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Comparison of diagnostic
accuracy of radiomics
parameter maps and
standard reconstruction for the
detection of liver lesions in
computed tomography
Alexander Hertel*, Mustafa Kuru, Fabian Tollens,
Hishan Tharmaseelan, Dominik Nörenberg, Nils Rathmann,
Stefan O. Schoenberg and Matthias F. Froelich

Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg
University, Mannheim, Germany
Background: The liver is a frequent location of metastatic disease in various

malignant tumor entities. Computed tomography (CT) is the most frequently

employed modality for initial diagnosis. However, liver metastases may only be

delineated vaguely on CT. Calculating radiomics features in feature maps can

unravel textures not visible to the human eye on a standard CT reconstruction

(SCTR). This study aimed to investigate the comparative diagnostic accuracy of

radiomics feature maps and SCTR for liver metastases.

Materials and methods: Forty-seven patients with hepatic metastatic colorectal

cancer were retrospectively enrolled. Whole-liver maps of original radiomics

features were generated. A representative feature was selected for each feature

class based on the visualization of example lesions from five patients. Thesemaps

and the conventional CT image data were viewed and evaluated by four readers

in terms of liver parenchyma, number of lesions, visual contrast of lesions and

diagnostic confidence. T-tests and chi²-tests were performed with a significance

cut off of p<0.05 to compare the feature maps with SCRT, and the data were

visualized as boxplots.

Results: Regarding the number of lesions detected, SCTR showed superior

performance compared to radiomics maps. However, the feature map for

firstorder RootMeanSquared was ranked superior in terms of very high visual

contrast in 57.4% of cases, compared to 41.0% in standard reconstructions (p <

0.001). All other radiomics maps ranked significantly lower in visual contrast when

compared to SCTR. For diagnostic confidence, firstorder RootMeanSquared

reached very high ratings in 47.9% of cases, compared to 62.8% for SCTR (p <

0.001). The conventional CT images showed superior results in all categories for

the other features investigated.
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magnetic resonance imaging; NGTDM, neighboring gray

SCTR, standard CT reconstructions; SH, shape-based.
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Conclusion: The application of firstorder RootMeanSquared feature maps may

help visualize faintly demarcated liver lesions by increasing visual contrast.

However, reading of SCTR remains necessary for diagnostic confidence.
KEYWORDS

radiomics, radiomics maps, lesion detectability, liver metastases, colorectal cancer
Highlights
• Selected radiomics feature maps may increase the visual

contrast of liver metastases compared with standard CT

reconstructions, potentially improving detectability.
Introduction

With more than 19 million new cases per year and up to 10

million deaths, cancer is among the most pressing global health

issues worldwide (1–3). In the course of cancer progression,

metastases are an essential driver of cancer-related mortality,

especially in the case of liver metastases (4). Therefore, early and

valid detection of malignant liver lesions is favorable for sufficient

therapy of patients.

Due to the metastatic spread through the portal venous system,

gastrointestinal (GI) cancers, particularly colon cancer, are prone to

developing liver metastases. Although the superior diagnostic accuracy

of MRI with hepatocyte-specific contrast agents is known (5),

computed tomography is still employed in the majority of patients,

partly due to cost considerations (6). CT imaging can be problematic

for detecting metastatic liver lesions due to suboptimal soft tissue

contrast (7). Especially in the early development of metastases or

after a response to therapy, liver lesions may appear faint despite the

administration of a contrast agent, resulting in a lower diagnostic

performance when compared to MRI and PET/CT (8). Yet, CT

remains the commonly performed modality for the primary staging

of metastases. Therefore, additional techniques and image analytics

would be desirable to improve the sensitivity and the visual delineation

of liver metastases.

