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ARMH1 is a novel marker
associated with poor pediatric
AML outcomes that affect the
fatty acid synthesis and cell
cycle pathways
Mojtaba Bakhtiari1, Sean C. Jordan1,2, Hope L. Mumme1,2,
Richa Sharma3, Mala Shanmugam3, Swati S. Bhasin1,4

and Manoj Bhasin1,2,4*

1Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States,
2Department of Biomedical Informatics, Emory University, Atlanta, GA, United States, 3Department of
Hematology and Medical Oncology, Emory University, Atlanta, GA, United States, 4Department of
Pediatrics, Emory University, Atlanta, GA, United States
Introduction: Despite remarkable progress in Pediatric Acute Myeloid Leukemia

(pAML) treatments, the relapsed disease remains difficult to treat, making it

pertinent to identify novel biomarkers of prognostic/therapeutic significance.

Material and methods: Bone marrow samples from 21 pAML patients were

analyzed using single cell RNA sequencing, functional assays with ARMH1

knockdown and overexpression were performed in leukemia cell lines to

evaluate impact on proliferation and migration, and chemotherapy sensitivity.

Mitochondrial function was assessed via Seahorse assay, ARMH1 interacting

proteins were studied using co-immunoprecipitation. Bulk RNA-seq was

performed on ARMH1knockdown and over expressing cell lines to evaluate the

pathways and networks impacted by ARMH1.

Results: Our data shows that ARMH1, a novel cancer-associated gene, is highly

expressed in the malignant blast cells of multiple pediatric hematologic

malignancies, including AML, T/B-ALL, and T/B-MPAL. Notably, ARMH1

expression is significantly elevated in blast cells of patients who relapsed or

have a high-risk cytogenetic profile (MLL) compared to standard-risk (RUNX1, inv

(16)). ARMH1 expression is also significantly correlated with the pediatric

leukemia stem cell score of 6 genes (LSC6) associated with poor outcomes.

Perturbation of ARMH1 (knockdown and overexpression) in leukemia cell lines

significantly impacted cell proliferation and migration. The RNA-sequencing

analysis on multiple ARMH1 knockdown and overexpressing cell lines

established an association with mitochondrial fatty acid synthesis and cell cycle

pathways.The investigation of the mitochondrial matrix shows that

pharmacological inhibition of a key enzyme in fatty acid synthesis regulation,

CPT1A, resulted in ARMH1 downregulation. ARMH1 knockdown also led to a

significant reduction in CPT1A and ATP production as well as Oxygen

Consumption Rate. Our data indicates that downregulating ARMH1 impacts

cell proliferation by reducing key cell cycle regulators such as CDCA7 and EZH2.

Further, we also established that ARMH1 is a key physical interactant of EZH2,

associated with multiple cancers.
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Conclusion: Our findings underscore further evaluation of ARMH1 as a potential

candidate for targeted therapies and stratification of aggressive pAML to

improve outcomes.
KEYWORDS
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Introduction

Pediatric Acute myeloid leukemia (pAML) accounts for about

20% of childhood leukemia (1). The prognosis and treatment of

pAML remain challenging because of disease heterogeneity, high

relapse rates, and therapy-associated toxicity (2). It is important to

identify novel risk stratification strategies that can be used to better

guide therapy decisions and improve outcomes for pAML. A deeper

characterization of the pAML is essential to overcome the above-

mentioned limitations. Recent studies in AML indicated that

dynamic changes in the bone marrow microenvironment from

the time of disease diagnosis to relapse, including alterations in

the immune microenvironment, might be responsible for poor

outcomes (3, 4). The therapeutics for advanced AML are

undergoing a paradigm shift with the advent of immune therapy,

mainly Chimeric Antigen Receptor (CAR) T-cell therapy, resulting

in sustained disease responses in a subset of previously incurable

patients (5). While measurable residual disease (MRD) status is

critical for post-therapy patient stratification and clinical

assessment, it is not infallible, with relapse occurring in some

cases, even after the intense end of consolidation therapy

irrespective of MRD status. It is important to identify novel risk

stratification strategies that can be used to better guide therapy

decisions and improve clinical outcomes for pAML patients. To

achieve deep characterization of pediatric AML, Therapeutically

Applicable Research to Generate Effective Treatments (TARGET)

AML and other large-scale genetic profiling initiatives have

generated large-scale genomics data. These initiatives indicated

that AML is a genetically diverse disease having various gene

mutations, insertions, and fusions associated with high risk and

poor prognosis (6–8). Alongside bulk genomic data, the utilization

of single-cell RNA sequencing (scRNA-seq) for profiling bone

marrow microenvironment (BMM) of AML patients has revealed

the molecular diversity in the blast and non-blast cells. The single-

cell profiling attained better molecular characterization of AML

BMM along with the identification of biomarkers/targets that can

distinguish AML blast cells (AML-blasts) from non-malignant cells

(non-AML cells). Single-cell profiling approaches have helped in

deciphering the cellular composition of the leukemic BMM, the

cellular transcriptional states associated with leukemic processes at

the time of diagnosis (Dx), and the presence of residual blast cells at

the end of induction (EOI) post-chemotherapy (9–13). To
02
understand the role of tumor cells and their microenvironment in

pediatric AML prognosis, we performed scRNA-seq on 21 pAML

BMM samples from diagnosis (Dx), end of induction (EOI), and

relapse time points (14). Analysis of matched Dx and EOI scRNA-

seq data along with healthy bone marrow, hematopoietic stem cells,

and TARGET AML dataset revealed a novel pAML blast-associated

7-gene signature (i.e., CLEC11A, PRAME, AZU1, NREP, ARMH1,

C1QBP, TRH). This novel signature depicted excellent performance

for pAML blast cell identification on a publicly available dataset and

an independent validation cohort (14). The comparative analysis of

pAML-blast cell profiles at Dx between future relapse and complete

remission (CR) samples depicted overexpression of a novel

Armadillo Like Helical Domain Containing 1 (ARMH1) gene in

the relapse samples with minimal or null expression in immune and

healthy stromal cells from human single-cell atlas. Higher

expression of ARMH1 was also observed in the therapy-resistant

blast cells, suggesting potential involvement in the manifestation of

therapeutic resistance as well as influencing outcomes. Additionally,

publications from our group in characterizing T-cell acute

lymphocyte leukemia (T-ALL) (15) and Mixed Phenotype

leukemia (MPAL) also depicted higher expression of ARMH1 in

the leukemic cells as compared to normal cells, indicating its

association with other acute leukemias. The mechanistic

involvement of ARMH1 in leukemogenesis warrants further

functional and molecular studies. Correlative analysis of ARMH1

expression with enrichment of blast cells, and leukemia risk scores

depicted a significant positive association indicating ARMH1’s role

in leukemogenesis. Further in vitro knockdown and overexpression

of the ARMH1 resulted in significant dysregulation in the cell

proliferation and migration as well as modified sensitivity to a

chemotherapy agent. The functional analysis using RNA-

sequencing on ARMH1 perturbed cells depicted a significant

association with cholesterol and fatty acid biosynthesis and cell

cycle (i.e., CDCA7, P21) pathways. Further, inhibition of the fatty

acid pathway using a chemical inhibitor resulted in a significant

reduction in ARMH1 levels and cellular proliferation, supporting its

role in disease progression. Additionally, the cellular respiration

analysis using seahorse assay also depicts ARMH1’s impact on

mitochondrial cellular respiration. Therefore, this study provides

the first evidence about the molecular mechanism of ARMH1 in

leukemogenesis that can be explored in future clinical trials to

develop novel therapies.
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ARMH1 expression is associated with a
higher disease burden in
pediatric leukemias

Our group conducted a single-cell RNA sequencing (scRNA-seq)

analysis of pediatric AML BMM samples for in-depth characterization

of leukemic blasts and other tumor microenvironment cells (14). A

unique AML-blast associated 7-gene signature was identified by

analyzing integrated scRNA-seq data from matched Dx and EOI

AML BM samples and TARGET AML bulk dataset by implementing

a supervised machine learning technique, support vector machine

(SVM) approach. The seven gene signature achieved excellent

performance on training and independent validation sets in

distinguishing AML blast cells from the immune microenvironment

cells (AUC >0.78) (14). The signature also depicted elevated

expression in malignant blast cells as compared to other non-blast

(microenvironment cells) profiled in the 20 patient samples by the

single cell assay (Figure 1A). Further analysis of AML samples at

diagnosis revealed that ARMH1 expression not only blast-specific but

the expression was also elevated in the blast cells from patients that

relapsed (marked with dotted lasso) in comparison to blast cells from

patients who achieved Clinical Remission (CR) (Figure 1B). In our

previous study, ARMH1 expression was observed to be significantly

higher in scRNA-seq data of AML Dx blast cells compared to EOI

non-blast cells (P<0.001) (14). ARMH1, also known as C1orf228, has

not been previously associated with AML or other pediatric cancers.

