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Early in vitro results indicate
that de-O-acetylated sialic
acids increase Selectin
binding in cancers
Kakali Das1†, Megan Schulte1†, Megan Gerhart1†, Hala Bayoumi1,
Delayna Paulson1, Darci M. Fink1, Colin Parrish2

and Rachel Willand-Charnley1*

1Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings,
SD, United States, 2Department of Microbiology and Immunology,Baker Institute for Animal Health,
College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
Cancers utilize a simple glycan, Sialic Acid, to engage in metastatic processes via

the Sialic acid (Sia) -Selectin pathway. Selectins recognize and bind to sialylated

substrates, resulting in adhesion, migration, and extravasation, however, how

deviations from the canonical form of Sia regulate binding to Selectin receptors

(E, L, and P) on hemopoietic cells resulting in these metastatic processes,

remained a gap in knowledge. De-O-acetylated Sias has been recently shown

to be an integral substrate to the binding of sialic acid binding proteins. The two

proteins responsible for regulating the acetyl functional group on Sia’s C6 tail, are

Sialic acid acetylesterase (SIAE) and Sialic acid O acetyltransferase (CASD1). To

elucidate the contribution of functional group alterations on Sia, 9-O and 7,9-O-

acetylation of Sia was modulated via the use of CRISRP-Cas9 gene editing and

with Sialyl Glycan Recognition Probes, to produce either O-acetylated-Sia or de-

O-acetylated- Sia, respectively. In vitro experiments revealed that increased cell

surface expression of de-O-acetylated- Sia resulted in an increase in Selectin

binding, enhanced cell proliferation, and increased migration capabilities both in

lung and colon cancer. These results delineate for the first time the mechanistic

contribution of de-O-acetylated-Sia to Selectin binding, reinforcing the

importance of elucidating functional group alterations on Sia and their

contribution. Without accurate identification of which functionalized form of

Sia is being utilized to bind to sialic acid binding proteins, we cannot accurately

produce glycan therapeutics with the correct specificity and reactivity, thus this

work contributes an integral component in the development of promising

therapeutic avenues, for example in the realm of enzyme antibody

drug conjugates.
KEYWORDS

de-O-acetylated sialic acid, cancer, selectins, sia-selectin pathway, Sialyl Lewis X,
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Introduction

Cancer uses simple sugar residues to engage in metastatic

processes (1) via the Selectin- sialic acid (Sia) pathway, however,

the mechanism of action remained a gap in knowledge (2).

Although it is known that Selectins recognize and bind to

sialylated substrates, resulting in adhesion, migration, and

extravasation, how deviations from the canonical form of Sialic

acid (Sia) regulate binding to Selectin receptors (E, L, and P) on

hemopoietic cells resulting in metastatic processes, remained

unexplored. It has been demonstrated in earlier research that all

three Selectin work collaboratively to facilitate tumor metastasis (3).

In particular, L-Selectin promotes myeloid cell recruitment and P-

Selectin helps tumor cell adherence through platelet-tumor cell

interactions. Together with E-Selectin, this coordinated activity

promotes tumor extravasation (3, 4).

Although Selectins have received a lot of attention for their role

in metastasis, little is known about how non- canonical sialic acid

functions, as a Selectin ligand, to modulate Selectin binding and

subsequent metastasis. Metastasis, a multifaceted process that

underlies the progression and lethality of cancer, involves the

dissemination of cancer cells to distant sites within the body

through a series of complex steps (5, 6). A significant factor

underpinning cancer’s ability to engage in metastatic processes is

through altered cell surface glycosylation (7–11). For instance, the

glycan Sia, the specific functional groups on Sia, the enzymes that

regulate those functional groups and Sia associated glycosidic

linkages are adeptly utilized by cancers to engage in tumorigenic

processes. Previously, for example, we showed that overexpressing

de-O-acetylated-Sias on colon and lung cancers resulted in immune

evasion through the inactivation of NK mediated cytotoxicity

(12–14) and, separately, that deacetylated-Sia present on ABC

efflux transport proteins underpinned cancer’s ability to engage in

multi-drug resistance (12–14). Additionally, and of relevance to this

work, the modulation of the acetyl functional group on Sias results

in an increase in a-2,3-linked Sias in colon and lung cancers (12).

This is of particular concern because a-2,3-linked Sias are the

preferred glycosidic linkages found on Sialyl Lewis X (sLeX) and

Sialyl Lewis A (sLeA) motifs, glycan substrates that bind to Selectin

receptors, key glycan binding receptors identified in early metastatic

processes (15–18). Motivated by our previous findings we set out to

determine how de-O-acetylated- sLeX and Sialyl sLeA were being

utilized by cancers to engage Selectin receptors resulting in early

metastatic processes, such as migration. Our work demonstrates

that de-O-acetylated-Sia bound with higher affinity to glycan

binding Selectin receptors when present on the surface of colon

and lung cancer cells, increasing migration (Figure 1).

Sialic acid, a 9-carbon keto sugar that can be highly

functionalized, forms the foundation for various glycan motifs

integral to cis and trans communication (12, 14, 18), like sLeX

and sLeA (Figure 1), as well as a wide array of alterations to the

sialic acid backbone itself, such as adds of: O-acetyl group on C7,
Frontiers in Oncology 02
C8, or C9, C5 hydroxyl groups, C5 amine modifications or C5 N-

glycoyl modifications (19). Certain functional group modifications

have been shown to increase the tumor’s plasticity, as demonstrated

in our previous work (12, 20). Furthermore, aberrant expression of

sialoglycans, has been linked to metastasis and tumor

aggressiveness (8, 11, 21, 22) playing a central role in various

cellular interactions, including adhesion and migration,

contributing to the invasive nature of cancer cells (8, 12, 14).