Radiomics has emerged as a promising tool in medical imaging,

offering the potential to extract quantitative features from standard
omputed tomography;
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imaging modalities that are not visible to the human eye. These

features can provide insights into the underlying tissue

characteristics, potentially leading to improved diagnostic

accuracy. Several studies have demonstrated the advantages of

radiomics in various clinical applications. Radiomics offers a

promising approach in oncologic imaging by providing

quantitative data that can reveal tumor characteristics not visible

on conventional imaging techniques like standard CT

reconstructions (SCTR). For example, radiomics has been shown

to be effective in predicting treatment response and patient

outcomes across various cancer types. In gastrointestinal cancers,

radiomics has demonstrated its utility in diagnosing and staging

tumors, predicting prognosis, and assessing response to therapy,

particularly in cases where traditional imaging methods may fall

short. Studies have shown that radiomics can reflect tumor

heterogeneity, which is crucial for tailoring treatment strategies

and improving patient management (9). Furthermore, radiomics

has been used to assess the aggressiveness of liver tumors and

predict patient survival, offering a non-invasive complement to

traditional biopsy methods, which often have limitations such as

sampling bias and procedural risks (10). These applications

illustrate the potential of radiomics to enhance diagnostic

precision and provide more personalized care, thereby

overcoming some of the limitations associated with SCTR.

In this regard, the increasing importance of radiomics analysis

of CT image datasets with the ability to generate visualized

parameter maps of previously segmented lesions may provide

new opportunities to facilitate the diagnosis of difficult-to-define

lesions in the liver and potentially improve detectability (11–13).

Therefore, the study aimed to investigate the diagnostic confidence

and visual distinguishability for metastatic colorectal cancer

(mCRC) liver metastases on radiomics feature maps compared to

SCTR images.
Materials and methods

Study protocol

Forty-seven patients were retrospectively included in our data

analysis based on the following inclusion criteria: the selected

patients had known colorectal liver metastases confirmed in

histopathology. Corresponding CT images were acquired as part
frontiersin.org
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of the clinical routine using iodine contrast agent (Imeron® 350,

Bracco IMAGING Deutschland GmbH, Konstanz, Germany) on

commercially available clinical CT scanners (SOMATOM Emotion,

SOMATOM Go Up ®, SOMATOM Flash, Siemens Healthcare

GmbH, Erlangen, Germany). Patient data are presented in

Table 1. The Institutional Review Board (2020-861R) of the Ethik

Kommission II at the University Medical Center Mannheim,

Germany, approved the proposed retrospective study protocol

and the study was conducted in accordance with the Declaration

of Helsinki. Image data were acquired according to local standard

operating procedures with the following settings: Slice thickness of

1.5 mm, axial reconstruction, 130 -kV tube voltage, tube current

modulation enabled, B30s kernel, pitch of 1.0, FOV of 400 mm,

matrix 512×512, and pixel size of 0.78 mm × 0.78 mm.
Image analysis workflow

Manual whole-liver segmentation was performed using

MITK workbench (MITK Workbench v2021.02, Deutsches

Krebsforschungszentrum, DKFZ, Heidelberg, Germany). The

results were saved as a compressed nifti (nii.gz) data. Using a

custom Docker container (Docker Desktop; Version 4.3.1, Docker,

Inc., Palo Alto, CA, USA) based on pyradiomics (14) (version 3.0.1)

scripts, the radiomics feature maps for the set of original radiomics

features were calculated. The feature extraction process was

conducted using the default settings in pyradiomics and adheres to

the guidelines set by the Image Biomarker Standardization Initiative

(IBSI) (15). The extraction involved gray-level discretization with a

fixed bin width of 32 bins, resampling the images to a voxel size of 1

mm³, and applying a mask dilation with a radius of 1 voxel. The

radiomic features extracted encompass various feature families,

including first-order (FO) statistics, shape-based (SH) features, gray

level co-occurrence matrix (GLCM), gray level run length matrix

(GLRLM), gray level size zone matrix (GLSZM), neighboring gray

tone difference matrix (NGTDM), and gray level dependence matrix

(GLDM). KernelRadius was set to its default value of 1, and the

voxelBatch parameter was set to “None”. MaskedKernel setting was

set to “True”.
Radiomics feature selection

Feature maps for all original radiomics features were reviewed

in five example patients by two radiology residents with 4 years and

2 years of experience in oncologic imaging and quantitative image

analysis as preparation for the next step of feature selection: one

representative parameter from each of the different classes (FO,

GLCM, GLDM, GLRLM, GLSZM, and NGTDM) was selected

based on different factors. The selection of radiomics features for

this study was guided by their ability to enhance diagnostic accuracy

in detecting and characterizing liver metastases. Features were

prioritized based on their capacity to improve visual contrast

between liver parenchyma, metastatic lesions, and anatomical

landmarks, which is crucial for accurate lesion identification.
Frontiers in Oncology 03
Additionally, features demonstrating low variability in healthy

