
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Christian F. Freyschlag,
Innsbruck Medical University, Austria

REVIEWED BY

Stephanie Mangesius,
Medical University of Innsbruck, Austria
Malik Galijasevic,
Innsbruck Medical University, Austria
Harald Krenzlin,
Johannes Gutenberg University Mainz,
Germany

*CORRESPONDENCE

Tao Li

li966511@163.com

Ling Chen

18178265251@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 07 June 2024

ACCEPTED 15 August 2024
PUBLISHED 09 September 2024

CITATION

Chen L, Chen W, Tang C, Li Y, Wu M, Tang L,
Huang L, Li R and Li T (2024) Machine
learning-based nomogram for distinguishing
between supratentorial extraventricular
ependymoma and supratentorial
glioblastoma.
Front. Oncol. 14:1443913.
doi: 10.3389/fonc.2024.1443913

COPYRIGHT

© 2024 Chen, Chen, Tang, Li, Wu, Tang,
Huang, Li and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 09 September 2024

DOI 10.3389/fonc.2024.1443913
Machine learning-based
nomogram for distinguishing
between supratentorial
extraventricular ependymoma
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Objective: To develop a machine learning-based nomogram for distinguishing

between supratentorial extraventricular ependymoma (STEE) and supratentorial

glioblastoma (GBM).

Methods: We conducted a retrospective analysis on MRI datasets obtained from

140 patients who were diagnosed with STEE (n=48) and GBM (n=92) from two

institutions. Initially, we compared seven different machine learning algorithms to

determine the most suitable signature (rad-score). Subsequently, univariate and

multivariate logistic regression analyses were performed to identify significant

clinical predictors that can differentiate between STEE and GBM. Finally, we

developed a nomogram by visualizing the rad-score and clinical features for

clinical evaluation.

Results: The TreeBagger (TB) outperformed the other six algorithms, yielding the

best diagnostic efficacy in differentiating STEE from GBM, with area under the

curve (AUC) values of 0.735 (95% CI: 0.625-0.845) and 0.796 (95% CI: 0.644-

0.949) in the training set and test set. Furthermore, the nomogram incorporating

both the rad-score and clinical variables demonstrated a robust predictive

performance with an accuracy of 0.787 in the training set and 0.832 in the

test set.

Conclusion: The nomogram could serve as a valuable tool for non-invasively

discriminating between STEE and GBM.
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Introduction

Ependymoma accounts for 5% of primary central nervous

system (CNS) tumors (1). It exhibits a predilection for specific

age-location preferences, commonly observed in the posterior fossa

among children and in the supratentorial and spine compartments

among adults (2–4). In some cases, they may develop as STEE. The

differential diagnosis of STEE poses a greater challenge compared to

infratentorial ependymomas, as infratentorial ependymomas

predominantly presents within the ventricles, while STEE may

manifest in cortical regions outside the ventricles, resembling

other high-grade tumors such as GBM. It is important to note

that there are some similarities between STEE and GBM in terms of

their overlapping clinical and routine MRI features, which can lead

to diagnostic confusion. Despite the rarity of STEE, preoperative

accurate differentiation is important, because the treatment and

prognosis are totally different. Current guidelines advocate for total

resection as the primary treatment approach for STEE, whereas

GBM necessitates a combination of total resection, radiotherapy,

and chemotherapy (5, 6). Therefore, achieving an accurate

preoperative diagnosis holds paramount importance for both

tumor types and significantly influences treatment selection and

prognosis evaluation.

Advanced MRI techniques, such as perfusion MRI (7–9),

magnetic resonance spectroscopy (MRS) (10–12), and diffusion-

weighted imaging (DWI) (13–15) have demonstrated significant

potential in the preoperative diagnosis of intracranial tumors. These

non-invasive methods offer valuable insights into tumor vascularity,

metabolic activity, and cellular proliferation. However, both STEE

and GBM exhibit restricted diffusion and significantly

hyperperfusion patterns, along with altered levels of glioma

metabolites (15–18). Consequently, accurate differentiation

between these two tumors remains a challenging due to their

analogous tissue characteristics. While pathological diagnosis is

currently one of the most widely employed and reliable approach

for determining neurological tumor types and assessing their

malignancy, it is imperative to acknowledge its inherent

limitations and associated risks (19). First, the presence of highly

heterogeneous tumors introduces potential sampling errors due to

the wide diversity within tumor tissues. In addition, biopsy, as an

invasive procedure, cannot rule out the risk of bleeding or infection

complications (20).

