no

reported grade 3 or 4 AEs (84).

A bioselected COX-A21 strain named V937, without any

modification, was used (85). V937 infects and leads to direct lysis

of tumor cells that overexpresses intercellular adhesion molecule-1

(ICAM01). In the latest phase II open-label clinical trial in 2023,

injection of V937 showed antitumor activity with a decrease in the

size of injected and non-injected liver tumor cells metastases from

melanoma. the clinical efficiency and safety of V937 were tested,

with no patients reaching complete response or partial response.

PFS was observed in all patients, with a median PFS of 3.7 months

and a PFS rate of 9% at week 26 (86). Although V937 demonstrated

relative safety in human participants, its efficacy in OVT warrants

further investigation.

Later in 2024, a preclinical study further investigated the role of

V937 alone versus V937 combined with pembrolizumab therapy in

the treatment of HCC (87). When V937 was injected into non-

contact tumor cell lines, a significant increase in IFN-a, IL-12, IFN-
g, IP-10, macrophage inflammatory protein (MIP)-1a, and IL-6 was
observed. Pembrolizumab induces the expression of ICAM-1 on the

surface of tumor cells, leading to increased infection and attack of

V937 on HCCs, thereby establishing an antitumoral effect.

In addition to its use in liver tumors, COX-A has been mainly

used for melanoma (88), and has shown some effectiveness in

colorectal cancer (89), small cell lung cancer (90), etc.
3.5 IV

IV, a negative-sense single-stranded RNA virus from the

Orthomyxoviridae family, exhibits a pleomorphic virion

measuring 100–120 nm in diameter, encapsulated within a

spherical bilayer envelope (91). IV comprises 7 serotypes, with IV

A and IV B being the most commonly spread. The envelope surface

of IV bears >500 spike-like projections, comprised predominantly

of the glycoproteins hemagglutinin and neuraminidase in a 10 to 1

ratio (92). Upon entering the host cell, hemagglutinin undergoes

activation by serine proteases. IV then integrates into the host

genome, regulated by NS1, which acts as an interferon antagonist

during virus replication (93).

IV can elicit a robust cytokine response, activating the adaptive

immune system, and further promoting cytokine secretion. This

potent ability to induce host cell death positions IV as one of the
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most commonly used OVs in cancer therapy (94). However, all

studies remain in the realm of basic science research, with no recent

clinical studies conducted.

Similar to oHSV, PD-L1 antibodies were incorporated into IV

to target HCC cells (95). This oncolytic IV was identified through

screening in pathogen-free chicken embryos, with all eight plasmids

containing IV A/Puerto Rico/8/34 (PR8) and wild-type PR8 viral

genetic materials. These plasmids were then recombined with the

heavy and light chains of the PD-L1 antibody gene, named rgFlu/

PD-L1. In cell culture experiments infecting normal MIHA liver

cells and HCC cells, rgFlu/PD-L1 significantly reduced the viability

of all tested HCC cells, with host cell survival rates decreasing as the

duration and dose of infection increased. Importantly, normal

MIHA cells remained unaffected, demonstrating the specificity of

IV in targeting HCC cells exclusively. During infection, PD-L1

expression levels were suppressed, and apoptosis increased in rgFlu/

PD-L1-treated HCC cells. In the mouse model, tumor size and

weight significantly decreased compared with the control group 32-

d post-injection, indicating the potential of rgFlu/PD-L1 for

improving long-term survival rates (95). Safety assessments

revealed negligible impact on organs, other than induced necrosis

in HCC cells in the liver. The mechanism of HCC cell elimination

by rgFlu/PD-L1 involved enhancing the activity and infiltration of

CD8+ T cells and dendritic cells via the cyclic GMP-AMP synthase

stimulator of interferon genes pathway, evidenced by the elevated

levels of STING, phosphorylated STING, IRF3, phosphorylated

IRF3, and TANK-binding kinase 1.

Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) is an

inhibitory regulator of T cells that tumors often employ to evade

the immune system (96). An anti-CTLA-4 antibody was integrated

into IV to evaluate its efficacy in HCC cells (93). The heavy and light

chains encoding the CTLA4 antibody with PR8 IV yielded the

recombinant OV named rFlu-huCTLA4 through reverse

transcription. The TCID50 was 8-9 LogTCID50/ml. Cell viability

assessments conducted 48, 72, and 96 h after rFlu-huCTLA4

injection into MIHA and HCC cell lines revealed unaffected,

whereas HCC cell death increased proportionally with dose and

duration of exposure. Moreover, the apoptosis rate was significantly

higher in HCC cells (26.76%) than MIHA cells (3.45%) (93). In a

mouse model, infection with rFlu-huCTLA4 increased the number of

CD8+ T cells by 23.9%, targeting and eliminating HCC cells and CD4

+ T cells by 38.7%. Liver tumor size and weight were significantly

smaller compared with those in the MIHA-treated group. rFlu-

huCTLA4. No virus was detected in other organs 40 d post-treatment.