Selectin receptors, calcium-dependent molecules commonly

found on endothelial cells, leukocytes, and platelets, are integral to

cell adhesion processes as they recognize specific glycan structures,

such as fucosylated and sialylated sLeX and its isomer sLeA (23)

expressed on scaffold glycoproteins serving as functional counter-

receptors (24), allowing for slow tethering, and rolling of leukocytes,

for instance, on the vascular endothelium (3, 25). These molecules

belong to the family of Sia-binding lectin receptors and are recognized

as type I membrane proteins with a C-type lectin domain (26–29)

There are three types of Selectin, each specific to cell types (3, 29). P-

Selectin, expressed on activated platelets and endothelial cells, has a

strong preference for PSGL-1, known for its sulfated tyrosine, and a

lesser affinity for sLeX motifs (30, 31). E-Selectin, found on

endothelial cells, primarily binds N-glycans with sLeX motifs (31),

while L-Selectin, expressed on most leukocyte types, prefers sulfated

ligands, heparan-sulfate chains, and sLeX (4, 32).

All Selectin receptors recognize sLeX-bearing PSGL-1 as their

ligand (3, 23) Research has shown the involvement of Selectin in the

initial stages of the leukocyte- endothelial adhesion cascade,

particularly in regions of inflammation (4, 11, 33). Numerous

studies have also suggested the role of Selectin in metastatic

processes (34, 35), indicating that cancer cells may employ a

similar mechanism involving Selectin-ligand interactions for

metastasis (11). This may be attributed to the fact that during the

invasion stage of metastasis, where cancer cells infiltrate

neighboring tissues and access blood and lymphatic vessels,

Selectin-ligand interactions facilitate processes such as tethering,

rolling, and signaling cascades (4).

While it is established that E, P, and L Selectin recognize sLeX

and sLeA motifs on sialylated glycans, as well as how additional

functional groups contribute to Selectin binding, for example,

sulfated O-glycans serve as critical binding sites for Selectin.

Similarly, sLeX can be modified by adding sulfate groups to the

C6 position of either N-acetylglucosamine (GlcNAc) or galactose

(Gal), or to both, resulting in 6-sulfo-sLeX, 6’-sulfo-sLeX or 6’, 6-

bisulfo-sLeX respectively, it remains unclear how sialic acid

modifications, such as O-acetylation or de-O- acetylation at the

either the C9 position or C7 and C9 positions collectively, may

regulate metastasis through Selectin binding.

In this study, based on prior work, we hypothesize that de-O-

acetylated sialic acid engages in metastatic processes through Sia-

Selectin binding metastasis via Selectin (36). To test this hypothesis,

we employed CRISPR-Cas9 gene editing to create HCT116, A549,

and HEK293 cell lines with specific mutations in sialic acid- related
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enzymes, specifically sialic acid acetyl esterase (SIAE) and sialic acid

O-acetyltransferase (CASD1), both involved in the modulation of

the acetyl group on sialic acid (Neu5Ac) at C7 and C9. Knocking

out SIAE gene generated cancer cells with O-acetylated sialic acid,

while knocking out CASD1 gene resulted in cancer cells with de-O-

acetylated sialic acid. Our methodology encompassed a series of

experiments, including flow cytometry for the analysis of expression

levels of Selectin ligands sLeX and PSGL-1, Selectin ligand

interactions, migration assays, and assessments of metabolic

activity. Additionally, we investigated the impact of removing 9-
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O-acetyl functional groups from lung and colon cancer cell surfaces

via esterase treatment on Selectin-ligand interactions.
Materials and methods

Scientific rigor

Selection of reagents/antibodies/cell lines for experiments were

based on published literatures. The reagents were obtained from
FIGURE 1

Role of Sialic Acid in Selectin Binding. Deacetylated sialic acid in the Sialyl Lewis X Motif on the cell surface promotes binding to Selectin receptors,
while acetylated sialic acid inhibits this interaction (A). Deacetylated Sialic acid facilitates cancer cell binding to L-Selectin on leukocytes, P-Selectin
on platelets and E-Selectin on endothelial cells (B). Selectin-mediated binding allows cancer cells to adhere to and migrate along the endothelium,
promoting metastasis (C).
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companies that provide validation. All studies include the applicable

secondary antibody controls. Experiments were performed in

technical triplicates with biological triplicates to confirm results.

For statistical analysis we used Two-way ANOVA to analyze the

data of these experiments for comparison using GraphPad Prism 8.

Data, as seen below, is always presented as mean ± standard deviation

with P < 0.05 indicating significance (12).
Cell lines and cell culture

All cell lines were purchased from American Type Culture

Collection. A549 and HEK 293 cells were grown in Dulbecco

modified Eagle medium (DMEM Corning) with 10% fetal bovine

serum (Corning) and 1% pen/strep (Cytiva Hyclone). HCT 116 cells

were grown in RPMI 1640 medium (Corning) with 10% fetal bovine

serum and 1% pen/strep. Concerning preparing cell suspension for

assays, Cell Dissociation Buffer (Gibco, Waltham, MA) was used for

dissociation of cells as it does not disrupt the glycocalyx. Cell culture

was not permitted to exceed 80% confluency in the flask to avoid

genetic drift. The CASD1 (DCASD1) and SIAE knockout (DSIAE)
A549 cell lines were obtained from Cornell University and used as

previously reported. The CASD1 (DCASD1) and SIAE knockout

(DSIAE) HCT116 cell lines were used as previously reported

(12, 14). Cells are routinely subject to authentication (using a

variety of methods and are not permitted to be utilized for

experimentation beyond 20 passages). Additionally, all cell lines

are tested for mycoplasma (ATCC 30-1012K) bi-weekly according

to published protocol. Additionally, Mycoplasma testing occurs

prior to entering cryo and prior to beginning experimentation.

