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and molecular mechanisms
between recurrent pregnancy
loss and ovarian cancer
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Jianqing Zhu2 and Qiming Wang1*
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Background: Ovarian cancer (OV) is the second most prevalent gynecological

tumor. Recurrent pregnancy loss (RPL) refers to two or more spontaneous

abortions. However, the molecular mechanisms underlying both OV and RPL

remain poorly understood. This article focuses on the exploration of the

common genetic characteristics of OV and RPL and their molecular mechanisms.

Methods: The 71 differentially expressed genes associated with RPL and 1427

genes associated with OV survival were analyzed, among which 7 common

genes were both important in the pathogenesis of RPL and OV. Then stepAIC

analysis was performed to simplify the model and decrease the number of genes,

which yielded a final set of 5 prognostic genes with coefficients to construct a

prognostic risk scoring system. Univariate and multivariate Cox analyses were

conducted to verify the independent prognostic factor for OV patients. GSEA and

GO analysis results showed enriched biological pathways in the high/low risk

groups, thereby revealing their biological characteristics. The effect of

immunotherapy is better in LR patients. There was a significantly higher

enrichment score of stemness and higher tumor aneuploidy score in the

HR group.

Results: A five-gene prognostic risk model provided a more accurate prognosis

for OV, and this prognostic score system was validated using two external

cohorts. The risk score was an independent prognostic index for OV patients.

Based on levels of ICs, immune cell infiltration, and predicted response, low risk

OV patients were more likely to benefit from immunotherapies.

Conclusions: The 5-gene risk model can predict the prognosis of OV patients,

which can draw the attention of clinicians and help stratify patients into high and

low risk groups for management.
KEYWORDS
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1 Introduction

Ovarian cancer (OV) is the second most prevalent

gynecological malignancy, only after cervical cancer and stands as

the eighth primary contributor to female cancer-related mortality.

Each year, there are 239,000 new cases and 152,000 deaths

worldwide (1). Among the multiple histological and molecular

subtypes of OV, 95% of cases are epithelial, while 5% are non-

epithelial cancers, mainly including sex-cord stromal cancers and

germ cell, as well as rare sarcomas of the ovary and small cell

carcinomas (2). Despite the availability of standardized treatments,

such as comprehensive staging surgery and platinum-taxane

combination chemotherapy, the mortality rate of OV remains

high, and the prognosis remains unfavorable. Ovarian cancer is

highly malignant, uncontrolled exponential growth of a malignant

cancerous tumor is mathematically identically to the model of the

growth of bacterial colonies (3). Even in resource-rich countries like

Canada and the United States, the overall survival (OS) of OV has

changed little over the decades, remaining at only 47% five years

after diagnosis (4). Molecular targeted anti-cancer therapies and

immunotherapies are mostly in the clinical trial, and more effective

treatment strategies are required for OV.

According to the guidelines from the American Society for

Reproductive Medicine (ASRM) and the European Society of

Human Reproduction and Embryology (ESHRE), recurrent

pregnancy loss (RPL) refers to two or more natural miscarriages

(5, 6). Its etiology is intricate, with chromosomal abnormalities

being the predominant factor. The management of RPL in clinical

settings presents considerable difficulties, and the cause remains

unknown for some patients. Unlike spontaneous miscarriage, RPL

requires medical intervention and regular medical monitoring

during pregnancy. Nevertheless, achieving a complete cure for

RPL remains a formidable task. RPL may be characterized by

vaginal bleeding and lower abdominal pain after a missed period,

but in some patients, it may be asymptomatic. Autoimmune

disorders and structural uterine abnormalities are associated with

RPL, but it remains unclear why these conditions impact only

certain pregnancies rather than all. More than 50% of women do

not exhibit any recognized risk factors for miscarriage (7, 8).

