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The emerging role of osteoclasts
in the treatment of bone
metastases: rationale and
recent clinical evidence
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The occurrence of bone metastasis is a grave medical concern that substantially

impacts the quality of life in patients with cancer. The precise mechanisms

underlying bone metastasis remain unclear despite extensive research efforts,

and efficacious therapeutic interventions are currently lacking. The ability of

osteoclasts to degrade the bone matrix makes them a crucial factor in the

development of bonemetastasis. Osteoclasts are implicated in several aspects of

bone metastas is , encompassing the format ion of premetastat ic

microenvironment, suppression of the immune system, and reactivation of

quiescent tumor cells. Contemporary clinical interventions targeting

osteoclasts have proven effective in mitigating bone-related symptoms in

patients with cancer. This review comprehensively analyzes the mechanistic

involvement of osteoclasts in bone metastasis, delineates potential therapeutic

targets associated with osteoclasts, and explores clinical evidence regarding

interventions targeting osteoclasts.
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1 Introduction

An epidemiological investigation revealed that individuals diagnosed with bone

metastasis have a prevalence rate of 5.1%, corresponding to an estimated annual incidence

of approximately 18.8 cases per 100 000 bone metastasis diagnoses in the United States from

2010 to 2015 (1). Among individuals aged ≥25 years, lung cancer has the highest prevalence

as the main site for de novo bone metastases, with a rate of 8.7 cases per 100 000 diagnoses in

2015, followed by prostate and breast primaries, with rates of 3.19 and 2.38 cases per 100 000

diagnoses, respectively (1). In particular, patients with breast cancer have a bone metastasis

risk of 73%, whereas those with prostate cancer have a risk of 68% (2). Furthermore, patients
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with lung cancer have a bone metastasis risk of 30%–40%, whereas

those with thyroid cancer have a risk of 60% (3). Malignant tumors

often spread in bone tissues, with the bone microenvironment

commonly considered a pivotal element in the advancement of

bone metastasis. The bone microenvironment comprises a diverse

array of cellular entities and a complex extracellular matrix (ECM)

(4). The intricate interactions between these constituents and tumor

cells contribute to the development of bone metastases. The process

of bone metastasis development is complex and well-organized,

involving several steps. First, a premetastatic microenvironment is

established as a breeding ground for seeding disseminated tumor cells

(DTCs). Second, DTCs are extravasated from the circulation to settle

within the premetastatic microenvironment. Third, DTCs inhabit the

bone niche and become dormant to avoid immune surveillance and

antitumor therapy. Finally, DTCs are reactivated from the dormant

state to develop into clinically detectable metastases (5). The

metastasis of cancer cells to the skeletal system can result in the

degradation of bone tissue, onset of pain, and an increased

susceptibility to fractures (6). The abovementioned process can be

considered a pathological mechanism of bone remodeling, involving

a delicate balance between osteoclasts and osteoblasts, ultimately

leading to bone restructuring (4).
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Osteoclasts have been recognized as a potentially effective

therapeutic target in various pathological conditions characterized

by bone resorption, including osteoporosis and bone metastasis.

Several clinical guidelines have recommended drugs targeting

osteoclasts as a primary therapeutic approach for bone destructive

diseases (7). Systemic antiresorptive drugs that inhibit osteoclasts

can provide the desired symptomatic relief. Furthermore,

administering bisphosphonates and denosumab can significantly

diminish the occurrence of skeletal-related events (SREs) and

mitigate the distress caused by pathological bone resorption,

particularly in individuals with osteolytic bone metastases (8, 9).

Even in prostate cancer cases where osteoblastic lesions are

predominant with a concurrent osteolytic component,

antiresorptive medications have been found to effectively mitigate

the symptoms associated with bone metastases (10). Nevertheless,

antiresorptive medications are currently utilized solely as adjuvant

therapies in clinical settings.

Osteoclasts contribute significantly to the progression of bone

metastasis, as they facilitate the formation of the premetastatic

microenvironment, modulate immunity to promote tumor cell

immune evasion, and stimulate the proliferation of dormant

tumor cells (Figure 1). Various potential targets for regulating the
FIGURE 1

Potential mechanisms of osteoclast involvement in bone metastasis.
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differentiation and maturation of osteoclasts have been proposed in

preclinical studies (Figure 2) (11). The efficacy of corresponding

inhibitors or monoclonal antibodies for these targets against bone

metastases has been demonstrated in animal models (12). However,

most clinical trials have yielded inconclusive results regarding the

effectiveness of osteoclast-targeted interventions in the treatment or

prevention of bone metastases, with the exception of

postmenopausal patients with breast cancer (13–15). The precise

mechanism underlying bone metastasis remains elusive, and the

precise involvement of osteoclasts in this process remains unclear.

Recent single-cell studies have revealed that the heterogeneity of

osteoclast phenotypes is significantly greater than previously

assumed (16). These knowledge gaps may explain the differences

between preclinical research findings and their clinical translations.

Thus, this review aimed to summarize recent research findings

regarding the precise mechanisms of osteoclasts in bone metastasis.

Additionally, the review focused on recent advancements in

identifying therapeutic targets for osteoclasts and analyze the

current status of clinical trials involving relevant drugs.
2 Roles of osteoclasts in
bone metastasis

2.1 Fostering the premetastatic niche

The premetastatic microenvironment refers to the structural

and physicochemical alterations in distant organs that facilitate the

metastatic expansion of a tumor before tumor cell colonization (17).
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Numerous mechanisms within bone tissue promote the

establishment of a premetastatic microenvironment, both in the

normal and pathological states (18). As bone metastases are mostly

osteolytic, osteoclasts and osteoclastogenesis are considered

significant in the development of the premetastatic niche. The

activation of osteoclasts by external stimuli triggers a series of

reactions involving vascular modifications, immunological

modulation, and metabolic alterations (19, 20). Notably, previous

research has revealed the presence of osteoclast-mediated osteolytic

foci preceding the metastasis of neoplastic cells to osseous tissue

(21). Furthermore, besides their involvement in bone tissue,

osteoclast precursors and monocytes in the circulation and

primary tumor sites can induce peripheral osteoclastogenesis,

facilitating the progression of bone metastases through

multiple pathways.

The development of bone metastases in breast cancer cases,

characterized by osteolytic changes, is frequently facilitated by the

manipulation of the premetastatic microenvironment by osteoclasts.

According to a previous study, breast cancer cells with a propensity

for bone metastasis can secrete S100A4 protein. This protein has been

found to play a significant role in promoting osteolysis by directly

stimulating osteoclast formation through the surface receptor RAGE.

Breast cancer cells can also release R-spondin 2 and receptor activator

of nuclear factor kappa-B ligand (RANKL), which are essential

proteins for attracting osteoclast precursors and fostering the

development of the osteoclastic premetastatic niche (22).