Aseptic tissue culture training and techniques are strictly adhered

to, to diligently avoid contamination.
Cell surface ligand staining assay

Cells are grown to 80% confluency, upon which time media is

removed, and cells are washed three times gently with PBS prior to

treatment with Cell Dissociation Buffer (Gibco, Waltham, MA).

Cells are then collected, centrifuged, counted, resuspended in Cell

Staining Buffer (Bio Legend) and plated in a 96 well V-bottom plate

at 1x105 cells per well and subject to further treatment. 5mL of

Human TruStain FcX™ (Fc Receptor Blocking Solution, Bio

Legend) is added per 100ml of cell suspension and incubated for

30 minutes at room temperature. Cells are spun down to remove

excess solution and resuspended in dilutions between 0.1-10 mg/ml

of FITC anti-human Sialyl Lewis X (dimeric) Antibody (Bio

Legend) or FITC anti-PSGL-1 antibody [TC2] (abcam). Dilutions

were made in FACS buffer (1XPBS, 0.5% BSA, 1mM CaCl2). Cells

are then incubated at 4°C for 1 hour (sLeX) or 2 hours (PSGL-1).

The cells are then washed twice with 200mL of Cell Staining Buffer

(Cat. No.420201, BioLegend), resuspension and treated with 7-

AAD Viability Staining Solution (Bio Legend) prior to analyzed via
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flow cytometry. All flow cytometry data was analyzed using FlowJo

v. 10.0 (Tree Star, Ashland, OR). All experiments were performed in

three technical and biological replicates to ensure reproducibility.
Preparation of Selectin-FITC
antibody conjugates

Selectin-FITC antibody conjugates were prepared at a

concentration of 30µg/mL of Selectin per 5x105 cells in 1X FACS

buffer (1X PBS supplemented with 0.5% BSA and 1mM CaCl2).

Secondary Fc conjugate (abcam) was added at an equal

concentration to Selectin (R&D Systems) resulting in the final

suspension containing 30 µg/mL concentration of Selectin-FITC

antibody conjugates in FACS Buffer.
Selectin binding assay

Cells were grown to 80% confluency then washed gently three

times with PBS prior to treatment with Cell Dissociation Buffer

(Gibco, Waltham, MA). Cells were centrifuged, counted, and

resuspended in appropriate media at concentration of 1x106 cells/

mL. Cells were plated into a 96 well V-bottom plate at 2x105 cells

per well. Cells were centrifuged at 200 x g for 5 minutes. Media was

removed and cells were washed two-three times with 100mL of

FACS Buffer. Next, cells were treated with 50mL of Selectin-Fc

conjugate. Cells were incubated in the dark at 4°C for one hour.

After the incubation, the cells were centrifuged and washed once

with 100mL of FACS buffer. The final resuspension was in 200mL of

FACS Buffer. Cells were analyzed via flow cytometry. All flow

cytometry data was analyzed using FlowJo v. 10.0 (Tree Star,

Ashland, OR). All experiments were performed in three technical

and biological replicates (4).
7,9-deacetylated-Sia esterase probe assay

The control cell lines, of A549, HCT116, and HEK 293, were

grown to 80% confluency and washed gently three times with PBS

and treated with Cell Dissociation Buffer (Gibco, Waltham, MA).

Cells were then centrifuged, counted, and resuspended in appropriate

media at a concentration of 1x106 cells/mL. Cells were plated into a

96 well V-bottom plate at 2x105 cells per well, and centrifuged at 200

x g for 5 minutes. Media was then removed, and cells were washed

twice with 100mL of FACS Buffer and resuspended in same buffer. For

esterase treatment, cells were incubated with the requisite Sialyl

Glycan Recognition probes. Specifically, virolectin esterases that

selectively bind and remove 9-O-acetyl Sia (porcine torovirus,

PTOV) and 7,9-O-acetyl Sia (bovine coronavirus, BCoV), at 37°C

with 5% CO2 for 90 minutes. Cells were then centrifuged, the probe

was removed, and the cells were washed prior to treatment with

Selectin-FITC conjugates (12, 14).
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Scratch migration assay

Cells grown to 80% confluency were washed once with PBS and

treated with Cell Dissociation Buffer (Gibco, Waltham, MA). Cells

were centrifuged, counted, and resuspended in appropriate media.

7.5x104 cells were plated into an ibidi insert with a 500 µm divider.

Cells were grown until confluent (overnight) and the divider was

removed. Cells were imaged using an EVOS XL Core imaging

system immediately after removing the insert (0 hours) and at 12,

24, 36, and 48 hours, respectively.
Proliferation assay

Cells were grown to 80% confluency, upon which time the

media was removed, the cells were washed once with PBS and

treated with Cell Dissociation Buffer (Gibco, Waltham, MA). Cells

were centrifuged, counted, and resuspended in appropriate media.