The incidence of OV is associated with women’s reproductive

status. Delaying childbirthing age and increasing parity are both

important protective factors against ovarian cancer (9). A full-term

pregnancy can reduce a woman’s risk of cancer, and an incomplete

pregnancy can also provide some protection. Therefore, OV and

RPL may share common molecular pathogenesis and thus increase

the risk of malignant tumors in women. Studies suggest that one

possible shared mechanism is the insufficient progesterone

secretion in the female corpus luteum, leading to endocrine

disorders and weakening the repressing effect of progesterone on

the future development of OV (10). Evidence suggests that multiple

miscarriages in women may enhance the risk of epithelial OV, due

to common molecular mechanisms (11). Thereby, a comprehensive

understanding of the potential molecular mechanisms or

molecular pathways of OV and RPL is essential for the

identification of molecular or genetic therapeutic targets. This will
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help clinicians effectively treat and manage these two conditions,

thus providing much-needed relief to patients who have endured

prolonged suffering.

Rapid advances in genomics and molecular biology have

allowed us to quickly understand the genetic profiles of various

diseases. Through the comparison of genes between diseased

individuals and healthy counterparts, molecular targets for

tumors can be pinpointed, thereby providing advantages to

patients. Despite the availability of rigorous treatments, treatment

strategies and prognosis for patients with OV and RPL require

additional refinement. This investigation employed GEO and

TCGA datasets to identify common genes between OV and RPL

and elucidate the shared molecular mechanisms. Hence, we

established an OV prognostic model based on 5 common genes

and stratified clinical subjects into high risk (HR) and low risk (LR)

groups. Through in-depth analysis of survival and immunotherapy

aspects, we revealed the clinical significance of the prognostic risk

model and provided treatment directions for OV patients.
2 Material and methods

2.1 Data collection

One RPL dataset, GSE165004, was downloaded from the NCBI

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/

geo/). The GSE165004 dataset was generated using the GPL16699

Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray

039381 (Feature Number version). The GSE165004 dataset

consisted of 24 RPL samples and 24 normal samples.

Three OV datasets, GSE63885, GSE26193, and TCGA OV were

retrieved from the GEO and the UCSC Xena website (https://

xena.ucsc.edu/). GSE63885 and GSE26193 datasets were obtained

through GPL570 (HG-U133 Plus 2). TCGA OV dataset consisted of

353 tumor samples. GSE63885 and GSE26193 datasets, as external

validation cohorts, encompassed 75 OV samples and 107 OV

samples, respectively.

GEO data were preprocessed using the R package “GEOquery”.

Gene probes were annotated using gene symbols, and probes that

either did not match any gene symbol or matched multiple gene

symbols were removed. Ultimately, the gene expression values for

repeated gene symbols were calculated as the maximum value.
2.2 Common gene screening and analysis

The RPL DEGs were screened out using the R package “limma” in

the GSE165004 dataset, with |LogFC| > 1 and P < 0.05 as the threshold.

Then, the prognostic genes of OV were estimated through

univariate Cox analysis (P<0.05). The common genes were

obtained by the Venn diagram. The heatmap showing the level of

common genes was depicted using the R package. According to the

receiver operating characteristic (ROC) curves, the area under the

curve (AUC) was computed to judge the predictive performance of

common genes for RPL patients.
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2.3 Development and validation of OV
prognostic features

The stepwise Akaike information criterion (stepAIC) method

from the MASS package V26 was adopted to refine the prognostic

genes and build a prognostic model. Besides, the risk score for each

patient was calculated according to the normalized levels of the

candidate genes (Expi) and their corresponding regression

coefficients (Coei) as follows:

Risk score =oN
i=1(Expi� Coei)

OV patients were assigned into HR and LR groups based on the

median cutoff value. Then, the prognostic value was evaluated through

Kaplan–Meier and ROC curve analyses with the ‘survminer’,

‘survival’, and ‘survivalROC’ R packages. Afterward, the prognostic

independence of risk score and other clinical indexes in OV patients

were estimated via univariate and multivariate Cox analyses.
2.4 Prognostic features of the
tumor microenvironment

To estimate the TME composition, the enrichment of tumor-

infiltrating immune cells was assessed by the R script ssGSEA

(single-sample gene set enrichment analysis). Immune checkpoint

inhibitors are antitumor immunotherapies that are increasingly

used in clinical practice. The immune checkpoint-related gene

expression matrix was extracted for differentially expressed gene

(DEG) analysis. The tumor immune dysfunction and exclusion

(TIDE) score was assessed using the online server (http://

tide.dfci.harvard.edu) to determine the effectiveness of

immunotherapies in different risk groups.
2.5 Stemness signature analysis

First, 26 stemness genes were recruited from StemChecker

(http://stemchecker.sysbiolab.eu/) , based on the most

comprehensive and updated published stemness signatures

defined by RNAi screens, gene expression profiles, transcription

factor (TF) target gene sets, reports, and computational summary.