Therefore, noninvasive assessment of the entire tumor in vivo

could serve as a valuable adjunct to pathological diagnosis, aiding in

therapy planning and prognostic prediction. Machine learning is an

intriguing field that leverages advanced algorithms to unveil latent

information embedded within medical images (21–23). The non-

invasive nature of machine learning confers distinct advantages

over invasive procedures such as biopsy or surgical resection,

rendering them a secure alternative for patients who may not be

suitable candidates for surgery due to underlying medical

conditions or the presence of lesions in critical brain regions.

Previous studies have demonstrated the significant role of

machine learning in facilitating the identification of distinct

subtypes of brain tumors (24, 25), predicting tumor genotyping
Frontiers in Oncology 02
(26), and assessing prognosis (27). These studies offer a machine

learning-based theoretical framework that can potentially facilitate

the discrimination between STEE and GBM. Despite the promising

potential of machine learning algorithms in medical diagnostic, the

utility of machine learning-based nomograms in distinguishing

between these two tumors remains uncertain and further

investigation is warranted. Therefore, this study aims to develop a

nomogram based on multi-parameter MRI machine learning that

can effectively classify STEE and GBM. To the best of our

knowledge, there is a paucity of research on nomogram based on

machine learning in patients with STEE and GBM, and our study

adds to the body of knowledge in this area.
Materials and methods

Patients

This retrospective study was approved by the institutional

research ethics review board, and the requirement for obtaining

patient consent was waived. The present study retrospectively

enrolled a total of 183 patients diagnosed with GBM and 74

patients diagnosed with STEE from two participating institutions

in our cohort. Institution 1 recruited patients between January 2016

and December 2023, while institution 2 recruited patients between

January 2018 and December 2023. The clinical data on various

parameters, including age, gender, tumor size, preoperative

Karnofsky Performance Status (KPS) score, and lateral ventricle

involvement was extracted from both the hospital information

system and the Picture Archiving and Communication Systems

(PACS). All patients included in this study had undergone surgical

resection, and the final diagnosis was confirmed through

histopathological examination. The ventricular tumor was

identified through MRI, with the primary mass predominantly

located within the ventricle. Extra-ventricular tumors are

characterized by their main body being situated in the external

cerebral parenchyma adjacent to the ventricle, allowing for contact

with the lateral ventricle. The inclusion criteria were as follows:

histopathologic diagnosis of ependymomas or GBM; the tumor was

supratentorial and outside the lateral ventricle, confirmed by MRI;

all preoperative MRI performed before any intervention;

conventional MR images, including unenhanced T1- and T2-

weighted images and contrast-enhanced T1-weighted images,

were available. Exclusion criteria included subtentorial or

intraventricular tumors, motion artifacts, and poor image quality.

The flowchart illustrating the process of patient selection is

presented in Figure 1.
MRI protocol

MRI imaging data included axial T1WI, T2WI and Gd-T1WI

sequences obtained on two 1.5 MRI system (GE, Octane, United

States; Siemens, Altea, Germany) and two 3.0T MRI system

(Philips, Achieva, Netherlands; GE, Premier, United States). The
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sequences were acquired with a field of view (FOV) measuring

512×512 mm, a slice thickness of 5/3.0/2.5 mm, and a matrix size of

256×217/256×203/256×192. T1-weighted images were obtained

using a repetition time (TR) of 2000 ms and an echo time (TE) of

19 ms, while the acquisition parameters for T2-weighted images

included variable TRs ranging from 2600 to 5844 ms and TEs

ranging from 80 to 129 ms. Gadolinium-enhanced T1-weighted

images were acquired following intravenous injection of gadoterate

meglumine through the median cubital vein at a flow rate of 2 mL/

second (0.2 mL/kg body weight).
Radiomics process

Images preprocessing and segmentation
The pre-processing of MRI images and radiomics pipeline is

illustrated in Figure 2. Firstly, Gd-T1WI, T2WI and T1WI DICOM

images were imported into the 3D Slicer software (version 5.3.0;

https://www.slicer.org/). Subsequently, the images underwent

resampling to achieve a voxel size of 1mm×1mm×1 mm while

discretizing the gray levels with a bin width of 25. Secondly, we

employed a semi-automatic approach for tumor segmentation.