Control cell lines, DSIAE, and DCASD1 were plated at 5x104 cells in
a 12 well plate with 0.5 mL of media containing 10% Fetal Bovine

Serum (FBS). Cells were incubated at 37°C and 5% CO2 for two

hours in the dark. Next, 50mL of MTT and 50mL media were added

to each well and incubated at 37°C and 5% CO2 for 2 hours. 150mL
of MTT solvent was added to each well and rocked for 15 min in the

dark. Absorbance was measured at 590nm using a microplate

reader (Cytation, BioTek).
Transwell migration assay

Transwell migration stimulated with 0.2% FBS-DMEM (negative

control), 10% FBS-DMEM (positive control), L-Selectin

supplemented DMEM (10% FBS-DMEM), or P-Selectin

supplemented DMEM (10% FBS-DMEM) was quantified in lung

cancer cell lines (A549 Control, A549 DSIAE, A549 DCASD1) as well
as colon cancer cell lines (HCT116 Control, HCT116 DSIAE,
HCT116 DCASD1). 40,000 cells suspended in 100µL 0.2% FBS-

DMEM were seeded in the upper chamber of Transwell permeable

supports within a 24-well plate (Corning, Cat No 3464) onto a pre-

soaked, equilibrated PET membrane with 8 mm pores. 500µL of

stimulus containing or control media was placed in the lower

chamber. After 24hr incubation at 37˚C and 5% CO2, non-

migratory cells were removed from the top of the membrane using

a cotton swab. The membrane was then rinsed once with 1X PBS and

fixed with methanol. After drying completely, membranes were

mounted in Fluoromount G with DAPI (SouthernBiotech, Cat no.

0100-20) and imaged via epifluorescence microscopy using a Nikon

Eclipse E800 epifluorescence microscope and a Zeiss Axiocam 503

monochrome camera. Three images were acquired per membrane for

a total of approximately 100 quantified cells per technical replicate.

DAPI labeled nuclei of migratory cells were quantified using

CellProfiler’s “Identify Primary Objects” function, and statistical

analysis was completed using GraphPad Prism. Quantifications for

these assays are from one replicate that is representative of three

biological replicates, where each data point represents one quantified
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membrane. Each biological replicate consisted of three technical

replicates (three membranes) per stimulus for each cell line. A549

DSIAE, A549 DCASD1, HCT116 DSIAE, and HCT116 DCASD1
migration are graphed relative to 10% FBS-DMEM stimulated A549

Control and HCT116 Control migration, respectively.
Results

Increased expression of Selectin ligand
PSGL-1 on cell surface of HCT116 and
A549 cancer cell lines in the presence of
deacetylated sialic acid

P-Selectin glycoprotein ligand-1 (PSGL-1) is a dimeric mucin

recognized by its distinctive sulfated tyrosine structure (37, 38).

PSGL-1 is a common ligand for all three E, P and L Selectin and has

been shown to promote metastasis by binding to Selectin (4, 39). In

this study, we set out to investigate the expression of PSGL-1 in

A549, HCT116 and HEK-293 cell lines, along with knockouts of

SIAE and CASD1. Our findings revealed the highest cell surface

expression of PSGL-1 in the HCT116 DCASD1 and A549 DCASD1
cell lines (Figure 2).
Increased expression of Selectin ligand,
sialyl Lewis X, on cell surface of HCT116
and A549 cancerous cell lines in the
presence of de-O-acetylated sialic acid
sialic acid

Selectin receptors are known to bind with sialic acid containing

motifs, with sLeX being a prominent glycan motif underpinning

Sia-Selectin interaction and binding. Prior to cell surface selectin

binding assays, we needed to determine the presence of sLeX motifs.

Thus, we determined set out to determine the cell surface

expression of sLeX in A549, HCT116 and HEK-293 cell lines,

along with knockouts of SIAE and CASD1. Our findings revealed

that sLeX is present on the cell’s surface with highest expression

being on the HCT116 DCASD1 and A549 DCASD1 cell lines

(Figure 3). The presence of sLeX on A549 line aligns with

previous findings (40). Additionally, sLeX has been previously

detected in colon and hepatic carcinoma cells, particularly on

core 2 O-glycans (41).
De-O-acetylation of sialic acid increases
E-, P-, and L-Selectin binding of lung
and colon cancer cell lines

Upon confirming the presence of Selectin ligands on the surface

of our cells, we next determined the modulatory effects of de-O-

acetylated Sia has on Selectin binding. Our study aimed to investigate

how the manipulation of sialic acid functional group at C7 and C9

influences Selectin receptor binding in cancer cells. As mentioned

earlier, E-Selectin favors binding to sLeX motifs (31), while P- and L-
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Selectin are capable of binding sLeX or sLeA (48). Recent in vivo

studies in mice have shown that metastasis of breast cancer cell line to

lung does not primarily utilize E-Selectin for direct ligand binding

meditated metastasis, in contrast to metastasis to bone which relies

on E-Selectin ligand binding (4, 34). Our findings align with this

observation, as we detected minimal ligand binding of E-Selectin in

A549 lung cancer cells (Figure 4). However, we also observed a

similar low E-Selectin binding pattern in noncancerous HEK-293

cells and HCT116 colon cancer cells (Figures 5, 6). Importantly, our

primary finding demonstrates that the de-O-acetylated Sia leads to an
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increase in Selectin binding. This effect extends to E-, P-, and L-

Selectin, although it’s noteworthy that P- and L-Selectin appear to

contribute the most to the phenomenon in both lung and colon

cancer (Figures 4, 6). To substantiate our results regarding increased

Selectin binding via de-O-acetylated Sia expressing cell lines

(Figures 5–6), we once again utilized our Sialyl Glycan Recognition

Probes (virolectin esterase) to selectively bind and remove 9-O-acetyl

Sia (porcine torovirus, PTOV) and 7,9-O-acetyl Sia (bovine

coronavirus, BCoV) on control cell lines to mimic the CASD1

knockout producing de-O-acetylated Sias on the cell surface. The
FIGURE 2

Expression Levels of P-Selectin Glycoprotein Ligand-1 (PSGL-1) on the Surface of Lung, Colon, and Control Lines. PSGL-1 expression was assessed
in A549 lung cancer cells (A), HCT 116 colon cancer cells (B), and HEK 293 non-cancerous kidney cells (C), along with their respective knockouts.
Cells were plated in a 96-well V-bottom plate and treated with Tru-Stain blocking buffer for 30 minutes. Subsequently, cells were incubated with
commercially available PSGL-1-FITC for 2 hours at 4°C in the dark. Data were collected via flow cytometry. For statistical analysis was conducted
using Two-way ANOVA to analyze the data of these experiments for comparison using GraphPad Prism 8. Data, as seen below, is always presented
as mean ± standard deviation with P < 0.05 indicating significance. Error bars represent the standard deviation of triplicate samples. * p<0.05,
** p<0.005, *** p<0.001, ****p<0.0001, ns = not significant (p>0.05).
FIGURE 3