Then, the stemness enrichment scores of these 26 genes were

quantitatively analyzed using ssGSEA via GSVA R package and

DEG analysis in both groups.
2.6 Functional enrichment analysis

DEGs between the HR and LR groups were first clarified by|

logFC | > 0.5 and P < 0.05 for GO analysis using the ‘clusterProfiler’

R package. GSEA of the KEGG pathway between the two groups

was implemented using the “clusterProfiler” R package, with

|NES| > 1, NOM p-value < 0.05, and q-value < 0.25 as the

threshold for enriched items and pathways.
Frontiers in Oncology 03
2.7 Statistical analysis

R package 4.3.1, 64-bit6 was applied for all analyses. Prognosis

and OS were compared using the Kaplan-Meier method and the

log-rank test. Kaplan-Meier is a single-factor survival analysis. It is

used to study the effect of one factor on survival time and is widely

used in the medical field.The continuous variables between two

groups were compared using the nonparametric Wilcoxon rank

sum test, while comparisons among multiple groups were analyzed

using the Kruskal-Wallis test. The Kruskal-Wallis test is a non-

parametric test based on ranks, which does not require the original

distribution of the sample. Its purpose is to test whether the median

of each group is the same.Clinical features with prognostic values

were identified through Univariate and multivariate Cox (R package

“survival”) analyses.
3 Results

3.1 Identification of common genes
associated with RPL and OV

71 DEGs between RPL and normal tissues of the GSE165004

cohort were identified (Figure 1A), while 1427 survival-related

genes were identified from univariate Cox analysis of the TCGA-

OV cohort (Supplementary Table S1). Then the common genes that

overlapped from the OV survival-related genes and RPL-related

DEGs were determined, and 7 overlapped genes were found,

indicating that they were associated with RPL and OV

(Figure 1B). The expression and Cox regression results of each of

the 7 common genes in the GSE165004 and TCGA-OV cohorts are

shown in Figures 1C-E. In the GSE165004 cohort, C18orf32 level

was lower, while DKK2, GMPR, HGD, HLA−DOB, SULT2B1, and

ZSWIM4 levels were higher in RPL tissues than in normal controls

(Figure 2A). Then the diagnostic performance in GSE165004 was

estimated. The AUC value was 1.000 for C18orf32 (Figure 2B),

0.785 for DKK2 (Figure 2C), 0.686 for GMPR (Figure 2D), 0.686 for

HGD (Figure 2E), 0.681 for HLA−DOB (Figure 2F), 0.682 for

SULT2B1 (Figure 2G), and 0.800 for ZSWIM4 (Figure 2H).

Common genes–miRNA and Common genes–TF regulatory

network is also generated using NetworkAnalyst 3.0. The

Common genes–miRNA regulatory network comprised 79 nodes

and 94 edges (Figure 3A), while the Common genes–TF regulatory

network comprised 40 nodes and 49 edges (Figure 3B)

(Supplementary Table S2).
3.2 Construction and validation of OV
prognostic model

To construct a prognostic model for OV patients, we performed

stepAIC Cox analysis from 7 common genes to simplify the model

and decrease the number of genes, which yielded a final set of 5

prognostic genes. The 5-gene prognostic model was defined as
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FIGURE 2

Validation of the diagnostic efficacy based on common genes in the GSE165004 cohort (A) Boxplots illustrating the expression differences in
common genes between RPL and normal samples. *p < 0.05, ***p < 0.001, ns, no significance; ROC curves of the diagnostic performance of
signature genes: (B)C18orf32, (C) DKK2, (D) GMPR, (E) HGD, (F) HLA-DOB, (G) SULT2B1, (H) ZSWIM4.
FIGURE 1

Identification of the common genes between RPL and OV. (A) Volcano plot of DEGs in GSE165004 cohort; (B) The intersection of OV survival-
related genes and RPL-related DEGs; (C) Heat map of levels of common genes in RPL samples; (D) Principal component analysis of RPL; (E) Forest
plot of common genes of univariate Cox analysis in OV.
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follows: Risk score = (-0.1510) * GMPR + (-0.2183) * HGD +

(-0.2604) * HLA-DOB+ (0.1824) * SULT2B1 + (0.2045) * ZSWIM4.

