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cancer patients
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Background: The immune response against tumors relies on distinguishing

between self and non-self, the basis of cancer immunotherapy. Neoantigens

from somatic mutations are central to many immunotherapeutic strategies and

understanding their landscape in breast cancer is crucial for targeted

interventions. We aimed to profile neoantigens in Kenyan breast cancer

patients using genomic DNA and total RNA from paired tumor and adjacent

non-cancerous tissue samples of 23 patients.

Methods: We sequenced the genome-wide exome (WES) and RNA, from which

somatic mutations were identified and their expression quantified, respectively.

Neoantigen prediction focused on human leukocyte antigens (HLA) crucial to

cancer, HLA type I. HLA alleles were predicted from WES data covering the

adjacent non-cancerous tissue samples, identifying four alleles that were present

in at least 50% of the patients. Neoantigens were deemed potentially

immunogenic if their predicted median IC50 (half-maximal inhibitory

concentration) binding scores were ≤500nM and were expressed [transcripts

per million (TPM) >1] in tumor samples.

Results: An average of 1465 neoantigens covering 10260 genes had ≤500nM

median IC50 binding score and >1 TPM in the 23 patients and their presence

significantly correlated with the somatic mutations (R2 = 0.570, P=0.001).

Assessing 58 genes reported in the catalog of somatic mutations in cancer

(COSMIC, v99) to be commonly mutated in breast cancer, 44 (76%) produced >2

neoantigens among the 23 patients, with amean of 10.5 ranging from 2 to 93. For

the 44 genes, a total of 477 putative neoantigens were identified, predominantly

derived from missense mutations (88%), indels (6%), and frameshift mutations

(6%). Notably, 78% of the putative breast cancer neoantigens were patient-

specific. HLA-C*06:01 allele was associated with the majority of neoantigens

(194), followed by HLA-A*30:01 (131), HLA-A*02:01 (103), and HLA-B*58:01 (49).

Among the genes of interest that produced putative neoantigens were MUC17,

TTN,MUC16, AKAP9, NEB, RP1L1, CDH23, PCDHB10, BRCA2, TP53, TG, and RB1.
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Conclusions: The unique neoantigen profiles in our patient group highlight the

potential of immunotherapy in personalized breast cancer treatment as well as

potential biomarkers for prognosis. The unique mutations producing these

neoantigens, compared to other populations, provide an opportunity for

validation in a much larger sample cohort.
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Introduction

Breast cancer is among the most frequent causes of cancer-related

mortality in women. Disease heterogeneity and limited immunogenicity

contribute to the lethality of breast cancer (1). Immune evasion, an

important hallmark of cancer, adds to the complexity of cancer burden

through induction of immunosuppression (2). Immune checkpoint

blockade (CKB) therapy has been developed to target and block

immune regulatory molecules (PD-1/PD-L1 and CTLA-4) and in the

process reactivate T cell immunity (3). This approach has been reported

to improve clinical responses and survival, especially in tumors with

high mutational burdens, such as lung cancer and melanoma (4).

However, CKB therapy is not universally successful among all patients

and shows increased efficacy with higher mutational burden tumors (5).

Another immunotherapy approach that has been tested in clinical

studies is the targeting of tumor-associated antigens (TAAs) that are

expressed in tumors at abnormally high levels and rarely detectable in

normal tissues (6). One of the limitations of this therapy approach is

that many TAAs represent normal self-antigens and thus can be

tolerated by T-cells, resulting in poor immune response (1).

Considering the lower mutational burden in breast cancer, both CKB

and TAAs immunotherapy have had limited success (7).

Tumor neoantigens are tumor-specific antigens derived from

somatic mutations in expressed genes and are presentable to the

major histocompatibility complex (MHC) by both class I human

leukocyte antigen (HLA-I) molecules present on surface of cancer

cell, as well as class II HLA molecules present on professional

antigen-presenting cells (8). This elicits anti-tumor immune

responses that have the potential of eliminating the tumor cells

with minimal off-target effects (9). Neoantigens are encoded in

various mutational types, including single nucleotide substitution,

insertion and deletions (INDELs), splice sites, stop codons gains

and silent change, which can result in translational frameshifts or

novel open reading frames (1). As such, these neoantigens offer an

advantage over TAAs in that they are only expressed by cancer

cells and not by normal cells, which enables specific recognition by

the immune system (1). Although some neoantigens are shared

among patients, most of them are patient-specific and are not

subject to immune tolerance mechanisms (10). The specificity of
02
neoantigens could provide an opportunity for future personalized

therapy in a cancer with a low tumor mutational burden and a

high disease heterogeneity, such as breast cancer. Moreover,

neoantigens can potentially be used as biomarkers in cancer

immunotherapy to assess or predict the response of a patient to

treatment (1).