Furthermore, tumor cells can control osteoclast precursors, as

evidenced by a study demonstrating that HCC cells secreting lectin

galactoside‐binding soluble 3(LGALS3) can induce the fusion and

podosome formation of osteoclasts through the CD98–integrin avb3
FIGURE 2

Osteoclast differentiation and maturation, and potential therapeutic targets (the red text in dashed box).
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complex, resulting in osteolytic bone remodeling (23). However, the

premetastatic bone microenvironment responds differently to

LGALS3 released by different tumor cells. LGALS3 can enhance

osteoclast differentiation in breast cancer, whereas in prostate cancer,

it may only affect osteoblast development without affecting

osteoclast differentiation.

In addition to protein secretion, neoplastic cells can discharge

exosomes and microvesicles that carry diverse pro-oncogenic

molecular cargo, thereby impacting bone homeostasis and

forming the premetastatic microenvironment. A previous study

revealed that SCP28 breast cancer cells release exosomal miR-21,

which can bind to programmed cell death 4 in osteoclasts, thereby

stimulating osteoclast differentiation and intensifying bone

metastasis (21). Our study findings indicate that patients with

breast cancer who have developed bone metastases exhibit higher

levels of blood exosome miR-21 than those who have not developed

this condition. This finding suggests that miR-21 can potentially

serve as an early detection marker for breast cancer bone metastases

(21). Osteoblastic bone metastases, including those originating from

prostate cancer cells, can regulate osteolysis and hinder osteogenesis

through exosomes, thereby promoting the advancement of bone

metastasis in tumor cells (24). Several studies have demonstrated

that tumor-derived extracellular vesicles containing diverse

microRNAs (miRNAs), including miR-152–3p, miR-378a-3p,

miR-214–3p, and miR-325–3p, can modulate osteoclast

differentiation (25–28). Furthermore, research has shown that

exosomal miRNAs are potential indicators of the progression of

bone metastases (29). miRNAs hold significant potential in the

advancement of novel diagnostic techniques and therapeutic

interventions for bone metastases. Previous study has revealed

that MRX34, an miR-34 mimic currently undergoing clinical

trials for treating hepatocellular carcinoma, protects against the

development of osteolytic disease in individuals with metastatic

breast cancer (30). However, the use of miRNAs as therapeutic

agents for bone metastases presents various challenges, such as

suboptimal delivery efficacy and undesired immune responses,

which necessitate further investigation (29).

In addition to directly acting on osteoclasts, exosomes can be

taken up by myeloid cells in the bone marrow, eliciting various

premetastatic responses, including stimulation of NF-kB signaling,

accelerated development of osteoclasts, and decreased expression of

myeloid thrombospondin-1 (31). The activation of osteoclasts

induces a series of osteolytic reactions, resulting in an intensified

local inflammatory response. Finally, these inflammatory responses

induce changes in vascular permeability and promote the

extravasation process of DTCs (32).

Various researchers have effectively cultured osteoclasts from

diverse bone marrow and circulating myeloid populations, such as

monocytes and dendritic cells (DCs), in humans and animals (33).

Emerging evidence indicates that the migration of osteoclast

precursors away from the bone considerably influences the

development of the premetastatic niche in bone metastasis. In the

field of bone metastases, the mechanism through which myeloid-

derived suppressor cells (MDSCs) serve as progenitors to

osteoclasts has attracted significant attention. The proportion of

MDSCs in the peripheral blood of patients with breast cancer is
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approximately 10 times that of healthy controls (34). A strong

correlation exists between heightened numbers of circulating

MDSCs and the progression of cancer to an advanced stage, as

well as the presence of a positive lymph node status (34). MDSCs

can express specific integrins, chemokines, and ECM regulatory

factors, thereby exerting influence on vascular permeability,

modifying the composition of the ECM, recruiting various cell

types, suppressing immune responses, and facilitating the survival

of DTCs in the bloodstream as well as their migration to distant

metastatic sites (35). Upon infiltration of tumor cells into bone

metastases sites, MDSCs undergo differentiation into active

osteoclasts, facilitating the expansion of osteoclastic lesions (36).

The monocyte–macrophage lineage is a significant progenitor of

osteoclasts and is found extensively in the tumor and bone

microenvironments, as well as in the circulatory system. Similar

to the function of MDSCs, the monocyte–macrophage lineage can

not only influence the progression of bone metastases through

mechanisms such as immune modulation and vascular permeability

alteration but also differentiate into osteoclasts under specific

circumstances (37). DCs have been recognized as a plausible

origin of osteoclast precursors during inflammation. The

differentiation of osteoclasts from DCs may serve as an alternate

mechanism for osteoclast formation in the bone premetastatic

niche. Splenic CD11c+ DCs were effectively induced in mature

and activated multinucleated giant cells expressing TRAP and IL-23

when exposed to conditioned media from breast cancer cells (38).
2.2 Immunosuppressive effects

Once DTCs infiltrate bone tissue, the first challenge is whether

they can successfully survive immune system surveillance. Several

pieces of evidence have demonstrated the involvement of osteoclasts

in the immunological regulation of bone metastases. The in vitro

expansion of natural killer (NK) cells using osteoclasts from patients

with cancer resulted in a significant reduction in the quantity and

cytotoxicity of NK cells. However, introducing osteoclasts from

healthy individuals restored the cytotoxic activity of NK cells (39,

40). The dissimilarities observed in osteoclasts from individuals with

tumors and those without tumors suggest that osteoclasts can

attenuate immune responses under pathological conditions, thereby

preventing the immune system from effectively targeting tumor cells.

This section summarizes how osteoclasts contribute to the

immunosuppressive impact of bone metastases, including the direct

and indirect regulation of cytotoxicity.

The abovementioned clinical finding supports the theory that

osteoclasts are immune-competent cells. Multiple in vitro

investigations have suggested that osteoclasts can directly

influence the state of T or NK cells through cell-contact–

independent mechanisms. Osteoclasts can directly suppress

proliferation and induce apoptosis of T cells by secreting

Galectin-9 and CD200, creating an immunosuppressive

environment in several patients with myeloma (41). In vitro

empirical investigations have further confirmed that osteoclasts

secrete various cytokines that mitigate the activation,

proliferation, cytotoxic activity, and apoptosis of T cells (42). The
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inactivation of T cells can facilitate osteoclast formation in bone

metastases, thereby exacerbating the vicious cyclic progression of

bone metastases (43). In addition to directly affecting T cell

function, osteoclasts can influence immune activity within bone

metastases by regulating the expression of immune checkpoint

molecules. A prominent illustration of this phenomenon is the

capacity of osteoclasts to facilitate an immunosuppressive

environment by secreting a proliferation-induced ligand (APRIL),

resulting in enhanced programmed cell death ligand-1(PD-L1)

expression in multiple myeloma cells (41). Several studies have

established a strong correlation between the expression of immune

checkpoints in bone metastases and osteoclasts (44, 45).