According to the median value, OV patients were stratified into HR

(n = 177) and LR (n = 176) groups. Notably, the LR group in the

TCGA cohort had higher OS(56.3 months) than the HR group (37.4

months) (P < 0.0001, Figure 4A). Additionally, the distribution of

risk scores and OS showed that the higher the risk of the patients,

the worse the OS rate (Figure 4D). To verify the robustness of the

model, we used an independent validation group, the TCGA-OV

cohort. In GSE26193 and GSE63885 cohorts, patients with LR
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scores showed better OS than those in the HR group (GSE26193:

median time = 46.5 months vs. 29.5 months, P = 0.066, Figure 4B;

GSE63885: median time = 43.9 months vs. 26.2 months, P = 0.025,

Figure 4C). The distribution of risk scores and OS in the GSE26193

and GSE63885 cohorts is shown in Figures 4E, F. These results

validate the robust performance of the model in predicting the

prognosis of OV patients in multiple datasets. Univariate and

multivariate Cox analyses unveiled that compared with Age, Race,

Stage, Grade, and Neoplasm, the risk score was an independent

prognostic index for OV patients (Figures 4G, H). Collectively, in
FIGURE 4

Construction and validation of OV prognostic model. Survival curves of the risk stratification performance of TCGA and GEO cohorts: (A) TCGA,
(B) GSE26193, (C) GSE63885. Risk plots of OS: (D) TCGA, (E) GSE26193, (F) GSE63885. Univariate (G) and multivariate (H) Cox analyses for the
prognostic signature and clinical features in the TCGA cohort.
FIGURE 3

(A) Interaction plots of common genes-miRNA. (B) Interaction plots of common genes-TF. Red represents common genes.
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the TCGA-OV cohort, univariate and multivariate Cox analyses

identify risk score as a prognostic index independent of other

clinical characteristics.
3.3 Association between cancer hallmarks
and risk groups

To unveil the association between the risk score and immune

cells, and their functions, “ssGSEA” was utilized to test the

enrichment scores of immune cell subgroups, related activities, or

pathways. Activated CD8 T cells, Activated B cells, immature B cells,

and Effector memory CD8 T cells were abundantly infiltrated in the

LR group (Figure 5A). In addition, the HR group showed higher

levels of Central memory CD4 T cells, Memory B cells, and Natural

killer cells (Figure 5A). Immune checkpoint inhibitors are antitumor

immunotherapies that are increasingly used in clinical practice.

CD27, CD274, and IDO1 levels were markedly higher in LR

patients, while CD276, NRP1, TNFRSF8, and TNFSF4 were greatly

higher in HR patients (Figure 5B). Furthermore, the TIDE score in

LR patients was markedly lower than that in HR patients, suggesting

better efficacy of immunotherapy (Figure 5C). Even though most OV

patients initially respond very well to platinum therapy, tumors

eventually show increasing resistance to the treatment. Tumor stem

cells are a subgroup of tumor cells, similar to normal stem cells in

unlimited proliferation, self-renewal, and multi-directional

differentiation. Compared to other tumor cells, cancer stem cells
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exhibit stronger drug resistance and viability and can evade control

and elimination of non-targeted treatment methods, thereby leading

to tumor recurrence and metastasis. There was a significantly higher

enrichment score of stemness in the HR group by 26 stemness gene

sets (Figure 5D). The tumor aneuploidy score was notably higher in

the HR group (Figure 5E).
3.4 Identification of prognostic signature-
related biological functions

The prognosis of OV has always been a focus of our attention. We

have explored the prognostic characteristics of OV and its biological

features. The volcano plot visually represented 172 DEGs (Figure 6A).