liver tissue were selected to reduce the risk of false positives. One

representative feature from each radiomics feature class was

selected to ensure a comprehensive evaluation of the diverse types

of textural information provided by different feature families. This

approach ensured that the selected features were both practically

effective and clinically relevant. A structured multi-reader analysis

was performed for these six parameter maps and SCTR. To avoid

bias, the readers examined the different radiomics maps in a

predefined order that was staggered for each reader and rotated

per patient. The study protocol and workflow are summarized in

Figure 1. The reading criteria are shown in Supplementary Table 1.
Parameter maps reading

A master table was created for the evaluation of the selected

parameter maps. Homogeneity of liver parenchyma, number of

metastases, contrast with surrounding parenchyma, and diagnostic

confidence was evaluated based on a dedicated scheme (see the

Supplementary Material). In addition, the contrast of the parameter

maps was compared with that of conventional CT images and

evaluated. To minimize the influence of window settings on lesion

detectability, standardized window settings were used for each

radiomics map, and radiologists did not alter these settings

during the evaluation. All relevant image data (six radiomics

feature maps plus SCTR per patient) of the 47 selected patients

were assessed by four radiology residents with more than 2 years of

experience in oncologic CT imaging.
Statistical analysis

All data analyses were performed with R statistics in R Studio

(version 4.1.0) (16). Plots were created with the package ggplot2

(17). Statistical analysis was performed on the pooled results from

all radiologists. Each radiologist independently assessed the images,

and their evaluations were then combined for the statistical analysis

to provide an overall assessment of the performance of the

radiomics feature maps versus the standard CT reconstructions.

The differences in the reading results of the various radiomics maps

and SCRT were tested for significance using Student’s t-test for

paired distributions and the chi-squared test as well as Kruskal–

Wallis H-test. A cutoff of p below 0.05 was applied for statistical

significance. Distributions were visualized as boxplots.
Results

Collective characteristics of the patients
and selection of parameters for mapping

The patients' collective characteristics have been published

previously (18). Patient characteristics relevant to this analysis are

summarized in Table 1.
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Based on a structured rating of visual contrast for five

patients by two radiology residents, the original radiomics

features firstorder RootMeanSquared, GLCM sum entropy,

GLDM non-uniformity, GLRLM non-uniformity, GLSZM

variance, and NGTDM contrast were selected for further

analysis (Figure 1).
Liver parenchyma and detected number
of lesions

Overall, the liver parenchyma was more heterogeneous in all

selected radiomics maps than conventional CT imaging except for

firstorder RootMeanSquared (85.6% more homogenous, overall

p < 0.001). Significantly fewer lesions were detected in the

radiomics maps GLCM sum entropy, GLDM non-uniformity,

GLRLM non-uniformity, GLSZM variance, and NGTDM contrast

(e.g., 0.39 lesions on average in NGTDM contrast) compared to the

conventional CT images (p < 0.001; Figure 2). Also, a lower detection

rate was found in the firstorder RootMeanSquared maps, with an

average number of 7.55 lesions detected per patient compared to 8.84

lesions detected in the conventional CT images (p < 0.001) (see

Table 2). The number of lesions detected individually by the four

readers is displayed in Figures 3, 4. The p-value for the number of

detected lesions between the individual features for each reader

was <0.0001.
TABLE 1 Patient characteristics.

Variable Overall

n 47

Age at CT (median [IQR]) 65.79 [56.99, 74.62]

Sex (%)

F 17 (36.2%)

M 30 (63.8%)

T-Stage (%)

T1 2 (4.3%)

T2 4 (8.5%)

T3 24 (51.1%)

T4 15 (31.9%)

Tx 2 (4.3%)

N-Stage (%)

N0 8 (17%)

N1 18 (38.3%)

N2 20 (42.6%)

Nx 1 (2.1%)

M-Stage (%)