Furthermore, the regulation of osteoclast activity may be

influenced by immune checkpoint expression (41).

Osteoclasts can establish an immunosuppressive microenvironment

by interacting with immunomodulatory and immunosuppressive

cells, in addition to directly influencing the activity of T and NK

cells. Furthermore, osteoclasts contribute to the immunological

tolerance of malignancies by inducing regulatory T cell responses

(19). Bone marrow-derived inflammatory osteoclasts (Cx3cr1+)

secrete immunosuppressive cytokines and polarize CD4+ T cells into

immunosuppressive CD4+ Foxp3+ regulatory T cells in an antigen-

dependent manner (46). Another study revealed that PD-L1 is an

essential component of the immunosuppressive capacity of Cx3cr1+

osteoclasts and that Cx3cr1 can distinguish between two different

subsets of osteoclasts, each with a distinct role in the immune system

(47). Moreover, osteoclasts can attract and activate naïve CD8 T cells,

resulting in the transcription of CD25 and Foxp3 genes (48).

MDSCs are widely recognized as immunosuppressive cells that

can suppress T cell function. As precursors of immature myeloid

cells, MDSCs can differentiate into macrophages and osteoclasts,

enabling the regulation of bone resorption under various

pathological conditions (49). Consequently, they are considered

osteoclast precursors. A previous revealed that the accumulation of

MDSCs in bone metastases may decrease the effectiveness of

bisphosphonates (50). The interaction between MDSCs and

osteoclasts holds relevance in the context of bone metastasis (51).

However, the existing literature on the modulation of MDSCs by

osteoclasts to facilitate immune evasion in bone metastases is

limited, necessitating further investigation.

However, certain studies have proposed that osteoclasts can

potentially enhance immune responses. As antigen-presenting cells,

osteoclasts express both Class I and Class II of the major

histocompatibility complex (MHC). Furthermore, they can take up

soluble antigens, facilitating the presentation of allogeneic antigens,

which, in turn, induce the activation of CD4+ and CD8+ alloreactive

T cells in a manner restricted by the MHC (52). However, there is no

supporting evidence for the alteration of antigen-presenting activity

in osteoclasts throughout bone metastasis. Bone metastases alter the

antigen-presenting capacity of DCs, which are osteoclast precursors.

In breast cancer animal models, the percentage of plasmacytoid DCs

(pDCs) that infiltrated bone metastases was significantly higher, but

their antigen-presenting ability was considerably diminished

compared to other DCs subtypes (53). Furthermore, the cytotoxic

activity of T cells was significantly restored following pDCs depletion.
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2.3 Reactivating dormant tumor cells

Metastases may occur at any time, even after the surgical removal

of the primary tumor. This delayed metastasis, also known as relapse,

is attributed to mechanisms that maintain DTCs in a quiescent or

latent state where they cannot proliferate (referred to as “tumor

dormancy”) (54). The dormancy of malignant cells can be reversed or

transitioned between “on” and “off” states by specific signals from the

surrounding microenvironment (55). The interaction between cancer

cells and their bone microenvironment plays a critical role in

regulating cellular dormancy and reactivation. Research has

suggested that osteoblasts can induce metastatic tumor cells into a

dormant state by secreting growth factors, thereby preventing their

elimination via antitumor therapies (56). Understanding the

mechanisms underlying tumor dormancy and its reactivation is

crucial in preventing metastatic advancement and extending

metastasis-free survival. However, the molecular and cellular

processes responsible for activating dormant tumor cells remain

poorly understood.

A subset of DTCs are located in the endosteal niche, where they

enter a quiescent state characterized by G0–G1 cell cycle arrest (55).

Some of these DTCs remain in a quiescent state, whereas others

continue to multiply and form micrometastases. However, actively

proliferating DTCs can be eliminated by the immune system or

antitumor therapies, whereas dormant DTCs can persist in the

endosteal niche with the potential for reactivation, which can lead to

disease relapse (10). Once DTCs reach the bone tissue, they

compete with HSCs for the osteoblastic niche and eventually

colonize the compartment previously occupied by HSCs (57).

Additionally, osteoblasts protect dormant DTCs from

environmental stress stimuli through paracrine and juxtacrine

secretion (58). Recent studies using single-cell level analysis have

further supported the notion that osteoblasts play an essential role

in inducing and protecting dormant DTCs, both in vitro and in vivo

(59–61). For prostate tumors, the production of Wnt5a in the

osteoblastic niche can activate noncanonical ROR2/SIAH2

signaling and induce dormancy in DTCs (62). Recent gene array

analyses have identified GDF10 and TGF2 as osteoblast-secreted

proteins that induce quiescence in certain prostate tumor cell lines,

indicating varying responses to dormancy across prostate cancer

cells (60). Furthermore, breast cancer cells interacting with spindle-

shaped N-Cadherin+ osteoblasts are recognized and induced into a

dormant state through a Notch2-dependent process (63).

The transition from a dormant to active state is a critical event

in tumor relapse and metastasis. Osteoclasts play a crucial role in

bone remodeling and can directly reactivate dormant DTCs by

modifying the endosteal niche. For example, myeloma cells can

become dormant through direct contact with osteoblasts in the

bone marrow niche, but they can be released from this state when

the niche is modified in an osteoclast-dependent manner (61). A

longitudinal imaging study using intravital two-photon microscopy

revealed that dormant myeloma cells could be reactivated by

activating osteoclasts with RANKL (61). Another study

demonstrated that the combination of VCAM-1 and integrin

a4b1 recruits osteoclast progenitors (OPs), inducing a vicious
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cycle of bone degradation and tumor progression (64). Suppressing

osteoclast activity may reduce the risk of dormant tumor cell

reactivation and prevent the development of macrometastatic

lesions. Dormancy in cancer cells is a severe clinical issue that

directly impacts tumor drug resistance and relapse. Thus, targeting

tumor dormancy to prevent tumor metastasis and recurrence is an

emerging research area.
3 Heterogeneity of osteoclasts and
bone metastasis

Bone metastases exhibit a lower incidence in distal extremities

but are more prevalent in bones with red marrow and trabecular

bone, such as the pelvis, vertebrae, and ribs (5). The underlying

mechanisms behind site-specific bone metastases are currently

unclear. Some hypotheses suggest that differences in trabecular

bone structure, bone turnover rates, and vascularization at these

sites may contribute to metastasis formation (65). Currently, single-

cell transcriptome techniques are being employed to identify

variations in bone homeostasis across different bone regions and

under various pathological conditions (16). Additionally,

heterogeneous osteoclasts have been identified in different bone

sites and under various pathological conditions (16).