Expression Levels of Sialyl Lewis X (sLeX) on Lung, Colon, and Control Lines. sLeX expression was assessed in A549 lung cancer cells (A), HCT 116
colon cancer cells (B), and HEK 293 non-cancerous kidney cells (C), along with their respective knockouts. Cells were plated in 96-well V-bottom
plates and treated with Tru-Stain blocking buffer. Cells were then treated with commercially available sLeX-FITC and incubated for 1 hour at 4°C in
the dark. Data was collected via flow cytometry. For statistical analysis was conducted using Two-way ANOVA to analyze the data of these
experiments for comparison using GraphPad Prism 8. Data, as seen below, is always presented as mean ± standard deviation with P < 0.05 indicating
significance. Error bars represent the standard deviation of triplicate samples. * p<0.05, ** p<0.005, ****p<0.0001, ns = not significant (p>0.05).
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results substantiate previous findings that when de-O-acetylated Sia is

present on the cell’s surface it significantly increases P- and L-Selectin

binding in A549 and HCT116 cell lines (Figure 7).
De-O-acetylation of sialic acid do not
significantly increase cell proliferation

To assess the impact modulating acetylated-Sias has cell

proliferation rate, we conducted an MTT proliferation assay. No

discernable effect consistently presented itself through

experimentation. In lung cancer cell line A549 that modulating

acetylation, whether it was de-O-acetylated-Sia (DCASD1) or O-

acetylated-Sia (DSIAE) resulting in the cell proliferation being

slightly increased after 24 and 48 hrs. compared to the Control

cell line (Figure 8). In HCT116 colon cancer cells the cell

proliferation was significantly lower in both DCASD1 and DSIAE
compared to control after 24 and 48 hrs.(Figure 8). In non-

cancerous HEK-293 cells a similar effect was observed as in

HCT116. Cell proliferation was significantly lower in both

DCASD1 and DSIAE cell lines compared to control HEK-293
Frontiers in Oncology 07
(Figure 8). HEK-293 control cells showed the highest

proliferation after 48 hrs. among three above mentioned cell lines

(A549, HCT116 and HEK-293), with the SIAE and CASD1

knockout having significantly decreased proliferation relative to

the control in HCT116 and HEK-293. Our data strongly suggests

that cancer cells utilize sialic acid to modulate their rate of division.
Deacetylation of sialic acid enhances the
migration capabilities of lung and colon
cancer cells

We used a transwell migration assay to determine how

modulation of acetylated sialic acids affected the ability of cells to

migrate through a membrane bearing small pores in response to a

chemoattractant placed in the lower well of a migration chamber.

Upon stimulation with FBS, deacetylation of sialic acid (DCASD1)
caused a significant increase in cell migration in A549 lung cancer

cells (Figure 9E). In contrast, cells displaying acetylated sialic acid

(DSIAE) showed a trend to reduced migration as compared to

control A549 lung cancer cells. Similarly, in HCT116, migration of
FIGURE 4

Selectin Binding Assay on Lung Cancer. Binding interactions between E-Selectins (A), P-Selectins (B), and L-Selectins (C) with their respective ligands
were quantified using flow cytometry. A549 cells were seeded at a density of 2x10^5 cells per well in a 96-well V-bottom plate and incubated with
different Selectins-FITC conjugates at 4°C for one hour. For statistical analysis was conducted using Two-way ANOVA to analyze the data of these
experiments for comparison using GraphPad Prism 8. Data, as seen below, is always presented as mean ± standard deviation with P < 0.05 indicating
significance. Error bars represent the standard deviation of triplicate samples. * p<0.05, ** p<0.005, *** p<0.001, ****p<0.0001, ns, not
significant (p>0.05).
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cells displaying deacetylated sialic acid (DCASD1) trended up, while
migration trended down in the presence of acetylated sialic acid

(DSIAE) (Figure 10E).The addition of soluble L- or P-Selectin to the

FBS-containing migratory stimulus media in the lower well of the

transwell chamber did not significantly change migration of any of

the cell lines relative to FBS alone (Figures 9F, G, 10F, G). This

suggests that soluble Selectins are not a stimulus for

chemoattraction, as would be expected for an adhesion-based

migration receptor-ligand interaction such as that between sialic

acid and Selectins. These findings underscore the crucial role of de-

O-acetylated sialic acid in influencing cell migration.
In the absence of Selectin binding, de-O-
acetylation of sialic acid reduced the
migration ability of lung and colon
cancer cells

After observing the effect of de-O-acetylated Sia on proliferation

and chemotaxis of cancer cell lines, we sought to determine how

modulating Sia contributes to the ability of cells to participate in
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cell-to-cell communication and migration. To this end, we

performed a wound healing scratch assay. The cells’ ability to

“close the gap,” migrate, appeared reduced when de-O-acetylated

Sias were expressed on the cells’ surface, A549 DCASD1 (Figure 11),
HCT116 DCASD1 (Figure 12), and HEK293 DCASD1 (Figure 13).