Despite promising preclinical findings, no clinical studies utilizing

IV as a potential OVT for liver tumor have been publicly available in

the past five years. Limited studies have shown the implication of IV

in pancreatic ductal adenocarcinoma (97), lung tumors (98), etc.
4 Discussion and future directions

Researchers have used various kinds of OVs with different

modifications to understand their mechanisms and test their

efficacy on liver cancer. However, there is still significant room

for optimizing the treatment outcomes of OVs in the future.
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The route of administration for OVs should be optimized based

on the stage of liver cancer and the type of OV used. For example,

patients with liver metastases may not respond well if OVs are

injected intratumorally due to the difficulty of injecting multiple

tumors and the risk of injections near important anatomical

structures such as biliary structures (99, 100). Systemic delivery,

such as IV injection and hepatic arterial injection (HAI), would be

more effective options as they can distribute OVs throughout the

entire body, not just within the liver tumor (100). The increased

survival rates had been shown in patients with liver metastases via

OV treatment with HAI, compared with OV treatment

intratumorally (101). However, the quantity of virus delivered

over a long pathway may be compromised by neutralizing

antibodies (99). Local liver tumors are more responsive to IT and

intralesional injection, which helps avoid the barrier of the

extracellular matrix (102). Bacterial collagenase could be used to

increase OV infiltration for local tumors (103).

Despite the effectiveness and benefits of OVs in liver tumor

treatment, several barriers need to be solved. First, patients with

HCC often present with underlying liver cirrhosis and dysfunction,

making them more susceptible to adverse effects from OVs, which

can lead to liver toxicity (99). Second, the number of studies

(including preclinical and clinical) specifically focused on liver

OVT is limited and has not demonstrated significant clinical

effectiveness of OVs (104). Third, the evaluation of antitumor

activity could be improved. For instance, many studies rely solely

on changes in tumor size to assess OVT effectiveness, overlooking

changes in tumor density and molecular markers of tumor necrosis,

such as immune cell infiltration (99).

While conventional approaches or OVT alone may not achieve

superior efficacy in liver tumor treatment due to tumor heterogeneity,

combining these two approaches has proven to be effective in liver

cancer treatment (105). Pathways targeted by small molecular-based

drugs for liver cancer treatment target sometimes overlap with those

targeted by OVT, such as the EGF pathway (101). Transarterial

chemoembolization (TACE) can increase tumor response during the

treatment, but the antitumor effect often diminishes shortly after the

treatment. However, when combined with OVs, TACE can directly

deliver OVs through the blood vessels, avoiding attacks on OVs by the

host immune response, which prevents a decrease in OV

concentration and avoids AE on other parts of the body (105).

Chemotherapy usually has limited effect on liver tumors due to the

presence of resistant disease and liver toxicity. Conversely, liver cancer

cells are less resistant to OVs, and OVs cause lower toxicity to the

liver. Clinical research has shown increased treatment outcomes using

this combined approach (106). For example, when oHSV is used with

cisplatin in HCC, cytotoxicity increased in all cell lines tested (107).
5 Conclusion

The landscape of OVs in cancer treatment shows promising

strides, but their application in liver cancer treatment faces a

significant gap between preclinical promise and clinical validation.

Although basic science studies offer encouraging insights, the lack of

robust clinical evidence leaves a critical void in understanding their
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effectiveness in treating liver cancer. Although these viruses often

demonstrate a favorable safety profile, it is crucial to recognize that

this observation might be skewed by small sample size and the

selective withdrawal of patients with severe illness.

To truly harness the potential of OVs in liver cancer treatment,

extensive clinical investigation is imperative. Larger-scale clinical

trials are necessary to provide concrete evidence of efficacy and

safety in real-world patient populations. Bridging this gap between

basic science research and clinical application is essential for

validating OVs as an effective therapeutic option for patients with

liver cancer. This journey toward clinical validation not only

enhances our understanding of innovative treatments, but also

holds the promise of improving outcomes for patients with

liver cancer.
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