Osteoclasts can be classified based on their anatomical location

(e.g., calvarial osteoclasts, odontoclasts, and vascular-associated

osteoclasts) and their association with certain diseases (e.g.,

arthritis-, obesity-, and fracture-associated osteoclasts) (16). In a

murine model, long bone osteoclasts display a more advanced

osteoclastic phenotype than calvarial osteoclasts, with a higher

expression of membranous and secreted osteoclast proteins (66).

Furthermore, osteoclasts from the cranium and appendicular

skeletons have distinct characteristics. This heterogeneity in

osteoclasts from different sites is reflected in their osteoclastic

activity and bone turnover as well as in their response to

therapeutic interventions. For example, osteoclasts from various

anatomical locations exhibit different responses to bisphosphonate

therapy, which is considered one of the mechanisms underlying

bisphosphonate-induced osteonecrosis of the jaw (67).

Currently, the scientific literature on the heterogeneity of

osteoclasts across different skeletal locations is limited. Several

studies have indicated that this osteoclast diversity can be

attributed to the regulation of osteoclast development by various

cells within the bone, exhibiting site-specific and disease-dependent

patterns. One study found that the RANKL/OPG ratio and TNF-a
gene expression were significantly higher in cranially isolated

osteoblasts than in long bones, yielding a different process of

osteoblast-induced osteoclast formation in different bones (68). A

single-cell investigation of osteoclastogenesis in bone marrow

revealed that, alongside osteoblasts and osteocytes, marrow

adipogenic lineage precursors (MALPs) are vital in osteoclast

formation (69). The key role of MALP-derived RANKL in bone

remodeling at various skeletal sites was confirmed in adipocyte-

specific RANKL-CKO mice (69). The absence of MALPs within the

periosteum indicates that RANKL-CKO mice exhibit reduced bone
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loss, specifically in the trabecular bone, whereas cortical bone

remains unaffected. However, the potential variations in MALPs

within bone tissue across distinct anatomical locations remain

unexplored. Other studies have suggested that variations in

inflammatory signaling pathways, such as IL-1 and TNF-a,
within different skeletal sites may contribute to phenotypic

differences in osteoclasts (70, 71).

Based on statistical findings from clinical data, bone metastases

most frequently occur in the spine, with the pelvis being the

subsequent site of occurrence (72). While the correlation between

the spread of bone metastases and anatomical characteristics is

evident (73), the potential influence of variations in cellular

composition within the skeletal system remains uncertain.

Furthermore, although osteoclasts vary between anatomical sites,

the relationship between osteoclast heterogeneity and the

predilection of tumor metastases for specific bone sites has not

been well researched. Thus, further research is required to ascertain

the precise role of osteoclasts in bone metastasis.
4 Therapeutic targets of osteoclasts
in preclinical studies

4.1 RANKL

RANKL is a TNF superfamily member generated by osteoblasts,

T cells, and stromal cells (74). When RANK binds to RANKL,

several genes and pathways involved in osteoclast growth are

activated, including NF-kB, mitogen-activated protein kinase,

protein kinase C, and Src kinase (75). Extensive research has

highlighted the importance of RANKL in bone remodeling and

osteoclast development. RANKL-targeted therapy is one of the most

effective therapeutic strategies and is currently used to treat

osteoporosis, giant bone cell tumors, and bone resorptive disorders.

RANKL is a type II transmembrane protein with a carboxy-

terminal extracellular domain, which is cleaved by proteases,

leading to the release of soluble RANKL into the extracellular

environment (74). Recent research has shown that membrane-

bound RANKL is primarily responsible for regulating

musculoskeletal and immune functions in a physiological context,

whereas soluble RANKL plays a key role in pathological processes

such as bone metastasis formation (76). Additionally, soluble

RANKL has been demonstrated to be nonessential in

physiological processes; however, it facilitates the spread of cancer

to the bone by directly inducing tumor cell migration toward the

bone. Notably, the absence of soluble RANKL does not impact

osteoclasts at the metastatic site or the dissemination of cancer to

nonskeletal organs. Based on these findings, targeting soluble

RANKL alone could be a highly specific approach for treating

bone metastasis (76).

The ability of osteoclasts to reactivate dormant DTCs can be

suppressed by treatment with OPG-Fc, which disrupts in vivo

RANK–RANKL interactions (77). Additionally, RANKL acts as a

mediator in the interactions between the skeletal and immune

systems. Various inflammatory factors can activate RANKL,
frontiersin.org

https://doi.org/10.3389/fonc.2024.1445025
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2024.1445025
promoting osteoclastogenesis activity in metastatic lesions (78).

Modulating the immune environment of tumors has been

reported to decrease osteoclast and osteoclastogenesis activities.

Within the local tumor microenvironment, the expression of PD-L1

and CCL2 is increased, with PD-L1 facilitating RANKL-induced

osteoclastogenesis through JNK activation and CCL2 release (79).

In a murine model of bone metastasis, treatment with the PD-1

monoclonal antibody nivolumab inhibited osteoclast development

(79). Further research is warranted to determine the role of RANKL

in immunotherapy and the mechanism by which RANKL-targeted

medications impact the immunological tumor microenvironment.
4.2 M-CSF

M-CSF, also known as colony-stimulating factor 1 (CSF-1),

plays a vital role in osteoclast differentiation in various stages of

development. M-CSF promotes the survival and proliferation of

OPs by binding to its receptor, CSF1R. Moreover, M-CSF can

restore osteoclast deficiency in M-CSF-deficient osteoporotic

models (80). It has several isomeric forms and can be expressed

as a membrane-bound protein or secreted as proteoglycans and

glycoproteins (81). In addition to promoting cell growth, M-CSF

protects OPs from undergoing apoptosis (82).

In vitro studies have shown that breast cancer cell lines can

stimulate osteoblast differentiation by secreting M-CSF, with

M-CSF inhibition potentially reducing the risk of osteolytic

metastasis (83). Similarly, a mouse model of lung cancer bone

metastasis demonstrated that the knockdown of the CSF-1 gene in

A549 cells significantly reduced the number of osteoclasts and

inhibited the tendency of tumors to metastasize to bone (84).

Osteoclasts and macrophages originate from the same

progenitors, which require critical lineage signals to differentiate

into distinct cell types. Inhibiting CSF-1/CSF1R signaling can also

affect macrophages (85). Therefore, in addition to regulating

osteoclast differentiation, considerable preclinical and clinical

research efforts have focused on the ability of CSF-1/CSF1R

signaling to regulate macrophages. As a relationship exists

between macrophages and bone metastasis, the potential antibone

metastatic mechanism of CSF-1R may not depend solely on

osteoclast inhibition.

While no clinical trials are currently focusing on CSF1R

inhibitors, particularly for bone metastasis treatment, several

studies are exploring CSF1R inhibitors for various cancer types.