M1 47 (100%)
FIGURE 1

Study protocol. Whole liver segmentations were performed in five example CT datasets. Standard radiomics features were extracted and visualized
parameter maps. Based on visual assessment by two readers, one feature of each feature class was selected. Subsequently, all parameter maps as
well as the standard CT reconstructions of all patients were evaluated by four readers in a structured manner and evaluated according to the
number of lesion, visual contrast, diagnostic confidence, and liver parenchyma homogeneity.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1444115
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hertel et al. 10.3389/fonc.2024.1444115
Visual contrast and diagnostic confidence

For visual contrast, firstorder RootMeanSquared achieved a

very high ranking in 108 reads (57.4%) compared to 77 reads

(41.0%) for SCTR (p < 0.001). However, for diagnostic confidence,

firstorder RootMeanSquared achieved a very high ranking in 90

reads (47.9%) compared to 118 reads (62.8%) for SCTR (p < 0.001).

All other radiomics features showed a significantly lower visual

contrast and diagnostic confidence (Table 2).
Discussion

This study compared radiomics feature maps to conventional CT

reconstructions in terms of liver parenchyma visualization, liver lesion

detection rate, visual contrast and diagnostic confidence. The

conventional CT images performed significantly better than the

selected radiomics maps concerning liver parenchyma homogeneity,

lesions detected, and diagnostic confidence. However, firstorder

RootMeanSquared showed a superior rating for visual contrast.

As the detectability of liver lesions strongly depends on the

visual contrast of lesions in computed tomography, the increased

contrast may help in lesions delineated faintly, especially in the case

of inexperienced readers, by enhancing their sensitivity. In contrast,

the comparative advantage of SCTR, in terms of diagnostic

confidence, may be expected, as the standard CT reconstruction

contains more visual information on the lesions’ properties for the

reader. Since the radiomics maps differ significantly from the SCTR

in terms of visual impression, this may be a possible explanation for

the lower diagnostic certainty compared to the SCTR, with which

radiologists have been familiar in routine practice for years. While
Frontiers in Oncology 05
some radiomics feature maps exhibited reduced resolution

compared to SCTR images, which may have limited the detection

of smaller liver lesions, others demonstrated an improved contrast

between lesions and liver parenchyma, highlighting a trade-off

between image resolution and contrast enhancement. Therefore,

the application of firstorder RootMeanSquared feature maps would

be recommended as an additional read, comparable to computer-

aided diagnosis (CAD) systems, than as a replacement for SCTRs.

The feature itself is defined as the square root of the mean of all

squared intensity values. It is an indicator of the magnitude of the

image values (19).

Radiomics feature maps have been applied for several use cases

in oncologic imaging, especially in response assessment to medical

treatment: A study by Correa et al. (20) investigated the association

of glioblastoma lesion habitat with response to treatment. Several

radiomics features could be identified that can be used to

differentiate a low or high risk of treatment failure.

A similar approach has been successfully applied by Beig et al.

(21) to the distinction between granuloma and adenocarcinoma:

Using deep learning mechanisms of selected intra- and peri nodular

radiomics features, differentiation between adenocarcinomas and

granulomas is possible with an area under the curve (AUC) value

of 0.8.

Penzias et al. (22) have shown that radiomics analysis of

prostate MRI (T2w), especially by Gabor texture features, is

feasible for predicting Gleason score in patients with prostate

cancer with an AUC of 0.69.

In the work of Algohary et al. (23), T2w and apparent diffusion

coefficient (ADC) sequences of prostate MRIs were radiomically

evaluated, and selected radiomics features were presented as visualized

maps. In the group of negativeMRIs with positive biopsy (theMRIs had
FIGURE 2

Example reading of one patient. The image section of an exemplary lesion is shown in the standard CT reconstruction as well as in all evaluated
radiomics maps. In addition, the Average number of lesions is shown as well as the number of readers who rated the liver parenchyma as more
heterogeneous than in the SCTR, the visual contrast as high or very high, and the diagnostic confidence as high or very high. Original firstorder
RootMeanSquared shows a superior contrast for two liver lesions.
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TABLE 2 Comparative performance of radiomics maps and standard CT imaging.
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been assessed in accordance with the PI-RADS standard), carcinoma

areas could be retrospectively identified in the radiomics maps, which

could not be delineated in the mere T2w or ADC images.