Specifically, each Gd-T1WI slice was segmented slice by slice

along the enhanced tumor edge. Following automatic registration

processing, the segmentation results were matched with T2WI and

T1WI images. The task of tumor segmentation was independently

performed by two neuroradiologists possessing over a decade of

experience in this field. Excellent agreement between observers was

indicated by interclass correlation coefficient values ranging from

0.75 to 1. Any discrepancies between the two neuroradiologists were

resolved through consensus.
Frontiers in Oncology 03
Feature extraction

Radiomics feature extraction was performed using FeAture

Explorer (https://github.com/salan668/FAE, version 0.3.7) in

Python (version 3.7.6). We extracted a total of 2,553 features for each

patient, consisting of shape features (n=14); first-order features (n=18);

texture features including gray level co-occurrence matrix (GLCM,

n=24), gray level dependence matrix (GLDM, n=14), gray level run

length matrix (GLRLM, n=16), gray level size zone matrix (GLSZM,

n=16), and neighborhood gray-tone difference matrix (NGTDM, n=5);

wavelet transform (n=744) and Laplacian of Gaussian filter (n=93).

Feature selection and signature development
The datasets were randomly partitioned into a training set and a

test set in a 7:3 ratio. Prior to feature reduction and selection in the

training cohort, all extracted features underwent Z-score

normalization for standardization purposes. The discriminative

potential of relevant features between STEE and GBM at baseline

was assessed using either the Mann-Whitney U-test or independent t-

test. Subsequently, seven machine learning algorithms were employed:

the support vector machine (SVM), random forest (RF), and the least

absolute shrinkage and selection operator (LASSO), Artificial Neural

Networks (ANN), TreeBagger (TB), Gradient Boosting (GB) and

Partial Least-squares (PLS). These algorithms were compared to

determine the optimal algorithm for constructing signatures. A

machine learning nomogram combining the rad-score and clinical

variables was constructed using multivariate logistic regression

analysis. The nomogram was validated using the test cohort. The

performance of the predictive model was evaluated using various

metrics including the AUC, accuracy, sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV). The
FIGURE 1

The patient selection flow chart.
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DeLong test was utilized to compare the performance of the ROC

curves. The calibration curve was employed to assess the level of

concordance between the predicted probability and observed

outcomes across various risk levels. The Hosmer-Lemeshow test was

conducted to evaluate the goodness-of-fit for all models. Decision

curve analysis (DCA) was executed to quantify the net benefits at

different threshold probabilities in the test set.
Statistical analysis

SPSS (version 27.0; IBM) and R statistical software (version

4.0.2) were used for statistical analyses. The independent-samples t-

test for continuous variables and Mann-Whitney U-test was used

for categorical variable. P values < 0.05 were considered indicative

of statistical significance. Data were presented as mean ± SD for

continuous variables and as frequency (%) for categorical variables.
Results

Feature Selection and Machine Learning
Model Construction

The baseline characteristics of the patients are displayed in

Table 1. The baseline analysis excluded 2,085 out of the initially

extracted 2,553 features, resulting in a refined set of only 468 features

for advanced variable screening. Finally, the pipeline generated a more

robust model consisting of nine features. Among the nine most

contributing features, four were extracted from Gd-T1WI (including

wavelet-HHH_firstorder_Entropy, wavelet-LHH_gldm-
Frontiers in Oncology 04
HighGraylevelEmphasis, Wavelet-HLL_glcm_JointAverage, and

wavelet-LLL-glszm_GraylevelNonUniformity), three from T2WI

(including original_glrlm_RunLengthNonUniformity, wavelet-

HHH_firstorder_Variance, and wavelet-HHH_glszm_SmallArea

HighGraylevelEmphasis), and two from T1WI (including wavelet-

HHH_glcm-Autocorre lat ion and wavelet-LHH_glrlm_

RunLengthNonUniformityNormalized).