These studies might pave the way for further research on patients

with bone metastases by elucidating the effectiveness and safety of

CSF1R inhibitors in humans.
4.3 Src

Src, a nonreceptor tyrosine kinase, belongs to a family of

proteins that bind to the cytoplasmic surface of cellular

membranes (86). Unlike M-CSF and RANKL which control the

differentiation of osteoclasts, Src is mainly responsible for regulating

osteoclast function. In particular, osteoclasts rely on Src to facilitate
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the rapid assembly and disassembly of podosomes, which serve as

attachment structures to aid the transition between migratory and

resorbing stages (87). A study revealed that Src expression is

significantly correlated with bone metastasis in various tumors

(88). Dasatinib, an Src kinase inhibitor, has been shown to inhibit

osteoclast recruitment in a xenograft mouse model of breast cancer.

In a previous study, bioluminescence scan revealed that dasatinib

significantly reduced skeletal metastases in triple-negative breast

cancer in vivo, whereas µ-CT indicated a substantial increase in

bone volume in the dasatinib-treated group (89).

The phosphorylation state of Src is influenced by multiple

variables. Controlling these variables that regulate Src

phosphorylation may limit bone metastasis by suppressing

osteoclasts. Macrophage-stimulating protein signals can promote

Src phosphorylation by binding to its corresponding receptor, RON

tyrosine kinase. RON kinase inhibitors have been employed in

preclinical investigations to alter Src phosphorylation in osteoclasts

for treating bone metastasis (90). Moreover, factors that may

reportedly influence osteoclasts through Src include CXCL12,

CCR5, ICAM-1, CX3CL1, and CXCL17 (91–94). These findings

demonstrate that Src, similar to RANKL, acts as a link between bone

and immune systems and plays an important role in

bone metastasis.
4.4 Cathepsin K

Cathepsin K, a cysteine protease highly expressed in osteoclasts,

belongs to the cathepsin lysosomal protease family. It acts as an

osteolytic enzyme and protease, breaking down bone matrix

proteins (95). It is closely associated with osteoclast-mediated

bone destruction during tumor metastasis. Researchers have

recently developed a system for imaging probes (Osteoadsorptive

Fluorogenic Sentinel imaging probe) that can respond to osteoclast-

secreted cathepsin K and detect osteolytic reactions at the metastatic

site of multiple myeloma in a mouse model (96). Preclinical studies

have shown that the inhibition of cathepsin K significantly

decreases the ability of prostate cancer cells to induce osteoclast-

mediated bone resorption, thus decreasing the risk of bone

metastasis both in vitro and in vivo (95, 97). Similar results have

been reported in preclinical studies on breast, lung, and renal

tumors (98). One such study revealed that the inhibition of

cathepsin K may directly affect the function of osteoclasts without

altering their number (99). Odanacatib, a cathepsin K inhibitor,

does not alter the number of osteoclasts but inhibits the mRNA

expression of secreted osteolytic factors, such as PTHrP, CXCR-4,

and TNF-a (99).

In addition to osteoclasts, cathepsin K expressed by tumor and

other cells within the tumor microenvironment can promote bone

metastasis. In human colorectal cancer tissues, the overexpression

of cathepsin K is consistently associated with increased M2 tumor-

associated macrophages (TAMs) in the stroma, which is related to

tumor metastasis and poor prognosis. A recent study proposed that

cathepsin K secreted by tumor cells binds to TLR4, leading to the

M2 polarization of TAMs through an mTOR-dependent

mechanism (100).
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4.5 mTOR

The mTOR pathway is crucial in regulating skeletal

development and homeostasis due to its impact on osteoblasts,

osteoclasts, and chondrocytes (101). Although the precise

mechanism by which mTOR regulates osteoclasts is being

debated, the importance of mTOR signaling in osteoclastogenesis

and osteoclast viability has been established. It is widely postulated

that several pathways associated with mTOR can influence

osteoclastogenesis through diverse mechanisms. Experimental

evidence supports the notion that mTOR-mediated restriction

Akt signaling regulates osteoclast fusion, whereas the regulation

of mTOR-raptor protein translation leads to the cytoplasmic

development of individual osteoclasts, independent of fusion

(102). Furthermore, mTOR complex 1 (mTORC1) plays a crucial

role in modulating bone resorption and maintaining bone

homeostasis in pathological scenarios due to its expression in

osteoclasts (103). mTORC1 was observed to negatively regulate

the expression of NF-kB and NFATc1, which are crucial

transcription factors in the differentiation of osteoclasts within

osteoclast lineages (104). The mTOR pathway plays a pivotal role

as a signaling mechanism that restricts osteoclastic differentiation,

suggesting the potential therapeutic application of mTOR inhibitors

in managing bone loss–related disorders. Preclinical investigations

have reported that the osteoclast population and osteolysis

associated with experimental metastases were significantly

reduced upon administering Rapamycin (105, 106).
4.6 Siglec-15

The activation of adaptor–receptor complexes of the

immunoreceptor tyrosine-based activation motif elicits

costimulatory signals that contribute to osteoclastogenesis.

Molecules such as cytotoxic T lymphocyte-associated antigen 4

for Fc receptor gamma and Siglec-15 for 12-kD DNAX-activating

protein have been identified as prospective candidates for inducing

alteration in the suppression of osteoclasts. Siglec-15 is an essential

immune suppressor that exhibits varying overexpression across

many cancer types, making it a promising candidate for cancer

immunotherapy (107).

Siglec-15, a member of the Siglec family, is highly conserved and

expressed on osteoclasts, some myeloid cells, and certain cancer

cells (108). Research has revealed that Siglec-15 is closely involved

in osteoclast differentiation and that conditional knockout of Siglec-

15 in mice or treatment with Siglec-15–neutralizing antibodies

inhibits the multinucleation process of osteoclasts (109). Siglec-15

is also closely linked to intratumor immunity. Therefore, it has been

suggested that Siglec-15 not only regulates osteoclasts in the vicious

cycle of bone metastasis but also promotes bone destruction

through synergistic effects with TGF-b (110). Dou et al.

investigate the role of sialylation of TLR2 in osteoclast fusion,

demonstrating that Siglec15 binds sialylated TLR2 to activate cell

recognition and fusion in osteoclast formation, with implications

for bone resorption regulation (111). In subsequent mouse animal
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osteoclasts in the bone microenvironment inhibit the activation of

CD8 T cells through Siglec15, thereby promoting the metastasis of

breast cancer (112). Conversely, the use of anti-Siglec15 therapy

reduces the occurrence of secondary metastases and enhances

survival rates in cases of breast cancer bone metastasis. However,

the detailed molecular processes regulating Siglec-15 expression

remain unclear, and there is a lack of relevant preclinical studies

confirming the effectiveness of Siglec-15–targeted therapy in

inhibiting bone metastasis. In addition, Siglec-15 may have a

regulatory effect on osteoblasts; however, further in-depth studies

are warranted to confirm these findings.