ARMH1 encodes for Armadillo-like helical domain containing

protein1 with unknown function and association with diseases. To

investigate its involvement in AML, we performed further validation

on large-scale TARGET AML RNA-seq data. ARMH1 depicted an

association with clinical blast percentage, with expression slightly

increasing as blast percentages increase from <30% to >60%

(Figure 1C). This finding provides evidence of ARMH1 blast cells

associated expression. Additionally, expression of ARMH1 in AML

malignant cells from an external pediatric AML study (16) was

correlated with the enrichment of a leukemia stem cell score of 6

genes (LSC6) that predicts AML outcome reliably with high LSC6

scores associated with poor outcome (17). When malignant cells are

stratified by their LSC6 scores into three groups, ARMH1 expression

incrementally increases from low to medium to high LSC6 groups

(P<0.0001). The malignant AML cells from this study with the highest

LSC6 scores also had the highest ARMH1 expression (Figure 1D).

Besides AML, our group also performed in-depth characterization of

other pediatric leukemias, Acute lymphocytic leukemia (T-ALL, B-

ALL) and mixed phenotypic acute leukemia (T- MPAL, B-MPAL)

(18). ARMH1 depicted significantly higher expression in T-ALL

(P<0.0001), B-ALL (P<0.0001), T-MPAL (P<0.0001), B-MPAL

(P<0.0001), blast cells as compared to normal non-blast cells

(Figure 1E). This pattern of blast cell restrictive expression of

ARMH1 indicates its potential association with leukemogenesis.

Moreover, the investigation of levels of ARMH1 expression in

samples from three patients with a high-risk cytogenetic profile

(MLL) and six patients with a standard risk cytogenetic

categorization [RUNX1, inv (16)] revealed that ARMH1 expression

was significantly higher (P<0.0001) in high-risk (MLL) compared to

standard-risk [RUNX1, inv (16)] group (Figure 1F). This is further
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validated in TARGET-AML BM diagnosis samples showing

significantly (P=1.3e-05) higher ARMH1 expression in the high-risk

cytogenetic subtypes (i.e., MLL) compared to standard-risk [e.g.,

RUNX1, inv (16)] (Figure 1G). Utilizing temporal AML samples

collected at Dx, EOI, and Relapse timepoints of the same patients,

we assessed ARMH1 expression in blast cells across disease stages. We

observed ARMH1 expression was mostly localized to blast cells across

time points, in blasts at diagnosis, as well as residual blasts at EOI

(P=2.18e-34). (Figure 1H). A survival analysis of ARMH1 expression

in pediatric AML data from TARGET depicted a significant

association between ARMH1 (P=0.00199) overexpression and poor

overall survival. These correlative analysis results provide substantial

evidence for ARMH1 association with high-risk or aggressive pediatric

acute leukemias, specifically AML. These lay the foundation to

evaluate the functional impacts of ARMH1 through perturbation

studies described in the following sections of the manuscript.
Knockdown and overexpression of ARMH1
modulate AML cell proliferation, migration,
and susceptibility to chemotherapy

Following promising findings regarding the increased

expression of ARMH1 (Figure 1) in malignant and therapy-

resistance aggressive AML cells, we initiated functional studies to

delve into the role of ARMH1 in leukemogenesis. To evaluate the

functional impact of ARMH1, we modulated the expression of

ARMH1 by knockdown and overexpression and measured the effect

on cellular proliferation and migration. We achieved ARMH1

knockdown (shARMH1) vs. wild type of ARMH1 (shCrt) and

overexpression (ARMH1 Oe) vs wild type of ARMH1 (empty

vector=EV) in three different AML cell lines, MOLM14 (n=3),

HEL92.1.7 (n=3), and only knockdown in Kasumi-1 (n=3). The

knockdown and overexpression were confirmed by western blot in

MOLM14 (Figure 2A), HEL92.1.7 (Figure 2B), and Kasumi-1 cell

lines (Supplementary Figure 1A). We next performed cellular

proliferation, migration, and dose-response assays. The cellular

proliferation analysis revealed a substantial reduction in cell

proliferation upon knockdown of ARMH1 in MOLM14

(P<0.0001), HEL92.1.7 (P=0.0012), whereas a significant increase

in cell proliferation upon ARMH1 overexpression in MOLM14

(P<0.0001), HEL92.1.7 (P=0.0005) (Figures 2C, E) was observed.

Likewise, we observed a significant decrease in cell proliferation in

ARMH1 knockdown in Kasumi-1 (P<0.0001) (Supplementary

Figure 1B) cell lines. Analysis of cell migration showed that the

knockdown of ARMH1 led to a significant decrease in cell migration

in MOLM14 (P=0.0016) and HEL92.1.7 (P<0.0001), while

overexpression significantly increased cell migration in MOLM14

(P=0.005) and HEL92.1.7 (P=0.0077) cell lines (Figures 2D, F). A

significant decrease in migration was also noted upon ARMH1

knockdown in Kasumi-1 (P<0.0001) (Supplementary Figure 1C).

To verify the impact of ARMH1 on propagation in normal

non-leukemic cells, we also performed the knockdown of ARMH1

in normal human cell lines, HEK293T, and Mesenchymal stromal

cells (MSC) cells. After the knockdown of ARMH1, no significant

alteration in cell proliferation was observed in MSCs (P=0.9358)
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FIGURE 1

Differential ARMH1 expression in leukemic blasts revealed by scRNA-seq analysis. (A) Heatmap showing expression of the genes from the seven gene signatures
across blast and non-blast cells in 20 AML samples collected at disease diagnosis. Patient IDs are represented by numbers along columns and are grouped into
REL (relapse) and REM (remission) groups based on their outcome. Blue and red colors represent low and high expression, respectively. (B) UMAPs showing
ARMH1 expression in scRNA-seq data of AML samples at diagnosis (left) with low to high expression colored light to intense orange colors. Blast clusters are
lassoed on the feature plot. The UMAP plot (right) shows cellular grouping with non-blast cells shown in blue and blast cells from remission (REM) and relapse
(REL) in orange and red colors, respectively. An inset violin plot shows the ARMH1 expression in non-blast immune microenvironment cells, remission, and
relapse blast cells. (C) Violin plot with ARMH1 expression in the bulk RNA-seq TARGET-AML samples stratified based on clinical blast percentages. Samples are
grouped based on diagnosis blast percentages [Low (<30%), Medium (30%-60%), High (>60%)]. Points represent median values per group. (D) AML blast cells
from (16) study are grouped by pLSC6 score (left). ARMH1 expression is plotted for each pLSC6 group (low, mid, high) (right). (E) Mean and standard deviation of
ARMH1 expression in blast (purple) and non-blast (pink) cells across different pediatric acute leukemias: AML (acute myeloid leukemia), B-MPAL (B-cell/Myeloid
mixed phenotype acute leukemia), B-ALL (B-cell acute lymphoid leukemia), T-MPAL (T-cell/Myeloid MPAL), and T-ALL (T-cell ALL). (F) Violin plot of ARMH1
expression in diagnosis AML samples categorized by cytogenetic risk. High risk (purple) represents MLL patients, and standard risk (green) represents RUNX1 and
inv (16) patients. (G) ARMH1 expression in TARGET-AML BM samples collected at disease diagnosis from patients with different cytogenetic risk categories [high
risk=MLL, standard risk=RUNX1, inv (16)]. The significance of differences in expression levels throughout the analysis was determined using the Wilcoxon Rank-
Sum test. The Bonferroni method was used to adjust p-values for multiple comparisons. If the p-value is below 0.0001, it is indicated on the plots. (H) UMAP
with ARMH1 expression in the residual blast and non-blast immune microenvironment cells identified from comparison of DX and End of Induction (EOI)
samples. Blast clusters are lassoed on the UMAP. The boxplot shows significantly higher expression of ARMH1 in residual blast cells at EOI compared to non-
blast immune cells.
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FIGURE 2