The GSEA analysis demonstrated that pathways related to Drug

metabolism − cytochrome P450, Drug metabolism − other enzymes,

Primary immunodeficiency, Th1 and Th2 cell differentiation, and Th17

cell differentiation were predominantly enriched in the LR group, while

ECM−receptor interaction, Focal adhesion, Gap junction, Pathways in

cancer, and Regulation of actin cytoskeleton were substantially

enriched in the HR group (Figures 6B, C). GO analysis noticed that

these genes were closely involved in the biological process of

extracellular structure organization, positive regulation of cell

adhesion, extracellular matrix organization, external encapsulating

structure organization, antigen processing and presentation, antigen

processing and presentation of peptide antigen, and peptide antigen

assembly with MHC class II protein complex (Figure 6D).
FIGURE 5

Prediction of the TME and immune cell infiltration. (A) Differences in immune cell infiltration levels; (B) Differences in immune checkpoint; (C) TIDE
score; (D) Differences in 26 ssGSEA stemness scores; (E) Tumor aneuploidy score. Star means significant of difference. The more stars there are, the
more significant the difference.
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4 Discussion

OV is the second most prevailing gynecological malignancy,

with an unclear etiology that may be related to genetic factors,

continuous ovulation, and endometriosis. Due to its high

recurrence and metastasis rates, the clinical prognosis is

extremely poor, troubling both doctors and patients. There are

many types of OV, and identifying new predictive biomarkers for

OV is of great importance for improving the prognosis of patients.

OV is closely related to women’s reproductive conditions. Multiple

childbirths are associated with a reduced incidence of OV. Braem

et al. discovered the association between RPL and epithelial OV in a

prospective study (11). Given the correlation between women’s

reproductive conditions and the occurrence of OV, hormonal

changes during the reproductive process have attracted increasing

attention. The hormonal changes in women’s bodies are related to

the onset and progression of OV (10, 12). Here, we developed a new

prognostic model for OV based on TCGA-OV and validated its

robustness through internal validation cohort within TCGA and

external GEO cohorts (GSE26193 and GSE63885). ROC analysis

noted the predictive ability of the 7 genes for RPL patients. Then

stepAIC analysis was performed to simplify the model and decrease

the number of genes, which yielded a final set of 5 prognostic genes

with coefficients to construct a prognostic risk scoring system. The
Frontiers in Oncology 07
risk score calculated using the LASSO algorithm effectively

predicted the prognosis of OV patients. Both univariate and

multivariate Cox analyses identified risk score as an important

prognostic index independent of age, ethnicity, stage, grade, and

tumor presence. In both the training and validation cohorts, OV

patients in the LR group exhibited longer OS and better prognosis.

The above results suggest that our OV risk scoring system has

certain clinical values, providing guidance for doctors and patients.

In this work, five common genes, GMPR, HGD, HLA-DOB,

SULT2B1, and ZSWIM4, together constituted a stable prognostic risk

scoring system for OV. Previous studies have identified GMPR as a

potential drug target (13). Zhang et al. constructed a prognostic

model of 10 gene components, including GMPR, to discuss the

implications for OV immunity and therapy (14). GMPR is gradually

increased in Alzheimer’s disease and has the potential as a therapeutic

target (15). Heterozygous mutation in GMPR is a pivotal but rare

cause of progressive external ophthalmoplegia (PEO) and GMPR is

the 19th locus for PEO (16). As a biomarker (KIRC), HGD links to

the outcomes of renal clear cell carcinoma and provides theoretical

support for the diagnosis and treatment (17). HLA-DOB is closely

related to the prognosis of OV, serving as a potential prognostic

biomarker for OV (18). HLA-DOB also shows the most prominent

differences in gene expression between multiple sclerosis patients and

healthy controls (19). SULT2B1 is a novel marker of metastatic colon
FIGURE 6

(A) Volcano plot of DEGs in TCGA-OV cohort; GSEA analysis of the differential enrichment of KEGG pathways in (B) HR group, (C) LR group; (D) GO
analysis of DEGs.
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cancer and is associated with poor prognosis (20). SULT2B1 can

indicate inflammatory status, providing insights into potential

treatment strategies for atherosclerosis (21). Studies have shown

that SULT2B1 silencing inhibits OC progression by targeting

ANXA9 (22). ZSWIM4 inhibition enhances the chemotherapy

sensitivity of epithelial OV cells by ameliorating intracellular

glycine metabolism reprogramming (23).