Siglec-15, a molecule sharing 30% structural similarity with the

B7 family (PD-L1/B7-H1), can induce immune-regulatory

responses by inhibiting the activation and proliferation of T cells

through an IL-10-dependent mechanism (113). Furthermore, no

apparent correlation was observed between Siglec-15 and PD-L1

expression, indicating that Siglec-15 might have a significant

immunosuppressive function independent of PD-L1 (114).

Therefore, Siglec-15 could potentially serve as an additional

therapeutic target for managing malignancies with resistance to

anti-PD-L1/PD-1 immunotherapy.
5 Clinical trials focusing on
osteoclast-targeted therapy

The selection of suitable treatment approaches for patients with

bone metastases relies on various factors, including the distinct

attributes of the primary malignancy, presence or absence of

metastases in areas other than the skeletal system, and extent of

bone involvement (whether it is confined to a specific area or spread

throughout the body) (6). Management of bone metastases requires

a comprehensive strategy that incorporates several therapies, such

as chemotherapy, radiation therapy, biologically targeted agents,

endocrine interventions, and surgical procedures. Osteoclast-

targeted therapy strategies are a valuable adjunctive treatment for

effectively managing SREs, thus providing a crucial complement to

existing therapeutic approaches.

The efficacy of antiosteoclastogenic treatment modalities such

as bisphosphonate medications and denosumab in managing bone

metastases depends on the inherent attributes of the primary tumor.

The present focus of clinical trials is on bone metastases originating

from breast and prostate cancer, which have shown promising

outcomes. However, in case of bone metastases originating from

other tumors, these medications are employed solely to control

SREs or as a strategy for symptomatic treatment.
5.1 Bisphosphonates

Bisphosphonates are widely used antiresorptive medications in

clinical practice that have demonstrated promising outcomes in

treating osteoporosis and Paget’s disease of the bone. Their efficacy

in preventing SREs has been reported in individuals with metastatic
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bone cancers, such as breast and prostate cancer. Bisphosphonates

predominantly exhibit an affinity toward bones at sites of active

bone metabolism and dissolve from the bone matrix during bone

resorption. They are then taken up by osteoclasts, limiting their

activity and survival and mitigating osteoclast-mediated bone

resorption (115). Notably, several bisphosphonate medications

have unique mechanisms of action on osteoclasts. Non-nitrogen–

containing bisphosphonates such as etidronate induce osteoclast

apoptosis by forming a toxic adenosine triphosphate analog.

Conversely, nitrogen-containing bisphosphonates such as

alendronate, zoledronic acid, and ibandronate target the enzyme

farnesyl diphosphate synthase, which is necessary for osteoclast

function (116).

Bisphosphonates have been demonstrated to minimize the risk

of bone metastases in some patients with breast cancer. However,

research on prostate cancer and other solid tumors does not support

the use of bisphosphonates in preventing bone metastases (Table 1)

(127). Currently, bone-targeted drugs including denosumab,

zoledronic acid, and bisphosphonates have not yet been clinically

approved to prevent initial bone metastasis in patients with prostate

cancer (128). Notwithstanding this fact, bisphosphonates have

achieved widespread clinical recognition as a medication for

managing and preventing SREs and osteoporosis related to cancer

therapy (126, 129, 130). However, adjuvant bisphosphonates

should not be considered a replacement for conventional

anticancer treatments.
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recommendations regarding the use of adjuvant bisphosphonate

therapy for postmenopausal patients with primary breast cancer.

These recommendations apply to patients eligible for adjuvant

systemic therapy, regardless of their hormone receptor status or

human epidermal growth factor receptor 2 status (125). The efficacy

of bisphosphonates in reducing the incidence of bone metastases in

patients with breast cancer was demonstrated through clinical

randomized controlled trials as early as the 1990s. In a clinical

trial comprising 302 patients with primary breast cancer at high risk

for distal metastases, clodronate effectively mitigated the risk of

bone and visceral metastases (131). However, a separate trial

showed that clodronate was significantly more effective in

inhibiting tumor metastasis among patients with breast cancer,

specifically those aged ≥50 years, compared to the control group

receiving a placebo (132). The authors attributed the variations in

bisphosphonate effectiveness across various age groups to

dissimilarities in estrogen levels and bone turnover mechanisms

during the menopausal transition. An increasing number of clinical

trials have subsequently aimed to further elucidate the specific

subset of patients with breast cancer who may derive therapeutic

benefits from bisphosphonate medication. A collaborative meta-

analysis conducted by the Early Breast Cancer Trialists’

Collaborative Group examined the impact of adjuvant

bisphosphonate treatment on breast cancer across multiple trials

(133). Their study found that bisphosphonates can reduce the
TABLE 1 Clinical trial of bisphosphonates in the treatment of bone metastases.

Medication Tumor Patients Outcomes Study Reference

Clodronate Breast cancer Older postmenopausal patients Preventing
metastases

NSABP B-34 (117)

Breast cancer Primary breast cancer patients Preventing
metastases, extend

OS and DFS

(118)

Breast cancer Early-stage breast cancer Reducing SREs (119)

Breast cancer Node-positive breast cancer Negative (120)

Prostate cancer Nonmetastatic prostate cancer Negative MRC PR04 (121)

Prostate cancer Metastatic prostate cancer Negative MRC PR05 (117)

Ibandronate Breast cancer Patients with postmenopausal ER+
breast cancer

Negative TEAM-IIB (122)

Breast cancer Patients with high-risk early-stage
breast cancer

Negative GAIN Study (123)

Zoledronic acid Breast cancer Women with established menopause Preventing
metastases

the
AZURE trial

(124)

Breast cancer Patients with MAF-negative tumor Preventing
metastases and
reducing SREs

AZURE trial (125)

Breast cancer After disease recurrence Reducing SREs the
AZURE trial

(123)

Prostate cancer Patients with high-risk nonmetastatic
prostate cancer

Negative ZEUS (126)

Prostate cancer Treatment-naive prostate cancer Delay the
first SREs

ZAPCA (122)
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recurrence of breast cancer in the skeletal system and improve

overall survival outcomes for individuals diagnosed with breast

cancer. However, these advantages are only noticed in females who

commenced the medication after the onset of menopause (133).

A recent clinical trial addressed the question of whether

different bisphosphonate agents exhibit varying effectiveness in

treating bone metastases in patients with breast cancer. The

SWOG/Alliance/Canadian Cancer Trials Group/ECOG-ACRIN/

NRG Oncology Study S0307 evaluated the effectiveness of three

bisphosphonates (zoledronic acid, clodronate, and ibandronate) in

patients with early-stage breast cancer (15). Neither the overall trial

nor subgroup analyses showed any evidence of variations in efficacy

among these three bisphosphonates in preventing bone metastatic

disease. The authors also concluded that bisphosphonates should be

incorporated into the treatment of postmenopausal individuals with

early-stage breast cancer (15). However, administering oral

ibandronate as an adjuvant treatment did not significantly

improve the outcomes of patients with high-risk early-stage breast

cancer who had received dose-dense chemotherapy (134). Notably,

the outcomes of the TEAM-IIB study do not validate the efficacy of

ibandronate in managing metastases among postmenopausal

females diagnosed with estrogen receptor-positive (ER+) breast

cancer (135).