The comparison of RF, LASSO, SVM, ANN, GB, TB and PLS

algorithms on both the training and test sets is presented in Table 2.

The results demonstrated that the TB algorithm exhibited superior

performance on both the training set (AUC=0.735, 95%CI: 0.624-

0.844) and test set (AUC=0.796, 95%CI: 0.644-0.949), surpassing

six other algorithms.
TABLE 1 Patient’s characteristics at baseline.

Variables Total STEE GBM
P

value

No. of patients 140 48 92 /

Age(years)
45.16
± 10.66

47.18 ± 9.92
41.27
± 11.06

0.002

Gender(female) 66(47.1%) 22(45.8%) 44(47.8%) 0.823

Tumor size
108.15
± 51.16

116.91
± 57.87

91.36
± 28.60

0.005

KPS
72.21
± 14.50

70.76
± 14.54

75.00
± 14.14

0.101

Ventricle
involvement

30(21.4%) 13(27.1%) 17(18.5%) 0.239
fron
GBM, glioblastoma; STEE, supratentorial extraventricular ependymomas; KPS, karnofsky
performance status.
FIGURE 2

Machine learning pipeline for distinguishing between STEE and GBM. (A) Image preprocessing; (B) Tumor segmentation; (C) The feature extraction
algorithm used in this study; (D) Model construction and evaluation.
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Clinical Model Construction

To establish a predictive clinical model for distinguishing STEE

and GBM, the development of the clinical model necessitates both

univariate regression analysis and multivariate regression analysis

to identify statistically significant factors. Univariate regression

models focus on assessing the impact of individual variables on

the dependent variable; however, they have a major limitation in

not accounting for potential confounding factors. In contrast,

multiple regression models consider multiple potential

influencing factors, enabling more accurate evaluation of each

factor’s independent influence on the dependent variable while

controlling for other variables, thus yielding more reliable

conclusions. The results of univariate and multivariate regression

analysis of clinical variables to differentiate STEE patients from

GBM patients are shown in Table 3. The results from Table 3

indicated that age, tumor size, and rad-score exhibited statistically

significant associations in the univariate regression analysis

(p<0.05). The multivariate regression analysis revealed that only

age and tumor size demonstrated statistically significant

associations in differentiating STEE from GBM. Consequently, we

incorporated these significant features (age and tumor size) to

constructed a clinical model. The training set and test set AUC

values for this clinical model were 0.69 and 0.684, respectively.
The performance of the nomogram

The nomogram, which presents the rad-score derived from TB

model along with clinical valuables, is illustrated in Figure 3. The

performance of the clinical model, TB model, and combined model

is shown in Figure 4. The findings demonstrated that the combined
Frontiers in Oncology 05
model exhibited AUC values of 0.787 and 0.832 in the training and

test sets, respectively. The Delong test showed that the combined

model exhibited superior performance in distinguishing between

STEE and GBM in both the training and test sets compared to the

clinical model (with p-values of 0.025 and 0.016, respectively).

However, no statistically significant differences were observed

between the combined model and TB models, as well as between

TB models and clinical models. The calibration curve showed good

agreement between the predictions and observations. The Hosmer-

Lemeshow test demonstrated a satisfactory goodness-of-fit in both

the training and test sets (both P>0.05). Moreover, the DCA based
TABLE 2 Performance evaluation of seven models for distinguishing between STEE and GBM.