This trend appeared consistent across all three cell lines (Figure 14).
Discussion

The prominence of metastasis in cancer is unequivocal,

standing as the foremost contributor to global cancer-related

mortality, with nearly 90% of cancer deaths attributed to this

complex process (6). Despite considerable advances in cell biology

research and the proposal of various mechanistic insights

surrounding metastasis, glycan related biological mechanisms of

action and specifically the contribution of Sialic acid, remains

incomplete (42). Despite being under studied, the Sia- Selectin

pathway has garnered attention in recent years in shaping the

complex terrain of metastasis (43).
FIGURE 5

Selectin Binding Assay on Non-Cancerous Kidney Cells. Binding interactions between E-Selectins (A), P-Selectins (B), and L-Selectin (C) with their
respective ligands were quantified using flow cytometry. HEK 293 cells were seeded at a density of 2x10^5 cells per well in a 96-well V-bottom
plate and incubated with different Selectins-FITC conjugates at 4°C for one hour. For statistical analysis was conducted using Two-way ANOVA to
analyze the data of these experiments for comparison using GraphPad Prism 8. Data, as seen below, is always presented as mean ± standard
deviation with P < 0.05 indicating significance. Error bars represent the standard deviation of triplicate samples. * p<0.05, ** p<0.005, *** p<0.001,
****p<0.0001, ns = not significant (p>0.05).
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Selectin receptors play a pivotal role in the early stages of

leukocyte extravasation during inflammation or lymphocyte

homing, orchestrating the gradual tethering and rolling of

leukocytes along the vascular endothelium (4, 44, 45).

Capitalizing on a comparable mechanism, cancer cells, equipped

with their Selectin ligands, employ a parallel strategy to migrate and

establish secondary tumors in distant sites (25, 46, 47).

Another pivotal hallmark of cancer emerges with the excessive

transfer of sialic acid onto terminal glycoproteins or glycolipids,

leading to ‘hypersialylation’ on the surface of tumor cells. This

phenomenon serves multifaceted roles in cancer progression,

particularly in the context of metastasis (34). Modeling has shown

that increased placement of the negatively charged sialic acid on the

cancer cell surface combined with decreased degradation induces

robust cell-cell electrostatic repulsion, culminating in mechanical

compression that facilitates cell detachment from the primary site

and subsequent migration (34). Notably, hypersialylation also plays

a protective role, shielding cancer cells from physiological pH stress.

The anabolism of sialic acid yields two net protons, providing an

advantageous mechanism for neutralizing the hydroxyl product of

the Fenton reaction in cancer tissues (48).
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Since Gunnar Blix’s groundbreaking discovery of sialic acid

(49), over 80 distinct naturally occurring types have been identified

to date. The extensive diversity in sialic acid structures stems from

modifications to the hydroxyl and amine groups of the sialic acid

backbone (50, 51). Among these modifications is the addition of

acetyl groups to the hydroxyl groups at C-7, C-8, and C-9 positions

(19), with O-acetylation emerging as the most extensively clinically

studied modification (52).

In this study, we investigated the modulatory impact O-

acetylation-Sias had on Selectin ligand expression, Selectin

binding, and migratory effects. We explored how these binding

alterations could influence the migratory capabilities of lung

cancer (A549), colon cancer (HCT 116), and non-cancerous

HEK293 cells. Employing CRISPR Cas9 gene editing techniques,

we targeted the CAS1 domain containing 1 (CASD1) gene and

sialic acid acetylesterase (SIAE) gene, responsible for adding and

removing acetyl groups to C-9 and/or C-7 positions of Sia,

respectively (53, 54). The CASD1 knockout (DCASD1) cells

represented cancer cells with deacetylated sialic acid, while the

SIAE knockout (DSIAE) cells represented cancer cells with

acetylated sialic acid.
FIGURE 6

Selectin Binding Assay on Colon Cancer. Binding interactions between E-Selectins (A), P-Selectins (B), and L-Selectins (C) with their respective
ligands were quantified using flow cytometry. HCT116 cells were seeded at a density of 2x10^5 cells per well in a 96-well V-bottom plate and
incubated with different Selectins-FITC conjugates at 4°C for one hour. For statistical analysis was conducted using Two-way ANOVA to analyze the
data of these experiments for comparison using GraphPad Prism 8. Data, as seen below, is always presented as mean ± standard deviation with P <
0.05 indicating significance. Error bars represent the standard deviation of triplicate samples. * p<0.05, ** p<0.005, *** p<0.001,
ns, not significant (p>0.05).
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We firstly examined the effect of de-O-acetylation of sialic acid

on the expression of Selectin ligands, focusing specifically on P-

Selectin glycoprotein ligand-1 (PSGL-1) and Sialyl Lewis X(sLeX).

Notably, increased sLeX expression has been inversely associated
Frontiers in Oncology 10
with cancer prognosis in human colon carcinoma and human non-

small cell lung carcinoma [(41). Cancer cells employ various

strategies to mimic monocytes or neutrophils, including the

upregulation of sialylated Lewis-type blood group antigens (55).
FIGURE 7

Determining the Modulation of Deacetylated-Sialic Acid to Selectin Binding via Sialylglycan Recognition Probes (SGRP). The binding of L-Selectins
(A-C) and P-Selectins (D-F) to control cell lines A549, HCT 116, and HEK 293, respectively, were evaluated following treatment with an esterase that
specifically removes sialic acid acetyl groups. Cells were seeded in 96-well V-bottom plates, washed with FACS buffer, and treated with 9-O-Ac
probe (PTOV He-Fc, #1554). After a 1.5-hour incubation at 37°C, cells were washed again and incubated with Selectins-FITC conjugates at 4°C for 1
hour in the dark. Data were acquired using flow cytometry. For statistical analysis was conducted using Two-way ANOVA to analyze the data of
these experiments for comparison using GraphPad Prism 8. Data, as seen below, is always presented as mean ± standard deviation with P < 0.05
indicating significance. Error bars represent the standard deviation of triplicate samples. ** p<0.005, ****p<0.0001,
ns = not significant (p>0.05).
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FIGURE 8