Knockdown and overexpression of ARMH1 modulate AML cell proliferation and migration and better susceptibility to chemotherapy. (A) Left panel:
Western blot of MOLM 14 cell lysates probed with ARMH1 antibody and total H3 antibody as loading control (3 independent replicates) with lentiviral
transduced ARMH1 knockdown (shARMH1) and shControl (shCrt). Right panel: ARMH1 overexpressed (Oe) using lentiviral transduced in MOLM14
cells with ORF (pLX-317) or Empty Vector (EV). (B) Left panel: Western blot of HEL92.1.7 cell lysates probed with ARMH1 antibody and total H3
antibody as loading control in lentiviral transduced shARMH1 and shCrt cells. Right panel: ARMH1 Oe in lentiviral transduced ORF (pLX-317), and EV.
(C) Bar plots showing cell proliferation measured by CCK-8 in MOLM14 shARMH1 cells along with shCrt in the top panel, and MOLM14 cells with
ARMH1 EV along with ARMH1 Oe in the lower panel. Statistical analysis: Unpaired student’s t-test (n=3), data are means (absorbance in 450nm)
+/-SEM of independent biological replicates (n=3). (D) Bar plots showing the migration assay results that were conducted by using the fluorometric
format in MOLM14 cell lines with shARMH1, shCrt along with EV and ARMH1 Oe, the results of shARMH1 and ARMH1 Oe are shown in the top and
bottom panels respectively. Statistical analysis: Unpaired student’s t-test (n=3), data are means of (Relative Florescence Unit (RFU) +/-SEM of
independent biological replicates. (E) Bar plots showing cell proliferation measured by CCK-8 of HEL92.1.7 with shARMH1 cells along with shCrt in
the top panel, and HEL92.1.7 cells with EV along with ARMH1 Oe HEL 92.1.7 cells in the lower panel. Statistical analysis: Unpaired student’s t-test
(n=3), data are means (absorbance in 450nm) +/-SEM of independent biological replicates. (F) Bar plot showing the migration assay results of
HEL92.1.7 cell line with shARMH1, shCrt along with EV, and ARMH1 Oe. The HEL92.1.7 migration assay results for shARMH1 and ARMH1 Oe are
shown in the top and bottom panels, respectively. Statistical analysis: Unpaired student’s t-test (n=3), data are means of (Relative Florescence Unit
(RFU) +/-SEM of independent biological replicates. (G) Left panel: Western blot of Mesenchymal Stromal Cell Line (MSC) lysate probed with ARMH1
antibody and total H3 antibody as loading control with lentiviral transduced shRNA for targeting ARMH1 and shCrt (3 independent replicates). The
lower bands in H3 are non-specific bands. Right panel: Bar chart of cell proliferation measured by CCK-8 in MSC shARMH1, and shCrt. Statistical
analysis: Unpaired student’s t-test (n=3), data are means (absorbance in 450nm) +/-SEM of independent biological replicates. (H) The bar graph
shows individual IC50 values for each of the three independent biological replicates on the Y-axis. IC50 (Cytarabine treatment, nM) reported for
shARMH1 and shCrt cells that were exposed to increasing concentration of Cytarabine in MOLM14 (p=0.0088), HEL92.1.7 (p=0.0077) and Kasumi-1
(p=0.0004). The p-value was calculated using a two-tailed Student’s t-test on graph pad prism 10. (I) Kaplan-Meier curve shows the overall survival
in pAML patients of the TARGET dataset, grouped by ARMH1 expression. High expression of ARMH1 is associated with poor outcomes in this cohort
(HR=2.4 (95% CI=1.4-4.1) log-rank p=0.000557). The Survival Genie platform (https://bhasinlab.bmi.emory.edu/SurvivalGenie2/home) was used to
perform survival analysis. The samples were grouped into “low” and “high” groups based on an optimal threshold calculated using the cutP algorithm.
Using these groupings, we calculate the survival probability and generate Kaplan Meier curves with corresponding log-rank p-value, which represents
the significance of the difference between the curves for “high” and “low” expression groups. A Cox proportional hazard ratio (HR) is also calculated
between the high and low samples; an HR>1 represents poor survival, whereas an HR<1 represents an association with better survival.
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(Figure 2G) and HEK293T (P=0.3925) (Figure 1D). Additionally,

we investigated ARMH1’s potential role in altering the therapeutic

index of traditional chemotherapy (i.e., Cytarabine) for pAML.

We observed an improvement in sensitivity to Cytarabine in

ARMH1 knockdown relative to wild-type in MOLM14 (n=3,

p=0.0088), HEL92.1.7 shCrt vs shARMH1 (n=3) (p=0.0077), and

Kasumi-1 shCrt vs shARMH1 (n=3) (p=0.0004) (Figure 2H). The

survival analysis on ARMH1 expression in pAML data from the

TARGET dataset performed using the Survival Genie tool (n=144)

depicted a significant association between ARMH1 (HR=2.4,

P=0.00199) overexpression and poor overall survival (19)

(Figure 2I). These results underscore the involvement of ARMH1

in cancer cell proliferation, migration, and on mediating

resistance to therapeutic regimens. To further understand

the molecular mechanism of ARMH1 , we performed

RNA-seq on ARMH1 perturbed cells to measure genome-level

transcriptome dysregulations.
Bulk RNA sequencing analysis of ARMH1
perturbed cells for in-depth
characterization of gene and pathway
level alterations

To characterize gene expression level alterations in ARMH1

perturbed cells and explore the affected pathways, bulk RNA

sequencing was performed. Unsupervised Principal Component

Analysis illustrates distinct separations among the three treatment

groups (ARMH1 Oe, shCrt/EV, and shARMH1) for MOLM14

(Figure 3A) and HEL92.1.7 cell lines indicating distinct

transcriptome profiles of groups (Figure 3B). The differential

expression analysis on MOLM14 cell lines identified 2,924 and

3,276 significantly (Adj. P < 0.01) differentially expressed

(upregulated as well as downregulated) genes, respectively upon

ARMH1 knockdown and overexpression. Similar analysis on

ARMH1 knockdown and over-expressing HEL92.1.7 cell lines

identified 1,777 and 1,184 significantly (Adj. P < 0.01)

differentially expressed genes, respectively. To identify genes that

followed the same expression patterns asARMH1 (i.e. increased with

ARMH1 overexpression and decreased with ARMH1 knockdown),

we performed a comparative analysis of differentially expressed

genes using UpSet plots (20) (Figure 3C, top plot in red) and

those that followed the opposite expression pattern as ARMH1

(i.e. decreased with ARMH1 overexpression and increased with

ARMH1 knockdown; the bottom plot in blue). The analysis

identified 106 genes that were significantly (P < 0.05) upregulated

with ARMH1 overexpression and downregulated with ARMH1

knockdown in at least three of the four contrasts. Conversely,

there was one gene, LIMD2, that was significantly downregulated

with ARMH1 overexpression and upregulated with shARMH1 in all

four contrasts (P-value: MOLM14 ARMH1 Oe = 0.0271, MOLM14

shARMH1 = 0.0196, HEL ARMH1 Oe= 0.0016, HEL shARMH1 =

0.0001), and 114 other genes that were significant in at least three of

the four contrasts at P < 0.05. Therefore, we considered 106 genes

that followed the same expression patterns as ARMH1 and 115 genes

that followed the opposite expression patterns as an ARMH1
Frontiers in Oncology 06
perturbed core signature. The expression levels of selected genes

from this core signature were visualized in the heatmap depicting

very concordant patterns across ARMH1 perturbed (i.e.,

knockdown, overexpression) and control cell lines (MOLM14,

HEL92.1.7) (Figure 3D). Among the top genes co-regulated with

ARMH1 include SLAIN1, CYFIP2, NEDD4L, CA2, ZNF738,

FAHD2CP, PLOD3, SLITRK5, KDSR, TAF1D, DBF4B, WDR35,

RPUSD3 and ZNF691. Several of these genes were studied by

other teams, such as SLAIN1 (21) (previously reported to

contribute to cancer cell proliferation and therapy resistance) as

well as CYFIP2 (22) and CA2 (23) (currently being explored as

prognostic biomarkers). Pathway analysis using the 106 genes (genes

boxed in green in Figure 3C; co-regulated with ARMH1) depicts the

significant enrichment of pathways related to cholesterol

biosynthesis (P = 0.0023) and mitochondrial fatty acid synthesis (P

= 0.0288). For the second group (genes boxed in yellow in Figure 3C;

showing opposite trends (counter-regulated) to ARMH1 protein

expression), the pathways relating to the overall regulation of

inflammation (P = 0.0007) as well as the angiogenesis pathway

through VEGFA and VEGFR2 (P = 0.0084) were significantly

enriched (Figure 3E). Further gene set enrichment analysis on the

normalized expression values of co-regulated genes depicted

upregulation of TCA cycle in senescence (P-value: MOLM14

shARMH1 = 0.0024, HEL ARMH1 Oe = 0.0118, HEL shARMH1 =

0.0291) and short-chain fatty acid catabolic processes (P-value:

MOLM14 ARMH1 Oe = 0.0450, MOLM14 shARMH1 = 0.0111,

HEL ARMH1 Oe = 0.0014, HEL shARMH1 = 0.0254) while analysis

on the genes with an opposite expression pattern depicted

perturbation of death receptor signaling (P-value: MOLM14

ARMH1 Oe = 0.0050, MOLM14 shARMH1 = 3.04e-5, HEL

ARMH1 Oe = 0.0013, HEL shARMH1 = 0.0007) and Histone H3

K4 Dimethylation (P-value: MOLM14 ARMH1 Oe = 0.0010,

MOLM14 shARMH1 = 0.0029, HEL ARMH1 Oe = 0.0162, HEL

shARMH1 = 0.0282) (Figure 3F). Further co-expression network

analysis on the co-regulated genes revealed one gene, RAN binding

protein 17 (RANBP17) that was identified as a central hub gene in

both the MOLM14 and HEL co-expression Networks (Figure 3G).