Models AUC 95% CI Cutoff Acc Sen Spe PPV NPV Task

RF
0.714 0.593-0.836 0.275 0.790 0.714 0.831 0.694 0.844 Training

0.691 0.474-0.907 0.275 0.750 0.615 0.815 0.615 0.815 Test

LASSO
0.512 0.377-0.646 -1.062 0.680 0.286 0.892 0.588 0.699 Training

0.593 0.400-0.785 -1.062 0.525 0.692 0.444 0.375 0.750 Test

SVM
0.516 0.388-0.644 0.715 0.620 0.371 0.754 0.448 0.690 Training

0.593 0.393-0.792 0.715 0.650 0.462 0.741 0.462 0.741 Test

ANN
0.515 0.405-0.624 0.324 0.680 0.114 0.985 0.800 0.674 Training

0.506 0.351-0.660 0.324 0.675 0.000 1.000 – 0.675 Test

GB
0.726 0.611-0.841 0.005 0.770 0.714 0.800 0.658 0.839 Training

0.692 0.501-0.883 0.005 0.775 0.692 0.815 0.643 0.846 Test

TB
0.735 0.625-0.845 0.300 0.760 0.629 0.831 0.667 0.806 Training

0.796 0.644-0.949 0.300 0.825 0.692 0.889 0.750 0.857 Test

PLS
0.583 0.462-0.704 0.416 0.700 0.229 0.954 0.727 0.697 Training

0.561 0.375-0.747 0.416 0.675 0.077 0.963 0.500 0.684 Test
Lasso, The least absolute shrinkage and selection operator; SVM, Support Vector Machine; RF, random forest; AUC, the area under the receiver operator characteristics curve; CI, confidence
interval; PPV, positive predictive value; NPV, negative predictive value.
TABLE 3 Univariate and multivariate analyses of clinical variables and
radiomics signature to differentiate STEE patients from GBM patients.

Variables

Univariate Multivariate

OR (95%CI)
P

value
OR (95%CI)

P
value

Tumor size
0.988

(0.979,0.997)
0.007

0.989
(0.979, 1.000)

0.042

Age
0.947

(0.913,0.981)
0.003

0.956
(0.919,0.994)

0.023

KPS
1.022

(0.996,1.048)
0.103 / /

Gender(female)
0.923

(0.458,1.858)
0.823 / /

Ventrical
involvement

1.639
(0.717,3.743)

0.241 / /

Rad-score
39.575

(8.611,181.892)
<0.001

30.100
(6.253,144.887)

<0.001
front
KPS, karnofsky performance status; CI, confidence interval.
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on the combined model exhibited superior performance compared

to those based on clinical and TB models in distinguishing patients

with STEE from GBM. In the DCA curve, the probability threshold

is depicted on the horizontal axis, while the net benefit rate is

represented on the vertical axis. The black horizontal line at the

bottom signifies a zero net benefit rate in absence of treatment,

whereas the gray curve illustrates variations in net benefit rates with

changing probability thresholds under treatment. Within a specific

range, higher model net benefit rates correspond to increased

clinical utility. The DCA curve in Figure 4 demonstrates that

within a wide threshold range, the net benefit of the combined

model surpasses that of both the clinical and predictive models,

thereby indicating a higher predictive efficacy for the combined

model. As can be seen from the DCA curve, when the green line is

higher than the blue and yellow lines, the net benefit of the

combined model exceeds that of the clinical model and the

prediction model, indicating that the combined model has a

higher prediction effect.
Discussion

Previous studies have demonstrated that the 5-year survival rate

for ependymoma grade 2 and grade 3 is approximately 90%

compared to 68% (28), whereas patients diagnosed with GBM

typically exhibit a median survival of merely 15 months (29, 30).

Given their different prognoses, accurate preoperative diagnosis is

crucial in determining appropriate treatment options for patients

with these different types of brain tumors. In this study, we
Frontiers in Oncology 06
conducted a comprehensive performance comparison of multiple

machine learning algorithms (RF, LASSO, SVM, ANN, GB, TB and

PLS) and developed a nomogram to differentiate between STEE and

GBM. The results of our study demonstrated that the TB algorithm

outperforms the other six algorithms in discriminating these tumor

types. Furthermore, the pipeline yielded a more robust model with

nine statistically significant features. Moreover, age, tumor size, and

rad-score emerged as the most influential factors for distinguishing

between these two types of tumors. Importantly, the nomogram

incorporating rad-score and clinical features demonstrated superior

discriminatory capacity in identifying STEE and GBM tumors.