To further optimize the indications for bisphosphonate

treatment for bone metastasis, several clinical trials have

investigated the differences in gene expression in subpopulations.

The AZURE trial suggested that MAF can serve as a biological

indicator to identify the potential beneficiary population of

bisphosphonate treatment in patients with breast cancer (136).

Patients with MAF-negative tumors exhibited prolonged invasive

disease-free survival when treated with zoledronic acid (HR = 0.74–

0.98; 95% confidence interval [CI] = 0.64–0.98) compared with

those who received a placebo. However, patients with MAF

positivity did not show this trend. Moreover, in a population of

young menopausal patients, zoledronic acid treatment in MAF-

negative patients was associated with longer overall survival (HR =

2.27; 95% CI = 1.04–4.93) and invasive disease-free survival (HR =
Frontiers in Oncology 10
2.47; 95% CI = 1.23–4.97) compared with the control

treatment (136).
5.2 Denosumab

Denosumab, a human monoclonal antibody targeting RANKL,

has been approved for treating osteoporosis and giant cell tumors of

the bone. It has shown greater effectiveness than bisphosphonates in

managing osteoporosis (137). Furthermore, postmenopausal women

may safely switch from bisphosphonate treatment to denosumab, as

the latter has shown increased effectiveness in enhancing bone

mineral density than the continued use of bisphosphonates (138).

Moreover, compared with bisphosphonates, denosumab is a more

selective inhibitor of osteoclasts, and a phase III clinical trial revealed

that denosumab is more effective in preventing malignant bone

metastases (Table 2) (142).

Denosumab does not impact overall survival in patients with

castration-resistant prostate cancer. However, in a previous study,

compared with placebo, denosumab significantly enhanced bone

metastasis-free survival (29.5 [95% CI = 25.4–33.3] vs. 25.2 [95%

CI = 22.2–29.5] months; HR = 0.85, 95% CI = 0.73–0.98, p = 0.028)

and significantly delayed time to first bone metastasis (33.2 [95%

CI = 29.5–38.0] vs. 29.5 [22.4–33.1] months; HR = 0.84, 95% CI =

0.71–0.98, p = 0.032) (143). In the ABCSG-18 clinical trial, which

exclusively included postmenopausal patients with breast cancer

(early-stage, hormone receptor-positive, nonmetastatic

adenocarcinoma of the breast), the administration of denosumab

as adjuvant therapy improved disease-free survival (14).

Nevertheless, the results of this study do not conclusively

demonstrate the efficacy of denosumab in preventing the

occurrence of bone metastasis in patients with breast cancer, as

the distal metastases were not histologically confirmed during

the trial.

Recent clinical trial data involving more recruited individuals

have also raised doubts about the effectiveness of denosumab in

preventing malignant bone metastases. The absence of guideline
TABLE 2 Clinical trial of denosumab in the treatment of bone metastases.

Tumor Patients Outcomes Study Reference

Prostate
cancer

Patients with castration-resistant prostate cancer Increased bone-metastasis-free survival; delayed time to
first bone metastasis

(134)

Breast
cancer

Patients with stage II or III breast cancer Negative D-
CARE

(13)

Breast
cancer

Postmenopausal patients with hormone receptor-positive
breast cancer

Preventing metastases and extending OS and DFS ABCSG-
18

(14)

Prostate
cancer

Patients with castration-resistant prostate cancer, those with no
previous bisphosphonate exposure, and those with radiographic

evidence of bone metastasis

Reduced the risk of skeletal complications compared with
zoledronic acid

(139)

Prostate
cancer

Patients with nonmetastatic castration-resistant prostate cancer Consistently increased bone metastasis-free survival in
men, with reduced PSA doubling time

(140)

Breast
cancer

Women with breast cancer and skeletal metastases Administering ZA every 3 months was more cost-
effective in reducing the risks of SRE than the monthly

administration of denosumab

CALGB
70604

(141)
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endorsement for the use of denosumab in preventing bone

metastases contrasts with the well-documented effectiveness of

bisphosphonates. Following the guidelines released by ASCO-

CCO in 2021, the use of adjuvant denosumab to prevent breast

cancer recurrence is not recommended due to inconsistent findings

in studies involving individuals with early-stage breast cancer (125).

A phase III multicenter randomized controlled clinical study

involving 4509 patients with breast cancer over a 5-year follow-

up period found that adjuvant denosumab did not improve

metastasis- and disease-free survival in patients with early-stage

breast cancer (13). Additionally, there were no clinical benefits to

using denosumab as an adjuvant to chemotherapy in treating

nonsmall cell lung cancer (144).

The efficacy of denosumab was found to be superior to that of

zoledronic acid regarding SRE prevention in patients with bone

metastasis (145). Although the efficacy of denosumab as a therapy

for SREs is evident, its increased application has revealed its

complications. For example, the termination of denosumab

treatment is associated with a rebound effect characterized by an

increased likelihood of numerous spontaneous vertebral

fractures (146).
5.3 Src inhibitors

The Src family kinases are recognized for their pivotal function

in transmitting signals across diverse cellular processes and in bone

metastasis formation. Suppressing Src induces a decrease in

osteoclastic bone resorption, indicating its potential as a viable

treatment strategy for medical disorders characterized by excessive

bone resorption, including metastatic bone diseases and

osteoporosis (147). Several ongoing clinical trials are assessing the

effectiveness of Src kinase inhibitors, including dasatinib, KX2–391,

bosutinib, AZD0424, and saracatinib (148).

According to a phase II clinical trial, dasatinib is both safe and

effective in safeguarding bone integrity among patients with

metastatic castration-resistant prostate cancer who had not

received prior chemotherapy (149). The findings of the trial

demonstrated that the administration of dasatinib induced a

reduction in alkaline phosphatase levels, indicating its

effectiveness in mitigating the development of new bone lesions.