RANBP17 is a member of the importin-beta superfamily of nuclear

transport receptors. The expression of RANBP17 has been

implicated in the progression of many cancers (24, 25), and it was

also reported as a potential prognostic biomarker for glioblastoma

(26). Additionally, RANBP17 is reported to be a member of the

ARMH1 superfamily, according to the Hugo Gene Nomenclature

Committee, suggesting that it could be closely related to ARMH1 in

both structure and function (27). To further investigate the overall

impact of the ARMH1 co-expressed genes on AML outcomes, we

performed a survival analysis using the TARGET-AML cohort. The

survival analysis showed that higher expression levels of ARMH1 co-

expressed genes (n=88 genes with valid gene symbols out of the 106

co-expressed genes) were significantly associated (HR=3.6,

P=0.0003) with poorer overall survival (Figure 3H). In summary,

the bulk RNA-seq data suggestsARMH1 is likely a key component of

the cellular metabolic process, particularly in the cholesterol and

fatty acid synthesis pathways that occur in the mitochondria. Next,

we investigated the role of ARMH1 in fatty acid synthesis in

mitochondria as well as in cell cycle regulation.
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FIGURE 3

Transcriptome profiling of ARMH1 perturbed cells for exploration of gene and pathway alterations. (A) PCA plot with first two principal components derived
from the normalized gene expression matrix using PCA for the seven samples obtained from the MOLM14 cell line. Each dot represents a sample, and
distinct separation among treatment groups (ARMH1 Oe, shCrt/EV, and shARMH1) is observed. (B) Similar to (A), the PCA plot illustrates the first two principal
components for the eight samples collected from the HEL cell line after the PCA transformation of the normalized gene expression matrix. Notable
separation among treatment groups is evident. (C) UpSet plot displaying intersecting genes in MOLM14 and HEL92.1.7 cell lines that are perturbed by ARMH1
Oe and shARMH1. The top plot (red) shows co-expressing genes significantly upregulated in ARMH1 Oe and downregulated in shARMH1, and the bottom
plot (blue) shows counter-regulated genes significantly downregulated in ARMH1 Oe and upregulated in shARMH1 at p < 0.05. Genes selected for
downstream analyses (significant at P < 0.05 in at least three comparisons and consistent fold change) are highlighted with green and orange boxes. (D)
Heatmap displaying relative expression values for selected ARMH co-expressed (genes from the green box in (C) (top) and counter-regulated (genes from
the orange box in (C) (bottom). All genes were significant at p < 0.05 in at least three out of four comparisons. Gene expression is shown in pseudocolor
with red denoting increase and blue decrease in gene expression. The rows and columns represent the genes and samples, respectively. (E) The top 10
pathways upregulated in ARMH1 co-expressed gene (red), as well as the top 10 pathways downregulated in ARMH1 counter-regulated genes. (F) Dot plot of
the top 10 gene sets following a similar or co-expression pattern as ARMH1 (text in red) and gene sets following the opposite or counter-expression pattern
as ARMH1 (text in blue). Gene sets are significant in at least three of the four contrasts at p < 0.05 and are ordered by the average of the absolute value
log2FCs from the four comparisons listed on the x-axis. (G) Gene co-expression networks generated from ARMH1 co-expressed genes. Hub genes are
labeled, with the gene common between both cell lines with the highest degree of connections. (H) Survival association analysis of ARMH1 co-expressed
genes using pAML data from the TARGET initiative, with groups stratified based on enrichment score for ARMH1 co-expressed genes. Patients with higher
enrichment scores for ARMH1 co-expressed genes have poor survival (HR=3.6 (95% CI=1.8-7.2) log-rank p=0.000076). The symbol ★ are notable pathways
selected for further analysis.
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ARMH1 shows an association with
mitochondrial fatty acid synthesis and cell
cycle regulation

AML cells exhibit an abnormal metabolic profile, which includes

a higher need for Oxidative Phosphorylation and Fatty Acid

Metabolism for survival and therapeutic resistant phenotype (28).

Our RNA-seq analysis on ARMH1 knockdown and overexpression

cells revealed that the mitochondrial fatty acid synthesis pathway was

significantly (P=0.02875) dysregulated (Figure 3F) and provided clues

for an underlying mechanism for ARMH1 association with

leukemogenesis. To investigate ARMH1 association with Oxidative

phosphorylation and ATP production, we first focused on studying

the fatty acid Oxidative cycle by targeting a key enzyme associated

with transferring long-chain fatty acids into mitochondria, which is

located in the outer layer of the mitochondria membrane (29),

Carnitine palmitoyl transferase 1A (CPT1A). By pharmaceutical

inhibition of CPT1A, using Etomoxir (150uM), we observed that

ARMH1 expression was decreased by inhibiting CPT1A in MOLM14

and HEL92.1.7 cell lines (Figure 4A).We also observed a reduction in

the expression of CPT1A following the knockdown of ARMH1 in

MOLM14 cell lines indicating potential co-regulations of ARMH1

and CPT1A (Figure 4B). In addition, we observed that CPT1A has

significant co-expression with ARMH1 in AML samples from

TARGET cohort (r=0.18, P=3.5e-14) (Supplementary Figure 2C).

CPT1A has a significant role in mitochondrial fatty acid synthesis,

and its expression is associated with increased cell proliferation and

suppression of apoptosis in various cancers, including leukemia (30–

32). Overexpression ofCPT1A has been consistently linked to adverse

outcomes in a variety of cancers, including AML (30, 33). Targeting

CPT1A in leukemia cell lines leads to a decrease in cancer cell

proliferation (34) and a reduction in apoptosis (35). To substantiate

these findings, we performed the Seahorse assay to measure the

Oxygen Consumption Rate (OCR) in both MOLM14 and HEL92.1.7

ARMH1 knockdown and control wild-type cells. The data

demonstrated a notable reduction in OCR in ARMH1 knockdown

in HEL 92.1.7 (P<0.0001) and MOLM14 (P<0.0001) cells compared

to respective controls (Figures 4C, D). We also investigated the

involvement of ARMH1 in the regulation of mitochondrial fatty

acid synthesis by conducting a rescue study. We supplemented the

cell culture media with an exogenous lipid mixture and conducted a

cell proliferation assay inARMH1 knockdown compared to wild-type

conditions. The supplementation of lipid mixture restored cell

proliferation of ARMH1 knockdown in MOLM14 and HEL92.1.7

cells to a level similar to control wild-type cells. This data indicated

that the lipid mixture compensates for the reduction in proliferation

due to ARMH1 knockdown (Figure 4E). In summary, these findings

provide preliminary evidence of ARMH1 involvement in

mitochondrial fatty acid synthesis in leukemia cells.

In addition to impacting mitochondrial fatty acid synthesis,

RNA-sequencing data also shows that ARMH1 is associated with

the dysregulation of the cell cycle by affecting the expression of key

cell cycle regulators such as Cell Division Cycle Associated 7

(CDCA7) and Cyclin-dependent kinase inhibitor 1A (CDKN1A or

P21) genes. CDCA7 has been previously reported to play a significant

role in cancer progression in diverse types of malignancies (36–41).
Frontiers in Oncology 08
CDCA7 shows periodic expression in the cell cycle, peaking between

G1/S phases (42). Studies have also demonstrated a connection

between CDCA7 and c-MYC, a potent cancer oncogene (43). In

our RNA sequencing data, we identified that expression of CDCA7

and c-MYC significantly decreased in ARMH1 knockdown cell lines

for CDCA7, MOLM14 wild type compared to shARMH1 (P=0.0035),

and HEL92.1.7 wild type compared to shARMH1 (P=0.0002) and for

c-MYC MOLM14 wild type compared to shRAMH1 (P=0.0005) and

HEL92.1.7 wild type compared to shARMH1 (P=0.0002) (Figure 4F).