Despite advancements in next generation sequencing and high-

performance computing that has resulted in improved cancer

immunotherapy research and neoantigen-based treatments, there

remains a scarcity of information regarding neoantigens in specific

populations from sub-Saharan African countries such as Kenya.

This lack of data poses a significant challenge in tailoring

immunotherapeutic strategies for breast cancer patients in such

regions that have a high cancer burden, especially when

compounded by germline ancestral factors and a distinct

mutational spectrum that may influence tumor biology and

immune response. Thus, it is critical to profile the neoantigen

burden in this population to contribute to the global collection of

breast cancer immunogenic antigens for future drug development.

To this end, we sought to profile neoantigens in Kenyan women

diagnosed with breast cancer in silico through analysis of the whole

exome and RNA sequencing data from 23 patients. We

characterized the mutation burden for each patient using WES,

identified gene expression patterns in tumor tissue, and predicted

the putative neoantigens incorporating these datasets.
Materials and methods

Patients and samples

Tumor and adjacent normal tissue pairs were obtained from 23

breast cancer patients at the Aga Khan Hospital, Nairobi, Kenya

and AIC Kijabe Hospital, Kijabe, Kenya between 2019 and 2021.

Samples were collected through surgical excision, after which

tissues were snap frozen in liquid nitrogen and temporarily stored

at Aga Khan Hospital. Frozen tissue samples were shipped to the

National Cancer Institute, Bethesda, MD, USA, for sequencing.

Prior to tissue collection, all patients provided written informed
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consent and the study was approved by Research and Ethics

Committees at Aga Khan University Hospital, Nairobi (Ref: 2018/

REC-80) and AIC Kijabe Hospital (KH IERC-02718/2019).
Whole-exome sequencing and
RNA-sequencing

Genomic DNA was extracted from the samples using the DNeasy

Blood and Tissue Kit (Qiagen, Hilden, Germany), following

manufacturer’s instructions. Total RNA was extracted from the frozen

tissues using TRIzol reagent (Invitrogen). WES was performed by the

company, Psomagen (https://www.psomagen.com/). This service

provider is Clinical Laboratory Improvement Amendments-

certified and College of American Pathologists (CAP)-accredited,

achieving a sequence depth of 250x for tumor tissues and 150x for

adjacent non-cancerous tissues, as previously described by us (11).

Total RNA from the 23 sample pairs was processed by a NCI Leidos

core facility, where library preparation was performed using the

TruSeq Poly A kit (19). Samples were sequenced on a Novaseq

system with 150 bp paired-end reads and a depth of 30

million reads.
Reads mapping and variant calling

For WES, raw reads were quality checked using FASTQC (12)

and results summarized using MultiQC (13). The reads were

trimmed for low quality reads and adapter sequences using

Trimmomatic (14) and quality-checked again using FASTQC and

MultiQC. All samples passed the QC test after trimming and the

reads were aligned using BWA-MEM (15) to the hg38 human

reference genome, where >95% of the reads aligned properly to the

genome. The aligned reads were deduplicated and read groups added

to the deduplicated bam files using Picard. This was followed by base

quality recalibration in GATK (16). Prior to variant calling, a panel of

normal (PoN) was built using MuTect2 utilizing the reads from non-

cancerous tissue. This was done to exclude artifacts and potential

germline mutations in subsequent steps. Somatic variant calling was

performed using MuTect2 (16) in paired tumor-normal mode

utilizing the panel of normal option. Variants were normalized

using a variant tool set (vt; 17), filtered using GATK and

functional/consequence-annotated using a variant effect predictor

(VEP; 18). Annotated variants were converted to MAF files using

vcf2maf (19) and concatenated into a single file. The MAF files were

imported into R package maftools (20) for further processing.

For RNA-seq, a quality check was performed using FASTQC

and MultiQC after which the reads were trimmed and quality

checked again. All samples passed the quality check and the reads

were pseudo-aligned to the hg38 reference genome using Kallisto

aligner (21) with default settings to obtain count matrix. Alignment

statistics showed that over >50% reads mapped uniquely to the

genome. The raw counts were normalized into estimated

Transcripts Per Million (TPM), and scaled using the average

transcript length over samples and the library size by tximport (22).
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Variant expression annotation

VCF files containing the variants were annotated for expression

using the vcf-expression-annotator (https://github.com/griffithlab/

VAtools) with default setting except for choosing the use of gene

names instead of transcripts and thereby ignoring the Ensembl id

version. The tool takes the output of Kallisto and adds the data

contained in the file to the VEP annotated VCF’s INFO column.