According to the 2021 World Health Organization (WHO)

CNS Classification of Tumors, ependymomas are subdivided into

10 diagnostic categories that accurately reflect prognosis and

biological features based on histological, molecular information

and site of onset. For any subtype of ependymoma, maximum

surgical removal is one of the most important factors for optimal

treatment results. However, in glioblastoma, surgery is used as the

preferred treatment, supplemented by radiation therapy and

chemotherapy. Therefore, accurate differentiation between the

two conditions is crucial prior to surgery in order to formulate a

rational treatment plan and enhance the prognosis. Several studies

have documented the MRI features of extraventricular

ependymoma, which can present as a voluminous mass

resembling an aggressive GBM. Typical MRI findings for

ependymoma include the presence of varying-sized cysts,

necrosis, hemorrhages, and calcifications, accompanied by

moderate or mild peritumoral edema and marked heterogeneous

contrast enhancement (31, 32). However, these findings alone are
FIGURE 3

The nomogram used to distinguish STEE from GBM. For instance, in the case of a 60-year-old patient with a tumor size of 180mm3 and Radsore
value of 0.5, the cumulative score should approximate to 94 scores, indicating a disease risk probability below 0.2. Based on these findings, it is
highly probable that this individual is diagnosed with GBM.
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insufficient for comprehensive characterization of these

tumor subtypes.

Despite the significant potential demonstrated by recent

advancements in artificial intelligence (AI) for enhancing brain

tumor classification accuracy, there is a paucity of reports on the
Frontiers in Oncology 07
identification of ependymoma and high-grade gliomas, including

GBM. According to a study conducted by Yao et al., the

combination of six Visually Accessible Rembrandt Images

(VASARI) features and four clinical features was identified as the

optimal predictor for intracranial extraventricular ependymoma
FIGURE 4

ROC curve in the training set and test sets for differentiating STEE from GBM (A, B). Calibration curves of this nomogram in training set and
validation set (C, D). Clinical decision curve for the clinical model, TB model and combined model (E, F). Based on the DCA curve depicted in
Figure 4, it is evident that when the probability threshold ranges between 0.2-0.3 or 0.4-0.7, the green line surpasses both the blue and yellow lines,
indicating a superior net benefit of the combined model compared to both the clinical and predictive models. This observation highlights the
enhanced predictive efficacy of the combined model.
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(IEE) and GBM, exhibiting AUC values of 0.99 and 0.97 in both the

training set and validation set (33). Additionally, Safei et al. utilized

SVM, RF, and LASSOmodels to construct a radiomic signature that

effectively discriminated between STEE and high-grade gliomas.

The achieved accuracy was 68% in the training set, exceeding 80%

in the validation set, with an overall specificity of more than 90%

(34). Furthermore, Li et al. showed that seven independent

predictors extracted from VASARI exhibited an AUC exceeding

70% in discriminating between IEE and GBM (34). Despite the

promising findings from the aforementioned AI studies, there are

notable disparities in the results obtained for distinguishing

between these two tumor types. This highlights the intricate

nature and formidable challenge associated with employing AI to

accurately discriminate between distinct tumor categories.

Consequently, this study aims to differentiate STEE from GBM by

utilizing a nomogram.

SVM, LASSO and RF are the most widely used machine

learning algorithms today across various domains. However, few

studies have analyzed other machine learning algorithms in

comparison. In this study, we further incorporated three

algorithms (ANN, TB, GB, and PLS) to conduct a comparative

analysis of their performance in relation to the traditional

algorithms. The implementation of these novel algorithms enables

a more comprehensive evaluation of the performance discrepancies

among various approaches in discriminating between STEE and

GBM. The results demonstrated that TB model exhibited robust

performance in discriminating the diagnostic efficacy between STEE

and GBM, with an AUC of 0.735 and 0.796 in the training set and

test set, respectively. Among them, TB uses gradient lifting

technology to effectively solve the problem of data imbalance, and

its advantage lies in its ability to model complex relationships in

data sets. In addition, it also has a good performance in feature

selection, which can automatically select the best partition feature

and prune to avoid overfitting problems. However, unfortunately,

the TB algorithms did not exhibit significant improvement in terms

of diagnostic performance compared to the aforementioned studies.