The predominant type of OV is epithelial OV. The first-line

treatment is surgery combined with chemotherapy, and the main

chemotherapy regimen is a combination of platinum-based drugs

and taxanes. After chemotherapy, targeted administration of

olaparib and niraparib can improve the OS as much as possible

(4). However, the aggressive and heterogeneous nature of OV

contribute to low OS rates and high recurrence rates in many

patients. There is a lack of reliable second-line treatment options for

frequent relapses (24). Similarly, like OV, RPL remains a

challenging condition despite medical advancements. Currently,

there are no effective approaches or medications for these

conditions. The prognosis of OV is poor, and RPL patients

continue to face obstacles in achieving their dreams of

motherhood, resulting in potential marital breakdown, career

difficulties, depression, and other issues. In recent years,

immunotherapy has gained increasing attention from the public,

and immunity has emerged as a promising option for many

diseases, offering strategies for solving medical challenges and

controlling or even curing diseases (25).

Immunomodulatory therapies selectively target immunosuppressive

cells in the tumor microenvironment, allowing the activation and

proliferation of tumor-specific T cells to identify and eliminate cancer

cells (26). Dysregulation of Th cell immunity during pregnancy may lead

to recurrent pregnancy loss (RPL) (27).

The TME encompasses surrounding blood vessels, immune cells,

the extracellular matrix, fibroblasts, and signaling molecules. The

tumor is closely related to and constantly interacts with the

surrounding microenvironment. Immune cells within the TME can

affect the growth and evolution of cancer cells. Currently,

immunoinfiltration therapy, which can generate anti-tumor

immunity, is available for the treatment of cancer. Extensive

characterization of the TME is critical to identify effective

prognostic markers and immunotherapeutic targets for OV. The

clinical application of molecularly targeted therapies is evolving

rapidly, but it primarily focuses on genomic alterations. The TME

is complex and diverse, and understanding the specific immune TME

is very important for predicting the effectiveness of immunotherapies.

As a key mediator, the TME allows patients with different types of

tumors to achieve significant clinical effects after immunotherapy

(28). The immune system can influence tumor growth and mutation,

generating anti-tumor immunity, while tumor cells can also damage

immune cells in various ways. Besides, OV patients have poor

prognoses due to increased TET3 expression, low BCL7A

expression, increased Thy-1 expression, and hypermethylation of

tumor suppressor genes (29–32). MiRNA molecules are single-

stranded RNA molecules, and the dysregulation of MiRNA

expression is related to pathological processes such as RPL, and
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more than 60 mirnas are related to the occurrence and development

of ovarian cancer (33–35).

In the TCGA-OV cohort, we developed a prognostic scoring

system for OV, as well as predictive models for immunotherapy and

immune infiltration. With these models, OV patients were classified

into HR and LR groups. Ultimately, it was found that the LR patients

had significantly better outcomes than the HR individuals in terms of

immunotherapy effectiveness and prognosis. The prognosis of OV

patients can be precisely predicted through our prognostic scoring

system, which can provide personalized treatment and prolong the

survival of the patients. Currently, in addition to targeted therapy

(PARP inhibitors, anti-angiogenesis inhibitors), immunotherapy is

also a novel treatment regimen for OV. However, existing research

results indicate that immunotherapy provides minimal benefits for

individuals with advanced or recurrent OV. At present, there are no

FDA-approved immunotherapy drugs for OV. Although

immunotherapy may be the most effective treatment for RPL, its

clinical application is hindered due to limited research. Our

molecular studies provide references for future research to explore

the molecular mechanisms and pathways more closely associated

with RPL and OV, and to formulate tailored and accurate treatment

strategies, bringing hope to patients with both conditions.
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