Each of the variant annotated gets its expression value (TPM) added

to the annotation information and this is used to determine the level

of variant expression during neoantigen filtering.
Neoantigen prediction

Human leukocyte antigen (HLA) class I alleles (HLA a, b and c)

were predicted from each patient’s normal sample exome-seq data

using HLA-HD v.1.2.1 (23). Here, the putative HLA reads are

aligned to an imputed library of full-length HLA alleles.

Neoantigens were then predicted using pVACseq (24) with

MHCflurry, MHCnuggetsI, SMM, and SMMPMBEC algorithms

and keeping the default parameters, except for turning off the VAF

and coverage filters. Here, the neoepitopes that could bind to the

patient-specific HLA alleles were predicted from the Immune

Epitope Database (IEDB; 25). This involved matching patient

HLA type to the existing IEDB list keeping all amino acids with

lengths for 9, 10 and 11-mers. Predicted epitopes were filtered to

retain only those with high affinity (IC50 ≤ 500nM) and were

expressed (transcripts per million, TPM>1) in tumor samples. The

bioinformatic analysis workflow is outlined in Figure 1.

Sample summary statistics and the pairwise tests for differences

among mutations and neoantigens abundance among the BC

subtypes using Wilcoxon test and visualization of the results were

performed in R software (26).
Results

Patients and sample characteristics

The demographic and clinical characteristics of the 23 breast

cancer patients are summarized in Supplementary Table S1. We

grouped the tumors into 3 subtypes based on expression of either

the hormone receptors (HR) or human epidermal growth factor

receptor 2 (HER2) (7): those that were HER2+ regardless of the HR

status, those that were negative for all hormone receptors (triple

negative breast cancer; TNBC) and those that were HR+ and HER2-

. Majority of the samples were HR+/HER2- constituting 52.2%,

followed by HER2+ at 34.8% and TNBC at 13.0%. Most of the

patients had invasive carcinoma (invasive ductal carcinoma,

78.26% and invasive carcinoma; 4.35%). For tumor grade, 65.22%

of the patients had grade 3 tumors (65.22%), while the rest

had grade 2 tumors (34.78%). Clinically, 39.13% of the

patients were in stage II, 30.44% in stage III, and 8.7% in stage I

(Supplementary Table S1).
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Mutation profiles for the 23 patients

Across all genes, the average number of detected mutations in

the 23 patients was 2809 mutations. Considering the different

subtypes, TNBC had the highest average number of mutations at

3202, followed by HR+/HER2- at 2757, and HER2+ at 2740

mutations (Supplementary Figure S1). From the catalog of

somatic mutations in cancer (COSMIC, v99), we identified 73

genes reported to be mutated in breast cancer and among those,

62 (84.9%) had at least one mutation in our samples. The mutation

characteristics are summarised in (Figures 2A–F). In brief, the

mutation frequency among the 62 genes ranged from 1 to 55

mutations per individual. The majority of the mutations were of

the missense type, most of which were substitutions of C>T

(Figure 2A). The top 10 mutated genes among the 62 are shown

in Figure 3. Four genes (MUC16, MUC17, TTN, RP1L1) were

altered in more than 95% of the patients (Figure 3). Moreover,

mutations in genes TP53-ERBB3, PTEN-CFAP46 were found to

significantly co-occur, while BRCA1-MUC17 mutations were

significantly mutually exclusive (P<0.05) (Figure 4). Furthermore,

the majority of the single nucleotide mutations were substitutions
Frontiers in Oncology 04
were most uncommon (Figure 5A). Transitions occurred more