The potential discrepancy between the VASARI algorithm itself and

the TB algorithm may account for this observation. Additionally,

there may be limitations in the quality and quantity of data available

for training AI models. The accuracy and reliability of AI

predictions heavily rely on having access to comprehensive

datasets that encompass a wide range of tumor samples

representing various subtypes. If there are biases in the data used

for training, it can lead to inconsistent results when attempting to

classify tumors. Furthermore, variations in imaging techniques and

protocols across different medical institutions can also contribute to

disparities in AI-based tumor classification. Different imaging

modalities may capture distinct features or provide varying levels

of detail, which could impact the performance of AI algorithms

trained on specific datasets.

Further analysis revealed that age, tumor size, and rad-score

were identified as the most significant factors for distinguishing

between these two tumors. The observation suggested that the size

of the tumor and the age of patients played a significant role in

determining the likelihood of receiving a diagnosis of STEE or

GBM. Younger patients with smaller tumor volumes were more
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likely to be diagnosed with STEE within the given context. It is

worth noting that no significant difference was observed in the

involvement of lateral ventricles between STEE and GBM. The fact

that STEE originates from ependymal cells near the lateral ventricle

makes this region particularly susceptible to tumor development.

Similarly, GBM also has a high incidence rate in this area due to its

abundance of glial stem cells, which have the capacity for self-

renewal and differentiation into GBM (20, 35, 36). These findings

highlight the importance of considering patient age and tumor

volume when diagnosing STEE or GBM.

The nomogram, serving as a comprehensive multivariable

visual prediction model incorporating multiple variables,

facilitates the holistic consideration of various factors’ impact on

outcomes and is well-suited for assessing radiomic characteristics

and clinical risk factors in decision-making processes (37–39). In

recent years, the nomogram has gained widespread usage in

quantifying risks based on diverse significant and independent

prognostic factors associated with malignant tumors. In our

study, we conducted a comprehensive analysis to compare the

combined model, TB models, and clinical models in terms of

their efficacy in identifying patients with STEE and GBM. We

hypothesized that integrating rad-score and clinical features into a

nomogram would result in superior predictive performance

compared to individual models. Interestingly, our observations

revealed that the nomogram exhibited superior performance

compared to the clinical model, thereby demonstrating its

superiority. Remarkably, when evaluating the discriminative

ability between both tumor types using the TB model and

comparing it with that of the nomograms, comparable

performance was observed. However, both training and test sets

in the nomogram demonstrated an increase in AUC values to 0.787

and 0.832 respectively, indicating enhanced accuracy and reliability.

Clinical factors may demonstrate comparable efficacy to machine

learning algorithms in disease prediction; however, clinical models

often rely on a limited number of variables or indicators for

decision-making and are susceptible to subjective influences and

inherent limitations. A nomogram or machine learning algorithm

can utilize this data to capture significant and pertinent

information, which can then be combined with statistical analysis

and prediction. Based on the DCA curve depicted in Figure 4, it is

evident that when the probability threshold ranges between 0.2-0.3

or 0.4-0.7, the green line surpasses both the blue and yellow lines,

indicating a superior net benefit of the combined model compared

to both the clinical and predictive models. This observation

highlights the enhanced predictive efficacy of the combined model.

There are several limitations in our study that warrant

acknowledgment. Firstly, the small sample size may restrict the

generalizability of our findings. Additionally, the absence of data

support from multi-center studies limits the robustness of the

model. Multicenter studies would yield more robust results and

facilitate subgroup analysis to explore potential confounding

factors. Finally, future studies should incorporate more advanced

MRI techniques such as arterial spin labeling (ASL) and amide

proton transfer (APT), which can provide valuable insights into the

internal microstructure of tumors and potentially enhance the

accuracy of the predictive model.
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In conclusion, the machine learning-based nomogram provides

a non-invasive approach to differentiate patients with STEE from

those with GBM.
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