Proliferation Assay. A549 cells (A-C), HCT 116 cells (D-F), and HEK 293 cells (G-I) were plated at a density of 50,000 cells per well in separate 12-
well plates containing media supplemented with 10% FBS. Cells were incubated for 0 hours (left), 24 hours (middle), and 48 hours (right). At each
time point, 50 ml of MTT reagent and 50 ml of media were added to each well. After a 2-hour incubation at 37°C in the dark, 150 ml of neutralizing
solvent was added, followed by rocking for 15 minutes. Absorbance was measured at 590 nm to assess cell proliferation, with increased absorbance
indicating higher metabolite levels. Data were acquired using flow cytometry. For statistical analysis was conducted using Two-way ANOVA to
analyze the data of these experiments for comparison using GraphPad Prism 8. Data, as seen below, is always presented as mean ± standard
deviation with P < 0.05 indicating significance. Error bars represent the standard deviation of triplicate samples. * p<0.05, ** p<0.005, ****p<0.0001,
ns = not significant (p>0.05).
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Although sLeX expression was traditionally attributed to internal

glycosylation, recent discoveries have indicated that extrinsic

glycosylation via platelets can also generate sLeX (56). PSGL-1

has been identified in multiple cell types, including most leukocytes

and various cancer cells, such as human colon cancer, lymphomas,

and prostate cancer (57–61). The results unequivocally

demonstrated a substantial increase in the cell surface expression

of both PSGL-1 (Figure 2) and sLeX (Figure 3) upon the induction

of 9-O deacetylation of sialic acid. Because of the requirement for

interaction between PSGL-1 on cancer cells and Selectin binding on

the vascular endothelium after entry of the cancer cells into the

bloodstream, this result holds implications for tethering and rolling

processes in lung and colon cancers, shedding light on how

increased PSGL-1 expression may impact the interactions

between cancer cells and their microenvironment.

In the context of our investigation, previous studies have

provided crucial insights into the underlying mechanisms
Frontiers in Oncology 12
influencing our findings. Notably, these studies have meticulously

elucidated the pivotal role of sialic acid de-O-acetylation in

unmasking Selectin ligands on the cancer cell surface. This

unmasking phenomenon effectively renders the Selectin ligands

more exposed than those of acetylated sialic acid and more

accessible (2, 19).

We subsequently validated the modulatory role of deacetylated

sialic acid by measuring the binding of E, P, and L Selectin-FITC

conjugates to the cell surface. Recent studies have shed light on the

role of Selectins in cancer. For instance, studies indicate that

glioblastoma overexpresses P-Selectin in the presence of microglia

and that P-Selectin plays a role in glioblastoma proliferation and

invasion when microglia are present (62). Additionally, another

study reported that in HT29 colon carcinoma cells, the interaction

between E-Selectin and colon cancer cells has been linked to the

activation of the PI3K/Akt pathway, suggesting a beneficial effect on

cell survival (62). The cancer cell lines featuring CASD1 knockouts,
FIGURE 9

SIAE and CASD1 Positively and Negatively Regulate Cell Migration, Respectively, in A549 cells. (A-D) Epifluorescent micrographs of transwell
membranes with DAPI labeled nuclei in A549 Ctrl, SIAE KO, and CASD1 KO cel lines. A549 lung cancer cells were seeded on a PET membrane and
stimulated with 0.2% FBS-DMEM (A), 10% FBS- DMEM (B), L-Selectins supplemented 10% FBS-DMEM (C), or P-Selectins supplemented 10% FBS-
DMEM (D). After 24hrs, migratory cells on the membranes’ bottom surface were fixed in methanol and mounted in media containing DAPI.
Membranes were imaged via epifluorescent microscopy, and migratory cell nuclei were quantified. (E-G) Cell migration of SIAE and CASD1 knockout
cell lines stimulated with FBS (E), L-Selectins and FBS (F) or P-Selectins and FBS (G) is graphed relative to A549 Ctrl migration when stimulated with
10% FBS-DMEM. Scale bar = 100µm. Quantifications show one of three biological replicates, each including three membranes per stimulus for each
cell line. *p< 0.05 indicating significance. Error bars represent the standard deviation of triplicate samples. * p<0.05, ** p<0.005, ****p<0.0001, ns =
not significant (p>0.05).
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indicative of deacetylated sialic acid, exhibited increased binding

with all three Selectins (Figures 5–6). We conducted additional

experiments on control cancer cell lines in which were treated with

esterase probes to enzymatically cleave the acetyl groups. As

expected, this treatment resulted in a significant increase in

binding of both P- and L-Selectin, providing further confirmation

of the crucial role of sialic acid de-O-acetylation in exposing Selectin

ligands (Figure 7). These particular findings represent a novel

contribution to the field, as previous research primarily focused

on sLeX or sLeA but did not discuss the effect of functional group

modification of sialic acid on sialic acid- Selectin binding (41,

63–65).

After elucidating the role of de-O-acetylated-Sia in binding to

Selectins, our focus shifted to understanding how this binding could

influence the migratory abilities of cancer cells. Subsequent assays

were designed to elucidate the downstream effects of Selectin
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binding in the context of cancer metastasis. Our MTT assay data

revealed the aggressive and proliferative characteristics associated

with CASD1 knockout cancer cells compared to SIAE knockouts

(Figure 8), aligning with findings from a separate study (12–14).