Further, correlative analysis of using AML data from TARGET

cohort revealed ARMH1 expression has a significant correlation

with CDCA7 (r=0.29, P<2.2e-16) and c-MYC (r=0.2, P=4.6e-16)

which suggests intersection between their regulatory pathways in

leukemia cells (Supplementary Figure 2C). Through in vitro assays,

we observed a co-expression between ARMH1 and CDCA7.

Knockdown of ARMH1 led to a remarkable reduction in CDCA7

expression. Conversely, after the knockdown of CDCA7, the

expression of ARMH1 also exhibited a similar reduction in

MOLM14 (Figure 4G). A similar co-expression pattern was

observed between ARMH1 and CDCA7 in HEL92.1.7, underscoring

the co-regulation or interaction (Supplementary Figure 2D). In

addition, we also investigated the association between ARMH1 and

P21, which function as a suppressor of the cell cycle, thereby

inhibiting cell growth (44, 45). Our Bulk RNA-seq analysis

depicted an upregulation of P21 in ARMH1 knockdown in

MOLM14 (P=0.0106), and in HEL 92.1.7 (P=0.0320) cell lines as

compared to wild-type controls (Supplementary Figure 2E). The

analysis of our single-cell data (14), including bone marrow

samples of healthy control and patients at diagnosis who went on

to experience relapse or remission, reveals significant overexpression

of P21 in remission patients compared to relapse (P<0.0001)

(Figure 4H). Further, survival analysis on CPT1A and

mitochondrial fatty acid pathway (MSigDB, GO:0019395)

expression in pediatric AML data from the TARGET initiative

depicted a significant association between CPT1A (OS P=0.00249,

EFS P=0.047) andmitochondrial fatty acid synthesis (OS P=0.000837,

EFS P=0.00085) overexpression with poor overall and event-free

survival in TARGET-AML cohort (Figure 4I).

Collectively, these findings indicate ARMH1 is involved in the

modulation of the mitochondrial fatty acid synthesis pathway in

pediatric AML. Further, in the absence of ARMH1, the cell cycle is

arrested by upregulation of the checkpoint inhibitor, P21, and

downregulation of the expression of CDCA7.
ARMH1 is a novel interactant of EZH2
in leukemia

Studies have previously demonstrated that the enhancer of zeste

homolog 2 (EZH2) plays a regulatory role in Lipid Metabolism, and

simultaneous targeting of EZH2 and Fatty Acid Synthesis results in

cancer cell death (46). Previous studies have shown that EZH2

increases lipid synthesis in a variety of cancers (47–49) and is

associated with poor prognosis (50, 51). Moreover, EZH2 has been

reported as a multifaced regulator across different types of cancers,

potentially functioning both as an oncogene and a tumor-suppressor
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FIGURE 4

ARMH1 shows potential association with mitochondrial fatty acid synthesis and Cell cycle regulation. (A) Left panel: western blot shows the inhibition of CPT-1A
and ARMH1 by Etomoxir (150uM) and DMSO control treatment of the MOLM14 cell line (3 independent replicates). Right panel: western blot shows the
inhibition of CPT-1A and ARMH1 by Etomoxir (150uM) and DMSO control treatment of the HEL92.1.7 cell line (3 independent replicates). (B) Western blot of
MOLM14 cell lysates probed with ARMH1, CPT1A antibody, and total H3 antibody as loading control with lentiviral transduced shARMH1 or shCrt (3 independent
replicates). The CPT-1A expression is significantly lower in cells with ARMH1 knockdown cells. (C) Bar plot showing an Oxygen Consumption Rate (OCR) in
shARMH1 and shCrt MOLM14 and HEL92.1.7 cells. Statistical analysis: Unpaired student’s t-test (n=15), data are means of [OCR (pmol/min)] +/-SEM of
independent biological replicates. (D) Respiration stress test indicates the basal respiration and reflects the energy requirements under conditions,
IA=Oligomycin (2.5uM), IIB=FCCP (0.5uM), and IIIC=Antimycin (2uM) and Rotenone (2uM). (E) Bar plot showing cell proliferation assay in shARMH1 and shCrt
MOLM14 and HEL92.1.7 cells, the cell culture media supplemented with exogenous lipid mix (Lipid Mixture 1, Cat#10288, Sigma-Aldrich). The proliferation was
measured at 72 hours. Statistical analysis: Unpaired student’s t-test, data are means (absorbance in 450nm) +/-SEM of independent biological replicates (n=4).
(F) Left panel: Bar plot of normalized expression of CDCA7 and Right panel: c-MYC in shARMH1 and shCrt MOLM14 and HEL92.1.7 cells. Statistical analysis:
Unpaired student’s t-test, data are normalized expression+/-SEM of c-MYC and CDCA7 from independent biological replicates (HEL92.1.7 Control/Knockdown,
MOLM14 Control: n=3, HEL92.1.7 Overexpression, MOLM14 Knockdown/Overexpression: n=2). (G) Left Panel: Western blot of cell lysate probed with ARMH1,
CDCA7, and total H3 as loading control with lentiviral transduced shCDCA7 and shCrt. (3 independent replicates). Right panel: Western blot of MOLM14 cell
lysates probed with ARMH1 and CDCA7 antibody and total H3 antibody as loading control with lentiviral transduced shARMH1 and shCrt (3 independent
replicates). (H) Log-normalized expression of CDKN1A in pAML bone marrow diagnosis (n=20) and healthy (n=4) samples. AML samples are grouped into REL
(relapse), and REM (remission) based on future outcomes. Wilcoxon Rank-Sum test was used to compare expressions between groups, and p-values were
reported (p<0.0001). (I) Upper panel: Kaplan-Meier curve shows overall survival (left) and event-free survival (EFS) (right) of pAML samples from the TARGET
initiative by stratifying samples into high and low groups based on CPT1A expression. Lower panel: Kaplan-Meier curve shows overall survival (left) and event-
free survival (EFS) (right) of pAML samples from the TARGET initiative by stratifying samples into high and low groups based on enrichment score for
mitochondrial fatty acid synthesis gene set obtained from MsigDB via msigdbr (v7.5.1) from the Broad Institute. The Survival Genie platform (https://
bhasinlab.bmi.emory.edu/SurvivalGenie2/home) was used to perform survival analysis. The samples were grouped into “low” and “high” groups based on an
optimal threshold calculated with the cutP method. Using these groupings, we calculate the survival probability and generate Kaplan Meier curves with
corresponding log-rank p-value, which represents the significance of the difference between the curves for “high” and “low” expression groups. A Cox
proportional hazard ratio (HR) is calculated between the high and low samples, an HR>1 represents poor survival, whereas an HR<1 represents an
association with better survival. The asterisk (-) means 0 concentration of drug.
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FIGURE 5

ARMH1 is a novel interactant of EZH2 in leukemia. (A) Western blot of MOLM14 cell lysates probed with ARMH1 and EZH2 antibody and total H3
antibody as loading control with lentiviral transduced shEZH2 or shCrt (3 independent replicates). Left panel: replicates#1,2 of shEZH2 (the lower
bands in H3 are non-specific bands), and right panel: shEZH2 replicate#3. (B) Western blot of cell lysates of MOLM14, Kasumi-1, and HEL, probed
with ARMH1, EED, EZH2, and SUZ12 antibody and total H3 as loading control with lentiviral transduced shARMH1 or shCrt (3 independent replicates).
(C) Western blot of detecting ARMH1, EZH2, and H3K27me3 in MOLM14 and HEL92.1.7 cell lines in (3 independent replicates) after treatment of
EPZ6438 (150uM) and DZNep (0.5uM) over 72 hours. The membrane was first probed with H3K27me3 and then stripped and probed with total H3.
(Lower bands in H3 are non-specific bands). (D) Western blot on Co-IP pull-down using EED (Upper Panel) and EZH2 (Lower Panel) antibodies for
MOLM14 and Kasumi-1 cells extract. The membranes were probed with EZH2, EED, and ARMH1 antibodies. (E) Western blot on patient samples
collected at disease diagnosis from patients with future relapse (patient#1) and remission (patients#13,17,19,20) probed with ARMH1, EZH2, and total
H3 and Tubulin as loading control. (F) Kaplan-Meier curve shows overall survival (left), and event-free survival (EFS) (right) based on the expression of
EZH2. The Survival Genie platform (https://bhasinlab.bmi.emory.edu/SurvivalGenie2/home) was used to perform survival analysis. The samples were
grouped into “low” and “high” groups based on an optimal threshold calculated with the cutP method. Using these groupings, we calculate the
survival probability and generate Kaplan Meier curves with corresponding log-rank p-value, which represents the significance of the difference
between the curves for “high” and “low” expression groups. A Cox proportional hazard ratio (HR) is calculated between the high and low samples, an
HR>1 represents poor survival, whereas an HR<1 represents an association with better survival. The asterisk (*) means control for replicates.
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gene in cancer (52, 53). However, recent studies have underscored the