frequently than transversions in these substitutions (Figure 5B),

and there was obvious variation in proportions of each substitution

among the 23 samples (Figure 5C).
Neoantigen burden

In an analysis that included all the genes (10260), an average of

1465 neoantigens had a ≤500nM median IC50 binding score and >1

TPM expression level in any of the 23 patients and their presence

significantly correlated with the somatic mutations (R2 = 0.570,

P=0.001) (Figure 6). Out of the 62 COSMIC genes that were

mutated in the tumor tissue, 58 genes produced at least one

neoantigen. After filtering for genes that produced at least two

neoantigens, 44 genes had a mean of 10.5 neoantigens ranging

from 2 to 93. A total of 477 putative neoantigens were identified in

these 44 genes across the 23 patients (Figure 7) predominantly

derived from missense mutations (88%), indels (6%) and frameshift

mutations (6%) (Figure 8). Most of the neoantigens were produced in

the TNBC subtype with an average of 25 neoantigens, followed by HR
FIGURE 1

Workflow for neoantigen prediction from WES and RNA sequencing data. Fastq files were quality checked, trimmed and aligned to the hg38
genome. Variant calling was performed following GATK best practice, while gene expression was quantified using Kallisto. Variants were annotated
and expression data added, after which neoantigen prediction was performed in PVACseq pipeline.
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+/HER2- at 20 neoantigens and HER2+ with an average of 19

neoantigens (Supplementary Figure S1). Notably, 78% of the

putative breast cancer neoantigens were patient-specific

(Supplementary Table S2). HLA-C*06:01 allele was associated with

majority of neoantigens (194), followed by HLA-A*30:01 (131),

HLA-A*02:01 (103), and HLA-B*58:01 (49). Among the genes of

interest that produced putative neoantigens include MUC17, TTN,

MUC16, AKAP9, NEB, RP1L1, CDH23, PCDHB10, BRCA2, TP53,

TG, RB1 among others (Figure 7; Supplementary Table S3).
Discussion

We analyzed the mutational burden and predicted the

neoantigen repertoire in 23 Kenyan breast cancer patients using

WES and RNA sequencing data. Among the different breast cancer
Frontiers in Oncology 05
subtypes, we found that the TNBC molecular subtype had the

highest mutational and neoantigen burden although there was no

significant difference among the subtypes (Supplementary Figure

S1, Supplementary Table S4). This is consistent with other studies

(24). TNBC origin is not well understood although it is reported to

be heterogeneous in nature relying on different signaling pathways

such as JAK/STAT, PI3K/AKT/mTOR or NOTCH, cell cycle

regulators (TP53) and genome integrity genes (BRCA1/2) (1).

This makes it a disease that is difficult to manage because we do

not have a clear understanding of the molecular mechanisms

driving it. Yet, the high mutational and neoantigens burden

combined with the patient specificity may provide an untapped

opportunity to design and optimize personalized immunotherapy

for this subtype.

In contrast to most populations (Caucasian American, African

American, Asian and European) where TP53, PIK3CA and GATA3
FIGURE 2

Mutational profiles in 23 patients for 73 genes reported to be mutated in breast cancer. (A) variant classes abundance in the total mutations,
(B) variant types that include single nucleotide polymorphism (SNP), insertions (INS) and deletions (DEL), (C) proportion of different single nucleotide
variant (SNV), (D) distribution of variants per sample with colors representing the different variant classes denoted in A, (E) summary of the variant
classes distribution and numbers in all samples, (F) Top 10 mutated genes, with colors representing different variant classes and the percentages
indicating the proportion of samples in which the genes mutations are present.
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are the most mutated genes (11, 27, 28), in our study population,

three genesMUC16,MUC17 and TTN were highly mutated in over

50% of the samples and produced the highest number of

neoantigens. MUC16 has been reported to take part in breast

cancer progression and metastasis when overexpressed due to its

influence on cell cycle and survival through the JAK2/STAT3

pathway (29). It has been reported as one of the highly mutated

genes in breast cancer (30). MUC16 has also been described as a

marker for disease progression, recurrence, and chemotherapy

response (31). A high mutation frequency for MUC17 and TTN

have recently been reported as an unexpected finding in a study of

early onset breast cancer (EOBC) in Taiwanese women (32).

MUC17 may influence chemoresistance and has recently been

reported as a driver gene in adult gliomas (33, 34). For TTN, Oh

et al. (35) found that mutations in TTN correlate with tumor

mutational burden and high microsatellite instability, which is

associated with poor breast cancer prognosis. Thus, the role of

MUC17 and TTN should further be investigated on how mutations

in them may relate to early onset of breast cancer in Kenyan

patients (11).