The transwell assay did not show that exposure of cells to P and L

selectin increased their migration. There was no effect above the

10% FBS control with the addition of Selectins. However, the

transwell migration assay revealed that the migration of cells

containing de-O-acetylated-Sia (CASD1 knockout cell lines) in

CASD1 mutant cells in A549 cancer cells exceeded that of the

control cell line but not in HCT116 (Figures 9, 10). This may be

attributed to the presence of low levels of 9-O-acetyled sialic acid

internally as well as on the cell surface in control HCT116 cells, as

demonstrated by our previous work (12). This could account for the

comparable migration between HCT116 control cells and CASD1

knockout cells.
FIGURE 10

SIAE Facilitates Cell Migration in HCT-116 Cells. (A-D) Epifluorescent micrographs of transwell membranes with DAPI labeled nuclei in HCT-116 Ctrl,
SIAE KO, and CASD1 KO cell lines. HCT-116 colon cancer cells were seeded on a PET membrane and stimulated with 0.2% FBS-DMEM (A), 10% FBS-
DMEM (B), L-Selectins supplemented 10% FBS- DMEM (C), or P-Selectins supplemented 10% FBSDMEM (D). After 24hrs, migratory cells on the
membranes’ bottom surface were fixed in methanol and mounted in media containing DAPI. Membranes were imaged via epifluorescent
microscopy, and migratory cell nuclei were quantified. (E-G) Cell migration of SIAE and CASD1 knockout cell lines stimulated with FBS (E), L-
Selectins and FBS (F) or P-Selectins and FBS (G) is graphed relative to HCT-116 Ctrl migration when stimulated with 10% FBS-DMEM. Scale bar =
100µm. Quantifications show one of three biological replicates, each including three membranes per stimulus for each cell line. * p<0.05 ns = not
significant (p>0.05) indicating significance. Error bars represent the standard deviation of triplicate samples.
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Our results suggest that soluble Selectins are not a stimulus for

chemoattraction, as would be expected for an adhesion-based

migration receptor-ligand interaction such as that between sialic

acid and Selectins. These findings underscore the crucial role of de-

O-acetylated sialic acid in influencing cell migration. Transwell
Frontiers in Oncology 14
migration assays are often used together with proliferation and

scratch migration assays to determine the relative contributions of

proliferation and migration, both important cellular features for the

process of tumor progression (66). Upon analysis, our scratch assay

data demonstrated that the migration ability of cells with de-O-
FIGURE 11

Scratch Migration Assay in HCT116 Cells. HCT 116 control (left), HCT 116 DSIAE (middle) and HCT 116 DCASD1 (right) cells were plated in a 6-well
plate IBIDI insert with a 500 µm divider. The divider was carefully removed 12 hours after plating to create a uniform scratch. Cell migration into the
scratch area was monitored by imaging every 12 hours over a period of 48 hours. Quantitative analysis of cell migration is presented in Figure 14.
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acetylated sialic acid was lower compared to those with acetylated

sialic acid (Figures 11–14). This finding underscores the specificity

of Selectin’s impact on the migratory behavior observed in our

study, distinct from any potential effects related to cellular
Frontiers in Oncology 15
proliferation. Furthermore, previous studies proposed that only

epithelial cells distant from the initial wound show an increased

rate of proliferation during the wound healing process, whereas cells

migrating to cover the wound do not proliferate (67–70).
FIGURE 12

Scratch Migration Assay in A549 Cells. A549 control (left), A549 DSIAE (middle) and A549 DCASD1 (right) cells were plated in a 6-well plate IBIDI
insert with a 500 µm divider. The divider was carefully removed 12 hours after plating to create a uniform scratch. Cell migration into the scratch
area was monitored by imaging every 12 hours over a period of 48 hours. Quantitative analysis of cell migration is presented in Figure 14.
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Subsequent study suggested that the wound healing process, which

assesses cell migration, is linked to characteristics associated with

cellular mobility rather than cellular proliferation (66).

In conclusion, our study systematically unravels the impact of

9-O deacetylation of sialic acid on Selectin binding and cancer cell

behavior. We observed a substantial increase in the cell surface

expression of Selectin ligands upon 9-O deacetylation. This increase
Frontiers in Oncology 16
can be attributed, at least in part, to the role of sialic acid de-O-

acetylation in exposing Selectin ligands on the surface of cancer

cells. This result was further validated using Selectin-FITC

conjugates, confirming increased binding with all three Selectin in

CASD1 knockout cells. Additional experiments on SIAE knockout

cell lines treated with esterase probes affirmed the pivotal role of

sialic acid de-O-acetylation in Selectin binding. Our functional
FIGURE 13

Scratch Migration Assay in HEK 293 Cells. HEK 293 control (left), HEK 293 DSIAE (middle) and HEK 293 DCASD1 (right) cells were plated in a 6-well
plate IBIDI insert with a 500 µm divider. The divider was carefully removed 12 hours after plating to create a uniform scratch. Cell migration into the
scratch area was monitored by imaging every 12 hours over a period of 48 hours. Quantitative analysis of cell migration is presented in.
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assays demonstrated heightened migration in CASD1 knockout

cells, distinguishing the specific impact of sialic acid de-O-

acetylation on migration from proliferation effects. The complex

interplay between sialic acid and cancer cell behavior presents

exciting opportunities for the development of targeted therapies

and interventions that could significantly impact the field of

oncology. While these results represent early in vitro studies, the

results delineate for the first time the mechanistic contribution of

de-O-acetylated-Sia to Selectin binding, reinforcing the importance

of elucidating functional group alterations on Sia and their

contribution. Without accurate identification of which

functionalized form of Sia is being utilized to bind to sialic acid

binding proteins,` Selectins for example, we cannot accurately

produce glycan therapeutics with the correct specificity and

reactivity as alternative treatment options. Thus, this work

contributes integral foundational knowledge towards the

development of promising glycan therapeutics in the realm of

enzyme antibody drug conjugates.
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