remarkable role of EZH2 in hematologic malignancies and

leukemogenesis (54, 55). Our data suggest that ARMH1 may serve

as an interactant of EZH2 associated with high-risk and therapeutic

resistance patients in pediatric AML. We observed that the

knockdown of either EZH2 or ARMH1 in MOLM14 cells

diminishes the expression of both EZH2 and ARMH1 proteins

(Figure 5A). Additionally, in ARMH1 knockdown cells, we

observed downregulation of Embryonic Ectoderm Development

(EED) and Suppressor of Zest 12 (SUZ12) the core component of

the Polycomb repressive complex 2 (PRC2) along with EZH2, which

highlights ARMH1’s role in PRC2 complex destabilization

(Figure 5B). Similar results were observed in the HEL92.1.7 cell line

for EZH2 knockdown (Supplementary Figure 2F). To further support

the possibility of EZH2 and ARMH1 physical interaction, we either

inhibited the enzymatic activity of EZH2 using EPZ6438 (an inhibitor

targeting the zest domain of EZH2) or destabilized EZH2 protein and

PRC2 complex using DZNep (3-Deazaneplanocin A). After

treatment of AML cells with EPZ6438, while protein level EZH2

was not altered, its enzymatic activity was downregulated as

determined based on reduced levels of H3k27me3 (Figure 5C). We

observed that the expression of ARMH1 remained at almost the same

level or slightly changes. On the other hand, after DZNep treatment, a

potent destabilizer of the EZH2, the ARMH1 protein expression was

decreased significantly along with a decrease in levels of EZH2

(Figure 5C). This data indicates that ARMH1 and EZH2 may have

physical interaction together, which occurs post-translationally. For

further investigation of EZH2 andARMH1 interaction, we performed

Co-Immunoprecipitation (CO-IP) by pulling down EZH2 and EED

inMOLM14 and Kasumi-1 cell lines. The pull-down product analysis

using western blot showed a signal for both EZH2, EED, and ARMH1

proteins, suggesting a possible physical interaction among these

proteins (Figure 5D). Also, the protein expression analysis of EZH2

and ARMH1 in patient samples has shown a higher expression for

both in diagnostic samples from patients who experienced relapse

(patient#1) as compared to those who achieved remission

(patients#13,17,19,20) (Figure 5E). Moreover, the survival analysis

on EZH2 expression in the TARGET AML dataset depicted a

significant association between high expression of EZH2 and poor

overall survival (P=0.00249), and event-free survival (P=0.033)

(Figure 5F). Taken together, this highlights the importance of

ARMH1 as EZH2 interactant at the post-translational level and

provides insights into its involvement in high-risk factors and

therapeutic resistance mechanisms, in pediatric AML.
Discussion

The emergence of resistance to conventional chemotherapies is

increasing, and it can be stimulated by different mechanisms and

finally leads to adverse outcomes in pAML patients, while cytogenetic

assessments and molecular abnormalities provide pivotal prognostic

indicators and predictive capabilities, pAML continues to exhibit high

mortality rate due to lack of robust biomarker that reliably indicates a

relapse (56, 57). In the current study, we report that ARMH1 may

serve as a potential biomarker for relapse in pediatric AML. Recently,
Frontiers in Oncology 11
ARMH1 has been identified as a potential biomarker gene for the

immunological score-based risk stratification signature in oral

squamous cell carcinoma (58), but ARMH1 is still reported to be

an unknown function gene and has not been studied in detail in

cancer, especially leukemias. This is the first study attempt to

characterize ARMH1 at both functional and molecular levels in

pediatric AML. Our data suggests that the knockdown of ARMH1

leads to a significant reduction in cell proliferation and migration as

well as slightly enhances response toward conventional

chemotherapy. Conversely, overexpression of ARMH1 leads to

increasing cell proliferation and migration rates. Interestingly, these

effects are similar to very well-studied genes that play a critical role in

tumorigenesis in AML, such as c-Kit proto-oncogene, Runt-related

transcription factors, RUNX1, and FLT3 (59–61). In the current

research, we observed that ARMH1 has a notable role in the

progression of AML, correlating significantly with relapse and poor

clinical outcomes. Results from another team reveal that the

mitochondrial fatty acid synthesis pathway assumes a critical role

in the progression of AML (62, 63). Furthermore, inhibition of the

mitochondrial fatty acid synthesis pathway in combination with

conventional chemotherapy protocol has shown a notable impact

on inhibiting leukemia progression (64). Findings from other teams

signify that AML exhibits a dependency on mitochondrial

metabolism and mitochondrial fatty acid synthesis pathways (65).

In this study, to characterize the molecular landscape of ARMH1

perturbation effects, we leveraged RNA-seq and Pathway analysis on

ARMH1 knockout, overexpressing, and control cells. The RNA-seq

analysis enrichment of the mitochondrial fatty acid synthesis pathway

in the genes that are consistently positively correlated with ARMH1

expression across cell lines. Our Seahorse assay data also

demonstrated that knockdown of ARMH1 leads to a significant

reduction in mitochondrial OCR. This finding highlighted the

potential linkage of ARMH1 to the mitochondrial fatty acid

synthesis pathway in AML tumorigenesis. Additionally, our data

indicated that ARMH1 has a role in the regulation of the cell cycle.

CDCA7 has been consistently reported in many research studies to

play a remarkable role in tumor progression in various types of

cancers (38, 66–68). In the current paper, an analysis of differential

gene expression using bulk RNA seq data has shown that CDCA7

ranks as the gene showing significant co-expression with ARMH1,

during in vitro studies, ARMH1 knockdown leads to downregulation

of CDCA7, and knockdown CDCA7 causes downregulation of

ARMH1. This finding highlighted the regulatory role of ARMH1 in

influencing the expression of CDCA7 in pediatric leukemia, which

has never been reported. Also, our data indicated that the knockdown

of ARMH1 leads to the upregulating of the checkpoint inhibitor gene,

P21, resulting in cell cycle arrest. In the current study, we also

identified that the knockdown of ARMH1 leads to the

destabilization of the PRC2 complex and the degradation of EZH2

and EED, a core component of the PRC2 complex. Our data

highlighted that ARMH1 and EZH2 may have protein-protein

interactions, indicating functional interdependence between these

two genes. Several studies have reported that EZH2 downregulation

has been associated with poor prognosis (Stomper et al., 2021; Kempf

et al., 2021; Göllner et al., 2017). On the other hand, multiple studies

across solid tumors show contrary results, while EZH2
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overexpression has been linked to poor prognosis (69–71). These

studies highlight a dual and puzzling role of EZH2 in cancer

progression that might be influenced by complex cancer genetics

and microenvironment. Our finding suggests that in pediatric AML

the downregulation of ARMH1 along with EZH2 has been associated

with good outcomes. Taken together, the absence of ARMH1 is a

good prognostic marker as its upregulation is associated with

aggressive disease, so it can be used in addition to cytogenetics for

identifying patients with high relapse probability. It is involved in two

cancer hallmark pathways related to metabolism and cell cycle,

making it a good therapeutic target. Fatty acid metabolism-based

targeting might provide a novel way to treat high-risk pediatric AML.

Conclusion

In conclusion, our study identified ARMH1 as a novel

biomarker for aggressive pediatric AML, demonstrating ARMH1’s

significant association with disease progression and relapse.

Through comprehensive analysis, we elucidated the impact of

ARMH1 on leukemic cell proliferation, migration, and

chemotherapy sensitivity, as well as its involvement in

mitochondrial fatty acid synthesis and cell cycle regulation. These

findings underscore ARMH1 as a potential prognostic indicator for

patient stratification and a therapeutic target for enhancing clinical

remission rates. Further investigation into ARMH1’s role in AML

pathogenesis will be required to improve advancing personalized

treatment strategies and improving pAML patient outcomes.
Limitations

One limitation of this study is the lack of animal models to

complement the findings obtained from in vitro studies.

Consequently, the conclusion of findings solely from in vitro or

clinical studies may not capture the entirety of the pathobiological

role of ARMH1 in pediatric leukemia. Limited understanding of the

ARMH1 effect on immune cells is another limitation of the study.