We found that TP53 gene mutations significantly co-occurred

with ERBB3mutations and so did mutations in PTEN and CFAP46,

whereas BRCA1 and MUC17 mutations never co-occurred. TP53
Frontiers in Oncology 06
mutations are associated with tumor aggression and are found in

about half of HER2-amplified tumors (36). The TP53 mutations

have been implicated in poor prognosis of HER2+ subtypes

compared to other subtypes (37). PTEN is a tumor suppressor

gene, whose mutation has been associated with initiation,

progression, and metastasis of breast cancer (38). On the other

hand, although CFAP46 role in breast cancer is not yet clear, gene

fusion involving various other genes such as VTI1A (reported to

cause the initiation of glioma and other cancers) has been reported

to play a role in breast cancer (39).

Breast tumors with either germline or somatic BRCA1mutations

show no difference in their cancer biology, but inherited mutations in

this gene confers a very high lifetime risk of developing breast cancer

(40–42). This could be the reason such mutations do not necessarily

need to co-occur with other gene mutations to initiate or promote

breast cancer progression. In our study, BRCA1 was not among the

highly mutated genes considering all mutations but was among the

genes with high number of missense mutations (Figure 4). In

contrast, MUC17 mutations were among the most prevalent. Given

the role of MUC17 mutations in chemoresistance and in early onset

breast cancer (33, 34), its high prevalence and exclusive occurrence in

the Kenyan samples that are prone to early onset of breast cancer

should be investigated further.
FIGURE 3

Top 10 genes mutated in >50% of the samples. Each color corresponds to a variant class listed at the bottom of the figure apart from gray, which
indicates absence of mutation.
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FIGURE 4

Probability of mutations in any two genes co-occurrence or being mutually exclusive in the breast cancer genes for the 23 Kenyan patients. The
numbers in parenthesis alongside each gene represents the number of missense mutations for that gene in the samples.
FIGURE 5

(A) Percentage of various substitution types in all samples, (B) percentage of transversions (Tv) (interchange of purines for pyrimidine) and transition
(Ti) (interchange of either purines or pyrimidines) for all samples, (C) percentage of the substitutions in each of the samples with colors denoting the
various types in A.
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FIGURE 6

Correlation between tumor mutational burden and neoantigen burden for all the genes in the 23 patients (R2 = 0.570, P=0.001). The neoantigens
are filtered for high affinity (IC50 ≤ 500nM) and expression (transcripts per million, TPM>1) in tumor samples.
FIGURE 7

Frequency of neoantigens derived from the COSMIC genes that were mutated in the tumor tissue and produced >1 neoantigens for the 23 patients.
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Similar to most studies on neoantigen prediction in breast cancer,

we have found that neoantigens burden is positively correlated with

tumor mutational burden and that neoantigens were patient-specific (7,

43). Although most of the top 10 mutated genes (80%) were also the top

10 in the number of neoantigens generated, genes likeTP53 and PIK3CA

that are reported to be highly mutated in most patient cohorts were not

among the top 10 mutated genes in this study, but generated among the

highest number of neoantigens (Figures 6, 7). ARID1A gene, which

showed unique mutational profile in Kenyan population using exome

data compared to African American and Asian population (11), was not

among the highly mutated, but produced neoantigens. We found that

most neoantigens were derived predominantly frommissense mutations

(88%), compared to indels and frameshift mutations (12%). This is

consistent with other studies although the majority do not predict

neoantigens from indels and frameshift mutations (44). Similar to

other studies, the TNBC subtype had more neoantigens, compared to

HR+/HER2- and HER2+ subtypes (7, 44).

In our small sample cohort, we have been able to identify

putative neoantigens that show patient-specificity and thus are
Frontiers in Oncology 09
important in tailored treatment. Interestingly, the mutations and

neoantigens in this population are predominantly derived from a

unique set of genes (MUC16, MUC17, TTN) compared to other

populations, which provide an opportunity for validation in a much

larger sample cohort. We predicted neoantigens based on binding

affinity to HLA class I only as it is the most important class of

antigen binding proteins in cancer immunity. However, HLA class

II-based neoantigens may also have a role in tumor immune

response (45). Moreover, we did not investigate the expression of

the predicted neoantigens on tumor cells alongside the MHC class I

molecules and their ability to activate T cells. This being a discovery

study, validation of the findings need to be done in a larger cohort

while addressing the highlighted limitations of this study.

Taken together, our findings corroborate the neoantigen profile

in breast cancer, highlighting the patient specificity in Kenyan

population breast cancer mutational and neoantigens signatures.

We also describe putative neoantigens that could be used as markers

for breast cancer diagnosis, treatment monitoring, and development

of novel immunotherapy.
FIGURE 8

Summary of mutation types that produced putative neoantigens for the COSMIC genes that were mutated in the tumor tissue in the 23
Kenyan patients.
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