Nevertheless, the precise impact of dasatinib on bone lesions

remains unclear. A subsequent phase III trial reported that

dasatinib provided no significant benefit when combined with

chemotherapy for prostate cancer (150). In particular, the

READY trial demonstrated no significant difference in the

survival rates of patients with metastatic castration-resistant

prostate cancer who received dasatinib + docetaxel and those who

only received docetaxel (21.5 [95% CI = 20.3–22.8] vs. 21.2 [95%

CI = 20.0–23.4] months; HR = 0.99, 95.5% CI = 0.87–1.13, p = 0.90)

(150). The investigators concluded that the addition of dasatinib to

the treatment showed no significant improvement in the levels of

bone turnover markers. Furthermore, they revealed that the

suppressive impact on bone lesions may be attributed to

docetaxel. Owing to the disappointing outcomes of several clinical

trials on the effectiveness of dasatinib as a treatment for breast
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an independent therapy remains controversial. Alternatively,

studies have suggested that the application of dasatinib may be

limited to a certain group of patients exhibiting molecular

expression or may be combined with other pharmaceutical

medications in the future (151). Moreover, clinical trials have

shown that Src enzyme inhibitors, including bosutinib,

saracatinib, and KX2–391, exhibit no significant beneficial impact

on bone lesions or SREs (152–154).

Although Src inhibitors have shown potential efficacy in

alleviating bone resorption in certain contexts, further

investigation is warranted to optimize their ability to target bones

before realizing their potential advantages in clinical trials.
5.4 Cathepsin K inhibitors

Although preclinical investigations have established a strong

correlation between cathepsin K and the occurrence of bone

metastases, clinical trials have predominantly prioritized the use

of cathepsin K inhibitors for treating osteoporosis and arthritis. To

date, no cathepsin K inhibitor has received approval from the Food

and Drug Administration. Odanacatib has emerged as the only

candidate for inhibiting cathepsin K and has demonstrated

considerable therapeutic efficacy in phase III clinical trials in

patients with postmenopausal osteoporosis (155). A single short-

term, double-blind clinical trial provisionally demonstrated the

effectiveness of odanacatib in managing bone metastases in

patients with breast cancer, as evidenced by one of the limited

clinical trials conducted on this topic (156). The trial provided

evidence regarding the inhibitory effects of odanacatib on the

expression levels of osteolysis marker (urinary N-telopeptide of

type I collagen corrected for creatinine) in patients with breast

cancer, similar to the effects of zoledronic acid. Clinical trials on

osteoporosis have recently been discontinued due to the observed

increase in cardiovascular events associated with the administration

of odanacatib. Consequently, the investigators have decided to

refrain from allocating resources toward further research (157).

Several cathepsin K inhibitors have been eliminated by researchers

due to the severe adverse effects observed during clinical trials.
5.5 Everolimus

Everolimus is an mTOR inhibitor that suppresses the pro-

osteoclast paracrine pathway of tumor cells, thereby inhibiting

bone metastasis (158). In the BOLERO-2 trial, patients with bone

metastasis who received everolimus showed a significant

improvement in bone health, with a considerable reduction in

skeletal tumor growth, compared with those in the control group

(159). Furthermore, the levels of bone resorptive markers (BSAP,

P1NP, and CTX) in patients treated with everolimus decreased

significantly, which was attributed to the antitumor action of the

drug, inducing a reduction in osteoclast function. The RADAR

study suggested that everolimus can provide long-term benefits in
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patients with bone metastases, as long as no progression occurs

during the first 8 weeks of therapy (160).
6 Challenges and future research

The current approach to managing bone metastases involves a

combination of several therapeutic modalities. Preclinical research

often lack direct applicability to real-world applications, and the use

of bisphosphonates and denosumab is limited to their roles as

adjuvant therapies. Nevertheless, formulating theoretical

frameworks remains the primary method through which we can

understand the complexity of bone metastasis. Researchers have

recently found that malignant tumors expressing Cyp11a1 produce

the steroid pregnenolone, which can promote the growth of bone

metastases by enhancing osteoclastogenesis (161).However,

researchers encounter various challenges in conducting preclinical

and clinical investigations aimed at treating bone metastases.

Regarding clinical studies, the methodology used for the clinical

evaluation of bone metastases differs from that used for primary

tumors. Evaluating treatment efficacy in metastatic bone disease is

also distinctive, focusing on specific criteria that consider both bone

repair and deterioration rather than just changes in tumor size.

Furthermore, assessing responses in bone metastases poses

challenges due to the gradual and inconspicuous nature of the

healing process. The predominant clinical investigations for bone

metastases rely on imaging modalities, such as X-ray, computer

tomography, magnetic resonance imaging, and Positron Emission

Tomography. However, the precision of these examinations is often

insufficient, limiting their capacity to identify early-stage

microlesions and evaluate disease progression. Assessing multifocal

bone metastases that affect both the axial and appendicular skeletons

can present difficulties and inaccuracies using current imaging

modalities. The absence of standardization and harmonization in

clinical assessment methods across trials further complicates the

precise comparison and interpretation of outcomes. This limitation

hinders the ability to ascertain treatment efficacy based solely on

individual study results. In the future, the use of nanoprobes holds

promise for enhancing the diagnosis and assessment of bone

metastases. These nanoprobes can provide extensive insights into

several aspects, including anatomical structure, functional

metabolism, physiological characteristics, and pathological profiles,

with multimodal imaging functions for detecting ultrasmall lesions

in bones and multiorgan cancer metastases (162).

The translatability and correlation between therapeutic

responses observed in preclinical models and those observed in

human clinical trials are often inadequate. This inadequacy can be

attributed to the challenges encountered in preclinical studies on

bone metastases. Notably, prevalent research models exhibit

limitations in accurately replicating human bone metastases. Both

animal and in vitro models have limitations in fully replicating the

components and natural processes present in the bone metastasis

microenvironment in humans. Additionally, the precise

mechanisms underlying bone metastasis remain elusive, and

investigations into these mechanisms are limited by the inability
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interactions between malignant cells and the bone niche within a

living animal through intact bone requires high-resolution deep-

tissue imaging, making it an essential area of research. Although

high-resolution imaging protocols for deep-tissue observation exist,

they are not widely available.

The current understanding of osteoclast heterogeneity is limited

and requires further exploration. The osteoclast phenotype fluctuates

based on various physiological and pathological conditions, and

notable phenotypic differences exist among various bones. The rapid

development of single-cell sequencing technology has facilitated

these findings and provided a feasible approach for elucidating the

mechanisms underlying bone metastasis. The use of single-cell

sequencing technologies presents a viable approach for obtaining

novel insights into the biological mechanisms underlying the

development and advancement of bone metastasis. Moreover,

single-cell methodologies have the potential to reveal the

molecular mechanisms underlying the metastatic colonization of

bones by accounting for significant cellular heterogeneity, plasticity,

and evolutionary changes that occur during metastasis and within

the complex bone microenvironment. Future in-depth studies on

osteoclast heterogeneity can help reveal the mechanisms underlying

bone metastasis, improve treatment targeting, and address current

clinical challenges in treating bone metastasis. The combination of

high-resolution single-cell and spatial technologies in a

multidimensional approach has highlighted the significance of the

complete cancer ecosystem, which may provide insights into the

intricate mechanisms underlying bone metastasis in the future.
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