Methods

Single-cell transcriptome analysis samples,
assay, and sequencing

The single-cell AML dataset was generated in our lab previously,

and ARMH1 was identified among a 7-gene signature that

distinguished AML malignant cells (14). Viable frozen AML bone

marrow samples were obtained from the Aflac Cancer and Blood

Disorders Center, Children’s Healthcare of Atlanta, and processed for

generating high-quality single-cell RNA sequencing data on 20

samples. These BM samples were viably thawed and processed for

single-cell transcriptome profiling using the 10x Chromium

Controller, followed by library preparation with 10x Genomics

Single Cell 3`v3, and 5`v1 reagent kits. Sequencing was performed

on the Novaseq 6000 platform. The raw scRNA-seq data was

demultiplexed, filtered, and aligned to the human reference genome

(hg38) using Cell Ranger software by 10x Genomics (v3). This output
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single-cell count matrices for each sample, which were then pre-

processed, integrated, and normalized using Seurat package (v4.3)

functions (72). To account for the two batches of data generated from

our lab (batch 1: samples 1-15, batch 2: samples 16-20), the

integration anchors method (Seurat) was used to integrate and

perform batch correction. Log normalization, scaling, PCA, UMAP,

and clustering were applied to generate processed single-cell

expression data for downstream analysis. Among the 20 patients in

our dataset, seven experienced relapse, and 13 experienced clinical

remission. This dataset is publicly available on the Gene Expression

Omnibus repository under accession GSE235923. In addition to our

lab’s 20-sample AML dataset, we also included a publicly available 8-

sample AML scRNA-seq dataset from the GEO repository

(GSE154109) (12). Seurat functions were again used for log

normalization, scaling, PCA, UMAP, and clustering to generate

normalized single-cell expression data for downstream analysis.

Among the patients from this dataset (12), six experienced

remission, and two experienced relapse.
Bulk RNA sequencing analysis on cell lines
after perturbing ARMH1 levels

Total RNA was extracted from cell lines of different groups (HEL

shCrt/EV (n=3), HEL shARMH1 (n=3), HEL ARMH1 Oe (n=2),

MOLM14 shCrt/EV (n=3), MOLM14 shARMH1 (n=2) and

MOLM14 ARMH1 Oe (n=2) using RNeasy Micro Kit (Cat# 74004,

Qiagen) according to the instructions provided by the manufacturer.

RNA concentration was evaluated by photometric measurement at

260/280 nm, and quality was assessed using the Agilent Bioanalyzer

platform. For each group, sequencing was performed on two or three

biological replicates. Double-stranded cDNA sequencing libraries were

generated using the Illumina TruSeq kit per the manufacturer’s

protocol. High-quality libraries were sequenced on an Illumina

Novaseq 6000 platform. To achieve comprehensive coverage for

each sample, we generated ~20–30 million paired-end reads.

The raw sequencing data was processed to remove any adaptor,

PCR primers, and low-quality transcripts using FASTQC (73) and

fastx. These provide a very comprehensive estimate of sample quality

based on read quality, read length, GC content, sequence duplication,

adaptor, and PCR primer contamination. These high-quality, clean

reads were aligned against the human genome using the hisat2 aligner

(74). We used GRCh38 human genome assembly as the reference

genome for alignment. Gene expression measurement was performed

from aligned reads by counting the unique reads using the htseq-count

algorithm (75). The read count-based gene expression data was

normalized based on library complexity and gene variation using the

Voom algorithm (76). The normalized count data underwent

comparison among groups using the limma method (77) to identify

differentially expressed genes (raw p < 0.05). Principal Component

Analysis (PCA) was used to capture the variation in the data across

different biological groups. Supervised analyses focused on identifying

differentially expressed genes through four distinct comparisons:

overexpression vs. control and knockdown vs. control for each cell

line. Our primary aim was to identify co-expressing genes that are

upregulated and downregulated in ARMH1 Oe and shARMH1 cell
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lines respectively, but we were also interested in identifying counter-

expressing genes that are downregulated in ARMH1 Oe and

upregulated in shARMH1. Genes were selected for downstream

analysis based on their consistency in differential expression patterns

and statistical significance across the different contrasts. Due to limited

overlap between the four groups, genes were included if they exhibited

expression changes consistent with the direction of interest (logFC > 0

in overexpression and logFC < 0 in knockdown for co-expressed genes

and the opposite for counter-expressed genes) and demonstrated

statistical significance (P < 0.05) in at least three out of the

four contrasts.

Pathway enrichment analysis was conducted using the Enrichr

tool (77) to identify pathways significantly affected by ARMH1

perturbations. Specifically, enrichment analysis was carried out

separately for ARMH1 co-expressed and counter-regulated genes

utilizing the ‘WikiPathway 2023 Human database. Pathways with a

P-value < 0.05 were determined to be significantly perturbed by

ARMH1. To capture subtle pathway level perturbations due to

ARMH1, Gene Set Variation Analysis (GSVA) was performed using

the gsva R package (78). Using the Hallmark, C2: CP, C3: TFT, and

C5: GO gene sets fromMSigDB (79) as reference, the voom-derived

normalized expression values were transformed through GSVA into

sample-wise enrichment scores for each gene set. Subsequently, the

limma package (77) was utilized to conduct differential testing on

these enrichment scores obtained from GSVA. This step enabled

the identification of gene sets that are significantly (P < 0.05)

upregulated or downregulated in response to ARMH1

overexpression or knockdown, respectively, or vice versa (78–80).

Next, the BioNERO package (81) was utilized to construct gene co-

expression networks from genes that were co-expressed with

ARMH1. Using the voom-derived normalized expression values,

we constructed signed hybrid co-expression networks for each cell

line employing Pearson’s correlation metric with a module merging

threshold of 1.0. Hub genes within the resulting network were

identified based on BioNERO’s principles of module membership

and degree of nodes. To mitigate potential unwanted effects from

genes with low log fold-change values, this process was iterated by

iteratively removing the gene with the lowest average logFC among

the four contrasts and re-running the network analysis with the

same parameters as mentioned above. Hub genes that were

common between the MOLM14 and HEL cell lines in any of

these runs were selected for further investigation. Finally, we

utilized Survival Genie (19) to conduct survival analysis on genes

significantly (P < 0.05) upregulated in ARMH1 Oe and

downregulated in shARMH1 in at least three contrasts. This

analysis aimed to investigate whether disparities in gene

expression levels correlated with survival probabilities in the

TARGET-AML patient cohort. Employing the cutp method from

the R package survMisc (ht tps : / / c ran . r -pro j ec t .org/

package=survMisc), we partitioned the TARGET-AML cohort

into two distinct groups, characterized by relatively high or low

expression levels of the ARMH1-perturbed genes. Subsequently,

Kaplan-Meier survival curves were constructed, and a hazard ratio,

indicative of the magnitude of differences between these high and

low expression groups, was computed. The confidence interval and

log-rank p-value for the hazard ratio were then determined to assess
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the significance of any observed differences. Additionally, we

further utilized the TARGET-AML cohort to examine the

association of ARMH1 expression with risk in AML. Primary BM

samples from TARGET-AML were grouped into high-risk – MLL

cytogenetic subtype – and standard risk – RUNX1, inv (16)

cytogenetic subtypes. Then, voom-derived normalized expression

values were obtained for ARMH1, and expression was compared in

high-risk and standard-risk samples using a Wilcoxon rank-

sum test.
Cell culture methods

Leukemia cells MOLM14, HEL92.1.7, Kasumi-1, and normal

cell HEK293T were generously provided by Dr. Douglas K. Graham

and Dr. Deborah DeRyckere’s labs (Emory University, Department

of Pediatric, Hematology, and Oncology division) and

Mesenchymal Stromal Cells (MSC) were kindly provided by Dr.

Subra Kugathasan’s lab (Emory University, Pediatric Department,

Children’s Healthcare of Atlanta Combined Center for Pediatric

Inflammatory Bowel Disease). Leukemia cells were cultured in

RPMI 1640 media supplemented with 10% FBS, 100U/ml

penicillin/streptomycin, and 1% Glutomax. HEK293T and MSC

cells were cultured in DMEM F12 media supplemented with 10%

FBS 100U/ml penicillin/streptomycin and 1% Glutomax. All cell

lines were checked periodically for Mycoplasma contamination

using MycoAlert® Mycoplasma Detection Kit (Cat#LT07-418).

During the in vitro experiments, the cells were free of

Mycoplasma contamination.
Cell viability detection

To detect cell viability, we used Bio-Rad Trypan Blue

(Cat#1450021) and automated cell counter TC20 (Cat#1450102).