However, the application of radiomics maps to improve the visual

contrast of lesions has not been studied comprehensively. While this

study demonstrates the potential of radiomics feature maps,

particularly the firstorder RootMeanSquared map, to enhance the

visual contrast of liver metastases on CT images, it also opens several

avenues for future research. These findings could drive the

development of more advanced radiomics-based diagnostic tools,
Frontiers in Oncology 07
which may complement SCTR. The application of such selected

parameter maps could support radiologists in the routine

interpretation of oncological imaging datasets, similar to how CAD

systems assist in the detection of pulmonary nodules. Further research

should focus on refining and validating these parameters across diverse

clinical settings to ensure their robustness and reproducibility.

Additionally, integrating these tools into clinical practice could lead

to more personalized and accurate diagnostics, ultimately improving

patient outcomes. Addressing these aspects will be crucial in realizing

the full potential of radiomics in routine clinical use.
FIGURE 3

Number of detected lesions. Number of detected lesions by the four readers plotted by SCTR and radiomics features visualized as box plots.
FIGURE 4

Number of lesions summarized for all readers. Number of lesions summarized for all readers plotted by SCTR and radiomics features visualized as
box plots.
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Limitations

The implementation of radiomics feature maps in routine clinical

practice presents significant challenges, both technical and

organizational. The technical complexity of radiomics analysis

requires specialized expertise in image processing and data analysis,

necessitating extensive training for radiologists and technicians.

Furthermore, integrating radiomics into existing clinical workflows

poses an additional hurdle, as current systems and processes must be

adapted to effectively incorporate these new technologies. Addressing

these challenges requires interdisciplinary collaboration and

continuous development of technology and training programs to

facilitate the adoption of radiomics in clinical practice. Despite the

promising potential of radiomics feature maps, their immediate

applicability in everyday diagnostic settings is hindered by several

factors. The lack of widespread validation and standardization of

radiomics features poses a significant challenge, as it limits the

reproducibility and generalizability of results across different clinical

settings. Moreover, potential regulatory and cost barriers further

complicate the integration of radiomics into routine practice.

Furthermore, while this study demonstrates the potential of

radiomics maps, it also reveals the poor performance of certain

radiomics features compared to standard CT reconstructions. This

discrepancy may be attributed to several factors, including the

inherent variability in feature extraction, the influence of image

acquisition parameters, and the complexity of interpreting radiomics

features in heterogeneous tissues such as liver parenchyma. Identifying

and addressing these factors are crucial for enhancing the performance

and clinical utility of radiomics. Future research should focus on

optimizing feature selection and standardization processes, as well as

improving the robustness of radiomics features to better match or exceed

the diagnostic confidence provided by conventional imaging techniques.

Regarding the analysis of different radiomics maps, further

limitations arise particularly in cases where the metastases are

immediately subcapsular to the margin of the liver. These cannot

be delineated partly for technical shortcomings in the

segmentations and the basic calculation of the radiomics features

due to the density differences between liver parenchyma and

surrounding soft tissue. This problem could be addressed by

methodologically optimized segmentation and radiomics map

generation techniques. Since this study is a methodologically

novel approach, optimized segmentation and visualization

techniques must be further explored in future research.

Additionally, the selection of representative features based on

visual contrast in a subset of five patients may introduce bias,

potentially limiting the generalizability of the findings.
Conclusion

In summary, conventional CT images are superior to the

selected radiomics feature maps GLCM sum entropy, GLDM

non-uniformity, GLRLM non-uniformity, GLSZM variance, and
Frontiers in Oncology 08
NGTDM contrast in terms of homogeneity of liver parenchyma,

detectability of liver lesions, visual contrast as well as diagnostic

confidence. Only firstorder RootMeanSquared maps showed a

comparable lesion detection rate. Furthermore, visual contrast

was significantly more often rated as very high in the latter than

in the SCTR. In the case of liver lesions that are only faintly

delineated on conventional CT imaging, evaluating firstorder

RootMeanSquared maps may offer an additive advantage in terms

of detectability.
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SUPPLEMENTARY FIGURE 1

Exemplary high-resolution representation of several feature maps.

SUPPLEMENTARY FIGURE 2

High-resolution images of the liver maps of a liver lesion that can be faintly
delineated in the SCTR.
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