The cells with more than 90% viability were utilized

for experiments.
Lentivirus packaging and transduction

To generate ARMH1, EZH2, and CDCA7 knockdown cells as well

as ARMH1 overexpression cells, the lentivirus was generated with

transfection of shRNAs (pLKO.1) and the Lentiviral Packaging Kit

(Lenti-vpak, Cat#TR30037, OriGene) by following manufacturer

protocol. Three shRNAs were used for ARMH1 knockdown, with

clone IDs as follows: TRCN0000168648 with target sequence:

GCTGAGGACTTGTACATGAAA in 3UTR, TRCN0000172632

with target sequence: GAGTCACATCCTCGACAAGTT in CDS,

a n d T R CN 0 0 0 0 3 3 6 6 8 6 w i t h t a r g e t s e q u e n c e :

CAAGTGTATAAAGGTCTAATA in CDS. One validated shRNA

was used for EZH2 knockdown; the clone ID was TRCN0000040077

with the target sequence: CCCAACATAGATGGACCAAAT in CDS.

One validated shRNA was used for CDCA7 knockdown; the clone ID

w a s T R CN 0 0 0 0 0 1 7 9 3 7 w i t h t a r g e t s e q u e n c e :

CCAGTTATTGGCGGAATTGAA in CDS. We utilized ARMH1
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cloned in the Open Reading Frame plasmid (ORF_pLX-317) for

overexpression of ARMH1. All plasmids were purchased from

Millipore Sigma, Inc. Plasmid extraction: Bacteria derived from each

glycerol stock of shRNA and ORF clones were distributed onto agar-

ampicillin-positive plates, following the incubation of 18 hours in a 37°

C dry incubator, a single colony was picked and grown in LB broth at

37°C and 200 rpm for 18 hours in a shaker incubator. Subsequently, the

plasmids were extracted from bacteria utilizing PureLink™ HiPure

Plasmid Midiprep Kit (Cat#K210004). Lentivirus particles and

transduction to target cells: After reaching HEK293T cell confluency

to 80% in 6 wells plate, the HEK293T cells were incubated with the

lentivirus packaging plasmids and shRNA/ORF plasmids for 24 hours

following the manufacturer’s protocol. After 24 hours, the media was

changed to fresh media (complete RPMI 1% penicillin/streptomycin,

10% FBS and 1% Glutomax). During the 72 hours, lentiviruses were

collected, filtered through a 0.45um filter, and stored at -80°C. The

target leukemic cells were cultured in the presence of polybrene (8 ug/

ml) and lentivirus for 24 hours; then, the targeted cells were washed

with 1X PBS and grown for an additional 2 days. The transduced cells

were selected with puromycin dihydrochloride (2 ug/ml)

(Cat#A1113803, ThermoFisher) in two weeks. All experiments were

conducted as three independent biological replicates.
Co-immunoprecipitation

On day 1, the total protein was extracted from the cell lines and

protein concentration was measured with BCA assay (Cat#A55860,

ThermoFisher). Separately, the 4ug of EZH2 antibody

(Cat#A16846, ABclonal) was mixed with 50ul of protein G

(Cat#16-266EDM Millipore). Increased volume to 500ul by

adding 1X PBS and incubated overnight at 4C. On day 2, the

lysate was prepared by mixing 1ml of 1X PBS with 50ul of protein

G, which was pre-cleared, then centrifuged at 5000rpm for 2

minutes at 4C. The supernatant was aspirated, resuspended in

500ul of RIPA buffer, and centrifuged at 5000 rpm for 2 minutes

at 4C. Then, the supernatant was collected, the protein G and

antibody mixture were added, and incubated overnight at 4C. After

overnight incubation on day 3, the lysate was centrifuged at 5000

rpm for 2 minutes at 4C, washed twice with cold PBS, resuspended

in western blot elution buffer, and ran on SDS gel.
Western blot

Cells were lysed in 1X RIPA Lysis Buffer (Cat#89900,

ThermoFisher) with 1X Halt™ Protease Inhibitor Cocktail, EDTA-

free (100X) (Cat#78425, ThermoFisher) for 30 min on ice. Protein

concentration was measured by Pierce™ Dilution-Free™ Rapid Gold

BCA Protein Assay (Cat#A55860, ThermoFisher). Protein extracts

were resolved by SDS–PAGE on 4–20% Mini-PROTEAN® TGX™

Precast Protein Gels (Cat# 4561093, Bio-Rad). Post SDS-PAGE, the

gels were blotted onto the membrane, 0.2 µm (Cat#1620112, Bio-Rad),

and probed with the following antibodies: ARMH1 (Cat #PA5-71024,

ThermoFisher), b-Actin mouse mAb (Cat #3700, Cell signaling), H3

(Cat#A2348, ABclonal), SUZ12 (A7786, AB clonal), EED (A5371, AB
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clonal) H3K27me3 (Cat#A2363, ABclonal), EZH2 (Cat#A16846,

ABclonal), CPT1A (Cat#A5307, AB clonal), CDCA7 (Cat#A15472,

ABclonal), GAPDH (Cat#14C10, cell signaling). Secondary antibodies

used: anti-mouse IgG, HRP-linked Antibody (Cat#7076, Cell

signaling) and Anti-rabbit IgG, HRP-linked Antibody (Cat# 7074,

Cell signaling), TidyBlot secondary antibody (Cat#STAR209p, Bio-

Rad). The signal was developed with SuperSignal™ West Pico PLUS

Chemiluminescent Substrate (Cat#PI34578, FisherScentific), and

images were detected with ChemiDoc MP instrument

(Cat#12003154, Bio-Rad). We used TBST (Cat#40120065-2,

BioWorld) for washing membranes. Primary antibody was diluted

in 1X TBST/5%BSA, and secondary antibodies were diluted in 1X

TBST/5% dry milk.
Cell proliferation assay

A total of 2500 cells with viability > 90% were cultured in 96-

well cell culture plates in a total volume of 100ul with complete cell

culture media. Following an incubation period of 72 hours (37°C,

5%CO2), 10ul of CCK-8 kit (Dojindo Cat#CK04-01) solution was

added to each well. This was followed by further incubation for 3

hours at 37°C, 5% CO2, and the absorbance was measured at 450

nm in plate reader (BMG, Labteck, CLARIO Star).
Cell migration assay

The CytoSelectTM 24-Well Cell Migration Assay (3mm,

Fluorometric Format; Cat# CBA-103, Cell Biolabs, Inc) was used

for cell migration assay. We followed the manufacturer’s protocol,

and the Relative Florescent Unit (RFU) was measured using a

fluorescence plate reader (BMG, Labteck, CLARIO Star).
Dose-response assay

Cells were cultured at 2500 count per well with viability > 90%

in a total volume of 50ul cell culture complete media. On the day of

treatment, Cytarabine USP grade (Cat#1162002; Sigma Aldrich)

was added to the medium at various concentrations (Control wells

are 0 nanomolar (nM) concentration while Cytarabine treatment

concentrations were 25,50,75,100,125,150,175,250,300 nM). The

reaction was terminated after 72 hours by adding 100 ml/well of
CellTiter-Glo® 2.0 (Cat#G9241, Promega), and cell viability was

assessed by measuring the absorbance at 490nm in a 96-well plate

reader (BMG, Labteck, CLARIO Star). The doses that decrease cell

viability to 50% (IC50) were analyzed using a nonlinear regression

log (inhibitor) vs. normalized response (three parameters) with

GraphPad Prism (version 10) software.
Seahorse and OCR measurement

We utilized the Seahorse XFe24 Analyzer (Agilent) to measure

the OCR of live cells with more than 90% viability. A day before the
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assay: Turned on the Agilent Seahorse XFe/XF analyzer for warm-

up overnight (minimum of five hours). Hydrate a sensor cartridge

in Seahorse XF (Cat#102342-100, Agilent) calibrant at 37°C in a

non-CO2 incubator overnight. On the day of assay, the first assay

medium was made: Glucose (Cat#G7021-100mg, Sigma) 11mM,

Sodium Pyruvate (Cat#SH3023901, Hyclone) 1mM, Glutamine

(Cat#17-605E, Lonza) 2mM and XF Base medium (Cat#102353-

100, Agilent) in volume of 97ml. After preparing the media,1N

NaOH (Cat#3722-11, Baker) was prepared to adjust the pH of the

medium to 7.4. Drug preparation: Oligomycin (Cat#495455, Sigma)

2.5uM, FCCP (Cat#C2920, Sigma) 0.5uM, Antimycin (Cat#A8674,

Sigma), Rotenone (Cat#R8875, Sigma) each drug was 2uM. The

Cell-Tak coated XF24 cell culture was prepared, and the assay was

set up as described in the manufacturer’s protocol.
Data analysis and statistics

Statistical analysis of data was performed with GraphPad Prism

10 software (GraphPad Software Inc., La Jolla, CA) or with

statistical functions developed using R language. All data are

presented as the means ± SD or SEM. Significant differences were

determined using a two-tailed student’s t-test, ANOVA test, or

Wilcoxon rank-sum test.
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